华为云用户手册

  • 注意事项 在非阻塞连接上发送任何命令或数据之后,调用PQflush。如果返回1,则等待套接字变为读或写就绪。如果为写就绪状态,则再次调用PQflush。如果已经读到,调用PQconsumeInput,然后再次调用PQflush。重复,直到PQflush返回0。(必要检查读就绪并使用PQconsumeInput耗尽输入,因为服务器可能会阻止尝试向客户端发送数据(例如NOTICE消息),并且在客户端读取它的数据之前不会读取客户端的数据。)一旦PQflush返回0,等待套接字准备好,然后按照上面描述读取响应。
  • date_part date_part函数是在传统的Ingres函数的基础上制作的(该函数等效于SQL标准函数extract): date_part('field', source) 这里的field参数必须是一个字符串,而不是一个名称。有效的field与extract一样,详细信息请参见EXTRACT。 示例: 1 2 3 4 5 gaussdb=# SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 16 (1 row) 1 2 3 4 5 gaussdb=# SELECT date_part('hour', INTERVAL '4 hours 3 minutes'); date_part ----------- 4 (1 row)
  • EXTRACT EXTRACT(field FROM source) extract函数从日期或时间的数值里抽取子域,比如年、小时等。source必须是一个timestamp、time或interval类型的值表达式(类型为date的表达式转换为timestamp,因此也可以用)。field是一个标识符或者字符串,它指定从源数据中抽取的域。extract函数返回类型为double precision的数值。field的取值范围如下所示。 century 世纪。 第一个世纪从0001-01-01 00:00:00 AD开始。这个定义适用于所有使用阳历的国家。没有0世纪,直接从公元前1世纪到公元1世纪。 示例: 1 2 3 4 5 gaussdb=# SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13'); date_part ----------- 20 (1 row) day 如果source为timestamp,表示月份里的日期(1-31)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 16 (1 row) 如果source为interval,表示天数。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute'); date_part ----------- 40 (1 row) decade 年份除以10。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 200 (1 row) dow 每周的星期几,星期天(0)到星期六(6)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 5 (1 row) doy 一年的第几天(1~365/366)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 47 (1 row) epoch 如果source为timestamp with time zone,表示自1970-01-01 00:00:00-00 UTC以来的秒数(结果可能是负数); 如果source为date和timestamp,表示自1970-01-01 00:00:00-00当地时间以来的秒数; 如果source为interval,表示时间间隔的总秒数。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08'); date_part -------------- 982384720.12 (1 row) 1 2 3 4 5 gaussdb=# SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours'); date_part ----------- 442800 (1 row) 将epoch值转换为时间戳的方法。 1 2 3 4 5 gaussdb=# SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720.12 * INTERVAL '1 second' AS RESULT; result --------------------------- 2001-02-17 12:38:40.12+08 (1 row) hour 小时域(0-23)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 20 (1 row) isodow 一周的第几天(1-7)。 星期一为1,星期天为7。 除了星期天外,都与dow相同。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40'); date_part ----------- 7 (1 row) isoyear 日期中的ISO 8601标准年(不适用于间隔)。 每个带有星期一开始的周中包含1月4日的ISO年,所以在年初的1月或12月下旬的ISO年可能会不同于阳历的年。详细信息请参见后续的week描述。 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01'); date_part ----------- 2005 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-01 00:00:40'); date_part ----------- 52 (1 row) 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02'); date_part ----------- 2006 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-02 00:00:40'); date_part ----------- 1 (1 row) microseconds 秒域(包括小数部分)乘以1,000,000。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5'); date_part ----------- 28500000 (1 row) millennium 千年。 20世纪(19xx年)里面的年份在第二个千年里。第三个千年从2001年1月1日零时开始。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 3 (1 row) milliseconds 秒域(包括小数部分)乘以1000。请注意它包括完整的秒。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5'); date_part ----------- 28500 (1 row) minute 分钟域(0-59)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 38 (1 row) month 如果source为timestamp,表示一年里的月份数(1-12)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 2 (1 row) 如果source为interval,表示月的数目,然后对12取模(0-11)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months'); date_part ----------- 1 (1 row) quarter 该天所在的该年的季度(1-4)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 1 (1 row) second 秒域,包括小数部分(0-59)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(SECOND FROM TIME '17:12:28.5'); date_part ----------- 28.5 (1 row) timezone 与UTC的时区偏移量,单位为秒。正数对应UTC东边的时区,负数对应UTC西边的时区。 timezone_hour 时区偏移量的小时部分。 timezone_minute 时区偏移量的分钟部分。 week 该天在所在的年份里是第几周。ISO 8601定义一年的第一周包含该年的一月四日(ISO-8601 的周从星期一开始)。换句话说,一年的第一个星期四在第一周。 在ISO定义里,一月的头几天可能是前一年的第52或者第53周,十二月的后几天可能是下一年第一周。比如,2006-01-01是2005年的第52周,而2006-01-02是2006年的第1周。建议isoyear字段和week一起使用以得到一致的结果。 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01'); date_part ----------- 2005 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-01 00:00:40'); date_part ----------- 52 (1 row) gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02'); date_part ----------- 2006 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-02 00:00:40'); date_part ----------- 1 (1 row) year 年份域。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 2001 (1 row)
  • TIMESTAMPDIFF TIMESTAMPDIFF(unit , timestamp_expr1, timestamp_expr2) timestampdiff函数是计算两个日期时间之间(timestamp_expr2-timestamp_expr1)的差值,并以unit形式范围结果。timestamp_expr1,timestamp_expr2必须是一个timestamp、timestamptz、date类型的值表达式。unit表示的是两个日期差的单位。 等效于timestamp_diff(text, timestamp, timestamp)。 该函数仅在 GaussDB 兼容MySQL类型时(即dbcompatibility = 'MYSQL')有效,其他类型不支持该函数。 year 年份。 1 2 3 4 5 gaussdb=# SELECT TIMESTAMPDIFF(YEAR, '2018-01-01', '2020-01-01'); timestamp_diff ---------------- 2 (1 row)
  • 时间/日期函数 age(timestamp, timestamp) 描述:将两个参数相减,并以年、月、日作为返回值。若相减值为负,则函数返回亦为负,入参可以都带timezone或都不带timezone。 返回值类型:interval 示例: 1 2 3 4 5 gaussdb=# SELECT age(timestamp '2001-04-10', timestamp '1957-06-13'); age ------------------------- 43 years 9 mons 27 days (1 row) age(timestamp) 描述:当前SQL执行开始时刻的系统时间和参数相减,入参可以带或者不带timezone。 返回值类型:interval 示例: 1 2 3 4 5 gaussdb=# SELECT age(timestamp '1957-06-13'); age ------------------------- 60 years 2 mons 18 days (1 row) clock_timestamp() 描述:返回当前函数被调用时的系统时间的时间戳。volatile函数,每次扫描都会取最新的时间戳,因此在一次查询中每次调用结果不相同。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT clock_timestamp(); clock_timestamp ------------------------------- 2017-09-01 16:57:36.636205+08 (1 row) current_date 描述:返回当前本条SQL启动的系统时间的日期。 返回值类型:date 示例: 1 2 3 4 5 gaussdb=# SELECT current_date; date ------------ 2017-09-01 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下返回值类型为timestamp。 current_time 描述:当前事务的开始时刻的系统时间。 返回值类型:time with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT current_time; timetz -------------------- 16:58:07.086215+08 (1 row) current_timestamp 描述:返回的结果为当前SQL启动的系统时间。语句级别时间,同一个语句内返回结果不变。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT current_timestamp; pg_systimestamp ------------------------------ 2017-09-01 16:58:19.22173+08 (1 row) current_timestamp(precision) 描述:返回的结果为当前事务启动的系统时间,并将结果的微秒圆整为指定小数位。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT current_timestamp(1); timestamptz ------------------------------ 2017-09-01 16:58:19.2+08 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下,precision参数支持numeric类型的整值,否则仅支持int输入。 微秒末位的0不显示,如2017-09-01 10:32:19.212000输出显示为2017-09-01 10:32:19.212。 pg_systimestamp() 描述:当前日期和时间(当前语句的开始)。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT pg_systimestamp(); pg_systimestamp ------------------------------- 2015-10-14 11:21:28.317367+08 (1 row) date_part(text, timestamp) 描述: 获取日期或者时间值中子域的值,例如年或者小时的值。 等效于extract(field from timestamp)。 timestamp类型:abstime、date、interval、reltime、time with time zone、time without time zone、timestamp with time zone、timestamp without time zone。 返回值类型:double precision 示例: 1 2 3 4 5 gaussdb=# SELECT date_part('hour', timestamp '2001-02-16 20:38:40'); date_part ----------- 20 (1 row) date_part(text, interval) 描述:获取月份的值。如果大于12,则取与12的模。等效于extract(field from timestamp)。 返回值类型:double precision 示例: 1 2 3 4 5 gaussdb=# SELECT date_part('month', interval '2 years 3 months'); date_part ----------- 3 (1 row) date_trunc(text, timestamp) 描述:截取到参数text指定的精度。 返回值类型:interval、timestamp with time zone、timestamp without time zone 示例: 1 2 3 4 5 gaussdb=# SELECT date_trunc('hour', timestamp '2001-02-16 20:38:40'); date_trunc --------------------- 2001-02-16 20:00:00 (1 row) trunc(timestamp) 描述:默认按天截取。 示例: 1 2 3 4 gaussdb=# SELECT trunc(timestamp '2001-02-16 20:38:40'); trunc --------------------- 2001-02-16 00:00:00 (1 row) trunc(arg1, arg2) 描述:截取到arg2指定的精度。 arg1类型:interval、timestamp with time zone、timestamp without time zone arg2类型:text 返回值类型:interval、timestamp with time zone、timestamp without time zone 示例: 1 2 3 4 gaussdb=# SELECT trunc(timestamp '2001-02-16 20:38:40', 'hour'); trunc --------------------- 2001-02-16 20:00:00 (1 row) round(arg1, arg2) 描述:四舍五入到arg2指定的精度。 arg1类型:timestamp without time zone arg2类型:text 返回值类型:timestamp without time zone 示例: 1 2 3 4 gaussdb=# SELECT round(timestamp '2001-02-16 20:38:40', 'hour'); round --------------------- 2001-02-16 21:00:00 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s1的情况下有效。 daterange(arg1, arg2) 描述:获取时间边界信息。 arg1类型:date arg2类型:date 返回值类型:daterange 示例: 1 2 3 4 5 gaussdb=# select daterange('2000-05-06','2000-08-08'); daterange ------------------------- [2000-05-06,2000-08-08) (1 row) daterange(arg1, arg2, text) 描述:获取时间边界信息。 arg1类型:date arg2类型:date text类型:text 返回值类型:daterange 示例: 1 2 3 4 5 gaussdb=# select daterange('2000-05-06','2000-08-08','[]'); daterange ------------------------- [2000-05-06,2000-08-09) (1 row) extract(field from timestamp) 描述:获取小时的值。 返回值类型:double precision 示例: 1 2 3 4 5 gaussdb=# SELECT extract(hour from timestamp '2001-02-16 20:38:40'); date_part ----------- 20 (1 row) extract(field from interval) 描述:获取月份的值。如果大于12,则取与12的模。 返回值类型:double precision 示例: 1 2 3 4 5 gaussdb=# SELECT extract(month from interval '2 years 3 months'); date_part ----------- 3 (1 row) isfinite(date) 描述:判断日期是否为有限值,是则返回t,否则返回f。 返回值类型:Boolean 示例: 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT isfinite(date '2001-02-16'); isfinite ---------- t (1 row) gaussdb=# SELECT isfinite(date 'infinity'); isfinite ---------- f (1 row) isfinite(timestamp) 描述:判断时间戳是否为有限值,是则返回t,否则返回f。 返回值类型:Boolean 示例: 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT isfinite(timestamp '2001-02-16 21:28:30'); isfinite ---------- t (1 row) gaussdb=# SELECT isfinite(timestamp 'infinity'); isfinite ---------- f (1 row) isfinite(interval) 描述:判断时间间隔是否为有限值,是则返回t,暂不支持返回f,输入'infinity'会报错。 返回值类型:Boolean 示例: 1 2 3 4 5 gaussdb=# SELECT isfinite(interval '4 hours'); isfinite ---------- t (1 row) justify_days(interval) 描述:将时间间隔以月(30天为一月)为单位。 返回值类型:interval 示例: 1 2 3 4 5 gaussdb=# SELECT justify_days(interval '35 days'); justify_days -------------- 1 mon 5 days (1 row) justify_hours(interval) 描述:将时间间隔以天(24小时为一天)为单位。 返回值类型:interval 示例: 1 2 3 4 5 gaussdb=# SELECT JUSTIFY_HOURS(INTERVAL '27 HOURS'); justify_hours ---------------- 1 day 03:00:00 (1 row) justify_interval(interval) 描述:结合justify_days和justify_hours,调整interval。 返回值类型:interval 示例: 1 2 3 4 5 gaussdb=# SELECT JUSTIFY_INTERVAL(INTERVAL '1 MON -1 HOUR'); justify_interval ------------------ 29 days 23:00:00 (1 row) localtime 描述:当前事务的开始时刻的系统时间。 返回值类型:time 示例: 1 2 3 4 5 gaussdb=# SELECT localtime AS RESULT; result ---------------- 16:05:55.664681 (1 row) localtimestamp 描述:返回当前本条SQL执行开始时刻的系统日期和时间。 返回值类型:timestamp 示例: 1 2 3 4 5 gaussdb=# SELECT localtimestamp; timestamp ---------------------------- 2017-09-01 17:03:30.781902 (1 row) now() 描述:当前事务的开始时刻的系统的日期及时间,同一个事务内返回结果相同。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT now(); now ------------------------------- 2017-09-01 17:03:42.549426+08 (1 row) timenow() 描述:返回当前本条SQL执行开始时刻的系统日期和时间。 返回值类型:abstime 示例: 1 2 3 4 5 gaussdb=# select timenow(); timenow ------------------------ 2020-06-23 20:36:56+08 (1 row) numtodsinterval(num, interval_unit) 描述:将数字转换为interval类型。num为numeric类型数字,interval_unit为固定格式字符串('DAY' | 'HOUR' | 'MINUTE' | 'SECOND')。 可以通过设置GUC参数IntervalStyle为ORA,兼容该函数interval输出格式。 返回值类型:interval 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 gaussdb=# SELECT numtodsinterval(100, 'HOUR'); numtodsinterval ----------------- 100:00:00 (1 row) gaussdb=# SET intervalstyle = oracle; SET gaussdb=# SELECT numtodsinterval(100, 'HOUR'); numtodsinterval ------------------------------- +000000004 04:00:00.000000000 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下:当参数interval_unit为 'DAY' 时,参数num超过1000000000会报错。 numtoyminterval(num, interval_unit) 描述:将数字转换为interval类型。num为numeric类型数字,interval_unit为固定格式字符串('YEAR' | 'MONTH')。 可以通过设置GUC参数IntervalStyle为ORA,兼容interval输出格式。 返回值类型:interval 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 gaussdb=# \c gaussdb_o; Non-SSL connection (SSL connection is recommended when requiring high-security) You are now connected to database "gaussdb_o" as user "omm". gaussdb_o=# set a_format_version='10c'; SET gaussdb_o=# set a_format_dev_version='s2'; SET gaussdb=# SELECT numtoyminterval(100, 'MONTH'); numtoyminterval ----------------- 8 years 4 mons (1 row) gaussdb_o=# SET intervalstyle = oracle; SET gaussdb_o=# SELECT numtoyminterval(100, 'MONTH'); numtoyminterval ----------------- 8-4 (1 row) gaussdb_o=# \c postgres Non-SSL connection (SSL connection is recommended when requiring high-security) You are now connected to database "postgres" as user "omm". gaussdb=# DROP DATABASE gaussdb_o; DROP DATABASE 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下有效。 new_time(date, timezone1,timezone2) 描述:当timezone1所表示时区的日期时间为date的时候,返回此时timezone2所表示时区的日期时间值。 返回值类型:timestamp 示例: 1 2 3 4 5 6 7 8 9 10 gaussdb=# select new_time('1997-10-10','AST','EST'); new_time --------------------- 1997-10-09 23:00:00 (1 row) gaussdb=# SELECT NEW_TIME(TO_TIMESTAMP ('10-Sep-02 14:10:10.123000','DD-Mon-RR HH24:MI:SS.FF'), 'AST', 'PST'); new_time ------------------------- 2002-09-10 10:10:10.123 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下生效。 sessiontimezone 描述:当前会话的时区,无入参。 返回值类型:text 示例: 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT SESSIONTIMEZONE; session_time_zone ------------------- PST8PDT (1 row) gaussdb=# SELECT LOWER(SESSIONTIMEZONE); lower ----------- @ 8 hours (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下生效。 当set session time zone的值为GMT+08:00/GMT-08:00格式时,正值的偏移量被用于格林威治以西的位置,例如GMT+08:00表示西八区,GMT-08:00表示东八区。 sys_extract_utc(timestamp| timestamptz) 描述:从具有时区偏移量或时区区 域名 称的日期时间值中提取UTC(协调世界时-以前称为格林威治平均时间)。如果未指定时区,则日期时间与会话时区关联。入参有timestmp和timestamp两种形式。 返回值类型:timestamp。 示例: 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT SYS_EXTRACT_UTC(TIMESTAMP '2000-03-28 11:30:00.00'); sys_extract_utc --------------------- 2000-03-28 03:30:00 (1 row) gaussdb=# SELECT SYS_EXTRACT_UTC(TIMESTAMPTZ '2000-03-28 11:30:00.00 -08:00'); sys_extract_utc --------------------- 2000-03-28 19:30:00 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下生效。 tz_offset('time_zone_name' | '(+/-)hh:mi' | SESSIONTIMEZONE | DBTIMEZONE) 描述:入参有以上四种形式,返回入参所表示时区的UTC偏移量。 返回值类型:text。 示例: 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT TZ_OFFSET('US/Pacific'); tz_offset ----------- -08:00 (1 row) gaussdb=# SELECT TZ_OFFSET(sessiontimezone); tz_offset ----------- +08:00 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s2的情况下生效。 pg_sleep(seconds) 描述:服务器线程延迟时间,单位为秒。注意,当数据库调用该函数时,会获取相应的事务快照,相当于一个长事务,如果入参时间过长可能导致数据库oldestxmin无法推进,影响表的回收和查询性能。 返回值类型:void 示例: 1 2 3 4 5 gaussdb=# SELECT pg_sleep(10); pg_sleep ---------- (1 row) statement_timestamp() 描述:当前日期和时间(当前语句的开始)。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT statement_timestamp(); statement_timestamp ------------------------------- 2017-09-01 17:04:39.119267+08 (1 row) sysdate 描述:返回当前本条SQL执行时刻的系统日期和时间。 返回值类型:timestamp 示例: 1 2 3 4 5 gaussdb=# SELECT sysdate; sysdate --------------------- 2017-09-01 17:04:49 (1 row) current_sysdate 描述:返回当前本条SQL执行开始时刻的系统日期和时间。 返回值类型:timestamp 示例: 1 2 3 4 5 gaussdb=# SELECT current_sysdate(); current_sysdate --------------------- 2023-06-20 20:09:02 (1 row) timeofday() 描述:返回当前函数被调用时的系统时间的时间时间戳(像clock_timestamp,但是返回时为text)。 返回值类型:text 示例: 1 2 3 4 5 gaussdb=# SELECT timeofday(); timeofday ------------------------------------- Fri Sep 01 17:05:01.167506 2017 CS T (1 row) transaction_timestamp() 描述:当前事务开始的系统的日期及时间。 返回值类型:timestamp with time zone 示例: 1 2 3 4 5 gaussdb=# SELECT transaction_timestamp(); transaction_timestamp ------------------------------- 2017-09-01 17:05:13.534454+08 (1 row) add_months(d,n) 描述:用于计算时间点d再加上n个月的时间。 d:timestamp类型的值,以及可以隐式转换为timestamp类型的值。 n:INTEGER类型的值,以及可以隐式转换为INTEGER类型的值。 返回值类型:timestamp 示例: 1 2 3 4 5 gaussdb=# SELECT add_months(to_date('2017-5-29', 'yyyy-mm-dd'), 11) FROM sys_dummy; add_months --------------------- 2018-04-29 00:00:00 (1 row) 此函数在ORA兼容模式数据库中且参数a_format_version值为10c和a_format_dev_version值为s1的情况下: 当计算结果大于公元9999年时会报错。 参数n若入参为小数则不会被四舍五入,而是被截断。 last_day(d) 描述:用于计算时间点d当月最后一天的时间。 返回值类型:timestamp 示例: 1 2 3 4 5 gaussdb=# SELECT last_day(to_date('2017-01-01', 'YYYY-MM-DD')) AS cal_result; cal_result --------------------- 2017-01-31 00:00:00 (1 row)
  • 时间日期操作符 时间日期操作符请参见表1。 要尽量避免在查询中使用 'now'::date、'now'::timestamp、'now'::timestamptz字符串常量强转以及text_date('now')的类似表达式来获取数据库当前时间或者将当前时间值作为函数入参场景,在这些场景下,优化器会提前算出常量时间,造成查询结果不正确。 gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b='now'::date; QUERY PLAN ----------------------------------------------------- Seq Scan on t1 (cost=0.00..13.60 rows=1 width=310) Filter: ((b)::text = '2024-11-09 15:07:56'::text) (2 rows) gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b=text_date('now'); QUERY PLAN ----------------------------------------------------- Seq Scan on t1 (cost=0.00..13.60 rows=1 width=310) Filter: ((b)::text = '2024-11-09'::text) (2 rows) 推荐使用now()、currenttimestamp()函数作为获取数据库当前时间的方法。 gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b=now(); QUERY PLAN ----------------------------------------------------- Seq Scan on t1 (cost=0.00..14.80 rows=1 width=310) Filter: ((b)::text = (now())::text) (2 rows) gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b=text_date(now()); QUERY PLAN ---------------------------------------------------------- Seq Scan on t1 (cost=0.00..16.00 rows=1 width=310) Filter: ((b)::text = (text_date((now())::text))::text) (2 rows) 用户在使用时间和日期操作符时,对应的操作数请使用明确的类型前缀修饰,以确保数据库在解析操作数的时候能够与用户预期一致,不会产生用户非预期的结果。 比如下面示例没有明确数据类型就会出现异常错误。 1 SELECT date '2001-10-01' - '7' AS RESULT;
  • 参数说明 SESSION 声明这个命令只对当前会话起作用,此参数为缺省值。 LOCAL 声明该命令只在当前事务中有效。 role_name 角色名。 取值范围:字符串,要符合标识符命名规范。 password 角色的密码。要求符合密码的命名规则。 使用密文密码限制如下: 管理员用户不能使用密文密码切换到其他管理员用户,只能向权限更低用户切换。 使用密文密码通常用于gs_dump、gs_dumpall导出场景,其他场景不建议直接使用密文密码。 RESET ROLE 用于重置当前用户标识。
  • 注意事项 当前会话的用户必须是指定的rolename角色的成员,三权分立关闭时,系统管理员可以选择任何角色。 使用这条命令,它可能会增加一个用户的权限,也可能会限制一个用户的权限。如果会话用户的角色有INHERITS属性,则它自动拥有它能SET ROLE变成的角色的所有权限;在这种情况下,SET ROLE实际上是删除了所有直接赋予会话用户的权限,以及它的所属角色的权限,只剩下指定角色的权限。另一方面,如果会话用户的角色有NOINHERITS属性,SET ROLE删除直接赋予会话用户的权限,而获取指定角色的权限。
  • vacuum_cost_delay 参数说明:指定开销超过vacuum_cost_limit的值时,进程睡眠的时间。 要注意在许多系统上,睡眠的有效分辨率是10毫秒。因此把vacuum_cost_delay设置为一个不是10的整数倍的数值与将它设置为下一个10的整数倍作用相同。 此参数一般设置较小,常见的设置是10或20毫秒。调整此特性资源占用率时,建议调整其他参数,而不是此参数。 该参数属于USERSET类型参数,请参考表1中对应设置方法进行设置。 取值范围:整型,0~100,单位为ms,正数值表示打开基于开销的清理延迟特性;0表示关闭基于开销的清理延迟特性。 默认值:0
  • 执行计划显示信息 除了设置不同的执行计划显示格式外,还可以通过不同的EXPLAIN用法,显示不同详细程度的执行计划信息。常见有如下几种,关于更多用法请参见EXPLAIN语法说明。 EXPLAIN statement: 只生成执行计划,不实际执行。其中statement代表SQL语句。 EXPLAIN ANALYZE statement:生成执行计划,进行执行,并显示执行的概要信息。显示中加入了实际的运行时间统计,包括在每个规划节点内部花掉的总时间(以毫秒计)和它实际返回的行数。 EXPLAIN PERFORMANCE statement:生成执行计划,进行执行,并显示执行期间的全部信息。 为了测量运行时在执行计划中每个节点的开销,EXPLAIN ANALYZE或EXPLAIN PERFORMANCE会在当前查询执行上增加性能分析的开销。在一个查询上运行EXPLAIN ANALYZE或EXPLAIN PERFORMANCE有时会比普通查询明显花费更多的时间。超出的时间多少取决于查询本身复杂程度和使用的平台。 因此,当定位SQL运行慢问题时,如果SQL长时间运行未结束,建议通过EXPLAIN命令查看执行计划,进行初步定位。如果SQL可以运行出来,则推荐使用EXPLAIN ANALYZE或EXPLAIN PERFORMANCE查看执行计划及其实际的运行信息,以便更精准地定位问题原因。
  • 函数类型解析 从系统表pg_proc中选择所有可能被选到的函数。如果使用了一个不带模式修饰的函数名称,那么认为该函数是那些在当前搜索路径中的函数。如果给出一个带修饰的函数名,那么只考虑指定模式中的函数。 如果搜索路径中找到了多个不同参数类型的函数。将从中选择一个合适的函数。 查找和输入参数类型完全匹配的函数。如果找到一个,则用之。如果输入的实参类型都是unknown类型,则不会找到匹配的函数。 如果未找到完全匹配,请查看该函数是否为一个特殊的类型转换函数。 寻找最优匹配。 抛弃那些输入类型不匹配并且也不能隐式转换成匹配的候选函数。unknown文本在这种情况下可以转换成任何东西。如果只剩下一个候选项,则用之,否则继续下一步。 遍历所有候选函数,保留那些输入类型匹配最准确的。此时,域被看作和它们的基本类型相同。如果没有一个函数能准确匹配,则保留所有候选。如果只剩下一个候选项,则用之,否则继续下一步。 遍历所有候选函数,保留那些需要类型转换时接受首选类型位置最多的函数。如果没有接受首选类型的函数,则保留所有候选。如果只剩下一个候选项,则用之,否则继续下一步。 如果有任何输入参数是unknown类型,检查剩余的候选函数对应参数位置的类型范畴。在每一个能够接受字符串类型范畴的位置使用string类型(这种对字符串的偏爱是合适的,因为unknown文本确实像字符串)。另外,如果所有剩下的候选函数都接受相同的类型范畴,则选择该类型范畴,否则抛出一个错误(因为在没有更多线索的条件下无法做出正确的选择)。现在抛弃不接受选定的类型范畴的候选函数,然后,如果任意候选函数在那个范畴接受一个首选类型,则抛弃那些在该参数位置接受非首选类型的候选函数。如果没有一个候选符合这些测试则保留所有候选。如果只有一个候选函数符合,则使用它;否则,继续下一步。 如果同时有unknown和已知类型的参数,并且所有已知类型的参数有相同的类型,假设unknown参数也是这种类型,检查哪个候选函数可以在unknown参数位置接受这种类型。如果正好一个候选符合,那么使用它。否则,产生一个错误。
  • 示例 示例1:圆整函数参数类型解析。只有一个round函数有两个参数(第一个是numeric,第二个是integer)。所以下面的查询自动把第一个类型为integer的参数转换成numeric类型。 1 2 3 4 5 gaussdb=# SELECT round(4, 4); round -------- 4.0000 (1 row) 实际上它被分析器转换成: 1 gaussdb=# SELECT round(CAST (4 AS numeric), 4); 因为带小数点的数值常量初始时被赋予numeric类型,因此下面的查询将不需要类型转换,并且可能会略微高效一些: 1 gaussdb=# SELECT round(4.0, 4); 示例2:子字符串函数类型解析。有好几个substr函数,其中一个接受text和integer类型。如果用一个未声明类型的字符串常量调用它,系统将选择接受string类型范畴的首选类型(也就是text类型)的候选函数。 1 2 3 4 5 gaussdb=# SELECT substr('1234', 3); substr -------- 34 (1 row) 如果该字符串声明为varchar类型,就像从表中取出来的数据一样,分析器将试着将其转换成text类型: 1 2 3 4 5 gaussdb=# SELECT substr(varchar '1234', 3); substr -------- 34 (1 row) 被分析器转换后实际上变成: 1 gaussdb=# SELECT substr(CAST (varchar '1234' AS text), 3); 分析器从pg_cast表中了解到text和varchar是二进制兼容的,意思是说一个可以传递给接受另一个的函数而不需要做任何物理转换。因此,在这种情况下,实际上没有做任何类型转换。 而且,如果以integer为参数调用函数,分析器将试图将其转换成text类型: 1 2 3 4 5 gaussdb=# SELECT substr(1234, 3); substr -------- 34 (1 row) 被分析器转换后实际上变成: 1 2 3 4 5 gaussdb=# SELECT substr(CAST (1234 AS text), 3); substr -------- 34 (1 row)
  • 参数说明 表1 冲突的锁模式 请求的锁模式/当前锁模式 AC CES S SHARE ROW SHARE ROW EXCLUSIVE SHARE UPDATE EXCLUSIVE SHARE SHARE ROW EXCLUSIVE EXCLUSIVE ACCESS EXCLUSIVE ACCESS SHARE - - - - - - - X ROW SHARE - - - - - - X X ROW EXCLUSIVE - - - - X X X X SHARE UPDATE EXCLUSIVE - - - X X X X X SHARE - - X X - X X X SHARE ROW EXCLUSIVE - - X X X X X X EXCLUSIVE - X X X X X X X ACCESS EXCLUSIVE X X X X X X X X LOCK的参数说明如下所示: name 要锁定的表的名称,可以有模式修饰。 LOCK TABLE命令中声明的表的顺序就是上锁的顺序。 取值范围:已存在的表名。 支持使用DATABASE LINK方式对远端表进行操作,使用方式详情请见DATABASE LINK。 ONLY 如果指定ONLY,只有该表被锁定。如果没有声明,该表和他的所有子表将都被锁定。 ACCESS SHARE ACCESS锁只允许对表进行读取,而禁止对表进行修改。所有对表进行读取而不修改的SQL语句都会自动请求这种锁。例如,SELECT命令会自动在被引用的表上请求一个这种锁。 ROW SHARE ROW SHARE锁允许对表进行并发读取,禁止对表进行其他操作。 SELECT FOR UPDATE和SELECT FOR SHARE命令会自动在目标表上请求ROW SHARE锁(且所有被引用但不是FOR SHARE/FOR UPDATE的其他表上,还会自动加上ACCESS SHARE锁)。 对于分区表,SELECT FOR SHARE操作还会在DN上获取partition对象的ROW EXCLUSIVE锁进行并发控制。 ROW EXCLUSIVE 与ROW SHARE锁相同,ROW EXCLUSIVE允许并发读取表,但是禁止修改表中数据。UPDATE,DELETE,INSERT命令会自动在目标表上请求这个锁(且所有被引用的其他表上还会自动加上的ACCESS SHARE锁)。通常情况下,所有会修改表数据的命令都会请求表的ROW EXCLUSIVE锁。 SHARE UPDATE EXCLUSIVE 这个模式保护一个表的模式不被并发修改,以及禁止在目标表上执行垃圾回收命令(VACUUM)。 VACUUM(不带FULL选项)、ANALYZE、CREATE INDEX CONCURRENTLY命令会自动请求这样的锁。 SHARE SHARE锁允许并发的查询,但是禁止对表进行修改。 CREATE INDEX(不带CONCURRENTLY)语句会自动请求这种锁。 SHARE ROW EXCLUSIVE SHARE ROW EXCLUSIVE锁禁止对表进行任何的并发修改,而且是独占锁,因此一个会话中只能获取一次。 任何SQL语句都不会自动请求这个锁模式。 EXCLUSIVE EXCLUSIVE锁允许对目标表进行并发查询,但是禁止任何其他操作。 这个模式只允许并发加ACCESS SHARE锁,也就是说,只有对表的读动作可以和持有这个锁模式的事务并发执行。 任何SQL语句都不会在用户表上自动请求这个锁模式。然而在某些操作的时候,会在某些系统表上请求它。 ACCESS EXCLUSIVE 这个模式保证其所有者(事务)是可以访问该表的唯一事务。 ALTER TABLE,DROP TABLE,TRUNCATE,REINDEX,CLUSTER,VACUUM FULL命令会自动请求这种锁。 在LOCK TABLE命令没有明确声明需要的锁模式时,它是缺省锁模式。 NOWAIT 声明LOCK TABLE不去等待任何冲突的锁释放,如果无法立即获取该锁,该命令退出并且发出一个错误信息。 在不指定NOWAIT的情况下获取表级锁时,如果有其他互斥锁存在的话,则等待其他锁的释放。 CANCELABLE 通过指定该参数允许等锁线程给持锁线程和等锁线程发送CANCEL信号。 只允许重分布工具使用,其它用户使用将报错。
  • 注意事项 LOCK TABLE只能在一个事务块的内部有用,因为锁在事务结束时就会被释放。出现在任意事务块外面的LOCK TABLE都会报错。 如果没有声明锁模式,缺省为最严格的模式ACCESS EXCLUSIVE。 LOCK TABLE ... IN ACCESS SHARE MODE需要在目标表上有SELECT权限。所有其他形式的LOCK需要UPDATE或DELETE权限。 没有UNLOCK TABLE命令,锁总是在事务结束时释放。 LOCK TABLE只处理表级的锁,因此那些带“ROW”字样的锁模式都是有歧义的。这些模式名称通常可理解为用户试图在一个被锁定的表中获取行级的锁。同样,ROW EXCLUSIVE模式也是一个可共享的表级锁。注意,只要是涉及到LOCK TABLE,所有锁模式都有相同的语意,区别仅在于规则中锁与锁之间是否冲突,规则请参见表1。 如果没有打开xc_maintenance_mode参数,那么对系统表申请ACCESS EXCLUSIVE级别锁将报错。 自动CANCEL业务接口只允许重分布工具使用。
  • 功能描述 LOCK TABLE获取表级锁。 GaussDB在为一个引用了表的命令自动请求锁时,尽可能选择最小限制的锁模式。如果用户需要一种更为严格的锁模式,可以使用LOCK命令。例如,一个应用是在Read Committed隔离级别上运行事务,并且它需要保证表中的数据在事务的运行过程中不被修改。为实现这个目的,则可以在查询之前对表使用SHARE锁模式进行锁定。这样将防止数据不被并发修改,从而保证后续的查询可以读到已提交的持久化的数据。因为SHARE锁模式与任何写操作需要的ROW EXCLUSIVE模式冲突,并且LOCK TABLE name IN SHARE MODE语句将等到所有当前持有ROW EXCLUSIVE模式锁的事务提交或回滚后才能执行。因此,一旦获得该锁,就不会存在未提交的写操作,并且其他操作也只能等到该锁释放之后才能开始。
  • 语法格式 LOCK [ TABLE ] {[ ONLY ] name [, ...]| {name [ * ]} [, ...]} [ IN {ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE} MODE ] [ NOWAIT ][CANCELABLE];
  • 参数说明 基本类型 自定义基本类型时,参数可以以任意顺序出现,input_function和output_function为必选参数,其它为可选参数。 input_function 将数据从类型的外部文本形式转换为内部形式的函数名。 输入函数可以被声明为有一个cstring类型的参数,或者有三个类型分别为cstring、 oid、integer的参数。 cstring参数是以C字符串存在的输入文本。 oid参数是该类型自身的OID。 integer参数是目标列的typmod(如果知道,不知道则将传递 -1)。 输入函数必须返回一个该数据类型本身的值。通常,一个输入函数应该被声明为STRICT。 如果不是这样,在读到一个NULL输入值时,调用输入函数时第一个参数会是NULL。在这种情况下,该函数必须仍然返回NULL,除非调用函数发生了错误(这种情况主要是想支持域输入函数,域输入函数可能需要拒绝NULL输入)。 输入和输出函数能被声明为具有新类型的结果或参数是因为:必须在创建新类型之前创建这两个函数。而新类型应该首先被定义为一种shell type,它是一种占位符类型,除了名称和拥有者之外它没有其他属性。这可以通过不带额外参数的命令CREATE TYPE name做到。然后用C写的I/O函数可以被定义为引用这种shell type。最后,用带有完整定义的CREATE TYPE把该shell type替换为一个完全的、合法的类型定义,之后新类型就可以正常使用了。 输入和输出函数若为internal类型且指定为内部系统函数,则其输入函数和输出函数的参数类型需保持一致,且新类型的INTERNALLENGTH和PASSEDBYVALUE需要与输入函数和输出函数的参数类型保持一致。 output_function 将数据从类型的内部形式转换为外部文本形式的函数名。 输出函数必须被声明为有一个新数据类型的参数。输出函数必须返回类型cstring。对于NULL值不会调用输出函数。 receive_function 可选参数。将数据从类型的外部二进制形式转换成内部形式的函数名。 如果没有该函数,该类型不能参与到二进制输入中。二进制表达转换成内部形式代价更低,然而却更容易移植(例如,标准的整数数据类型使用网络字节序作为外部二进制表达,而内部表达是机器本地的字节序)。receive_function应该执行足够的检查以确保该值是有效的。 接收函数可以被声明为有一个internal类型的参数,或者有三个类型分别为internal、oid、integer的参数。 internal参数是一个指向StringInfo缓冲区的指针,其中保存着接收到的字节串。 oid和integer参数和文本输入函数的相同。 接收函数必须返回一个该数据类型本身的值。通常,一个接收函数应该被声明为STRICT。如果不是这样,在读到一个NULL输入值时调用接收函数时第一个参数会是NULL。在这种情况下,该函数必须仍然返回NULL,除非接收函数发生了错误(这种情况主要是想支持域接收函数,域接收函数可能需要拒绝NULL输入)。 send_function 可选参数。将数据从类型的内部形式转换为外部二进制形式的函数名。 如果没有该函数,该类型将不能参与到二进制输出中。发送函数必须被声明为有一个新数据类型的参数。发送函数必须返回类型bytea。对于NULL值不会调用发送函数。 type_modifier_input_function 可选参数。将类型的修饰符数组转换为内部形式的函数名。 type_modifier_output_function 可选参数。将类型的修饰符的内部形式转换为外部文本形式的函数名。 如果该类型支持修饰符(附加在类型声明上的可选约束,例如,char(5)或numeric(30,2)),则需要可选的type_modifier_input_function以及type_modifier_output_function。GaussDB允许用户定义的类型有一个或者多个简单常量或者标识符作为修饰符。不过,为了存储在系统目录中,该信息必须能被打包到一个非负整数值中。所声明的修饰符会被以cstring数组的形式传递给type_modifier_input_function。 type_modifier_input_function必须检查该值的合法性(如果值错误就抛出一个错误),如果值正确,要返回一个非负integer值,该值将被存储在“typmod”列中。如果类型没有 type_modifier_input_function则类型修饰符将被拒绝。type_modifier_output_function把内部的整数typmod值转换回正确的形式用于用户显示。type_modifier_output_function必须返回一个cstring值,该值就是追加到类型名称后的字符串。例如,numeric的函数可能会返回(30,2)。如果默认的显示格式就是只把存储的typmod整数值放在圆括号内,则允许省略type_modifier_output_function。 analyze_function 可选参数。为该数据类型执行统计分析的函数名的可选参数。 默认情况下,如果该类型有一个默认的B-tree操作符类,ANALYZE将尝试用类型的“equals”和“less-than”操作符来收集统计信息。这种行为对于非标量类型并不合适,因此可以通过指定一个自定义分析函数来覆盖这种行为。分析函数必须被声明为有一个类型为internal的参数,并且返回一个boolean结果。 internallength 可选参数。一个数字常量,用于指定新类型的内部表达的字节长度。默认为变长。 虽然只有I/O函数和其他为该类型创建的函数才知道新类型的内部表达的细节, 但是内部表达的一些属性必须被向GaussDB声明。其中最重要的是internallength。基本数据类型可以是定长的(这种情况下internallength是一个正整数)或者是变长的(把internallength设置为VARIABLE,在内部通过把typlen设置为-1表示)。所有变长类型的内部表达都必须以一个4字节整数开始,internallength定义了总长度。 PASSEDBYVALUE 可选参数。表示这种数据类型的值需要被传值而不是传引用。传值的类型必须是定长的,并且它们的内部表达不能超过Datum类型(某些机器上是4字节,其他机器上是8字节)的尺寸。 alignment 可选参数。该参数指定数据类型的存储对齐需求。如果被指定,必须是char、int2、int4或者double。默认是int4。 允许的值等同于以1、2、4或8字节边界对齐。要注意变长类型的alignment参数必须至少为4,因为它们需要包含一个int4作为它们的第一个组成部分。 storage 可选参数。该数据类型的存储策略。 如果被指定,必须是plain、external、extended或者main。 默认是plain。 plain指定该类型的数据将总是被存储在线内并且不会被压缩。(对定长类型只允许plain) extended 指定系统将首先尝试压缩一个长的数据值,并且将在数据仍然太长的情况下把值移出主表行。 external允许值被移出主表, 但是系统将不会尝试对它进行压缩。 main允许压缩,但是不鼓励把值移出主表(如果没有其他办法让行的大小变得合适,具有这种存储策略的数据项仍将被移出主表,但比起extended以及external项来,这种存储策略的数据项会被优先考虑保留在主表中)。 除plain之外所有的storage值都暗示该数据类型的函数能处理被TOAST过的值。指定的值仅仅是决定一种可TOAST数据类型的列的默认TOAST存储策略,用户可以使用ALTER TABLE SET STORAGE为列选取其他策略。 like_type 可选参数。与新类型具有相同表达的现有数据类型的名称。会从这个类型中复制internallength、 passedbyvalue、 alignment以及storage的值( 除非在这个CREATE TYPE命令的其他地方用显式说明覆盖)。 当新类型的底层实现是以一种现有的类型为参考时,用这种方式指定表达特别有用。 category 可选参数。这种类型的分类码(一个ASCII 字符)。 默认是“用户定义类型”的'U'。为了创建自定义分类, 也可以选择其他 ASCII字符。 preferred 可选参数。如果这种类型是其类型分类中的优先类型则为TRUE,否则为FALSE。默认为假。在一个现有类型分类中创建一种新的优先类型要非常谨慎, 因为这可能会导致很大的改变。 category和preferred参数可以被用来帮助控制在混淆的情况下应用哪一种隐式造型。每一种数据类型都属于一个用单个ASCII 字符命名的分类,并且每一种类型可以是其所属分类中的“首选”。当有助于解决重载函数或操作符时,解析器将优先造型到首选类型(但是只能从同类的其他类型造型)。对于没有隐式转换到或来自任意其他类型的类型,让这些设置保持默认即可。不过,对于有隐式转换的相关类型的组,把它们都标记为属于同一个类别并且选择一种或两种“最常用”的类型作为该类别的首选通常是很有用的。在把一种用户定义的类型增加到一个现有的内建类别(例如,数字或者字符串类型)中时,category参数特别有用。不过,也可以创建新的全部是用户定义类型的类别。对这样的类别,可选择除大写字母之外的任何ASCII 字符。 default 可选参数。数据类型的默认值。如果被省略,默认值是空。 如果用户希望该数据类型的列被默认为某种非空值,可以指定一个默认值。默认值可以用DEFAULT关键词指定(这样一个默认值可以被附加到一个特定列的显式DEFAULT子句覆盖)。 element 可选参数。被创建的类型是一个数组,element指定了数组元素的类型。例如,要定义一个4字节整数的数组(int4), 应指定ELEMENT = int4。 delimiter 可选参数。指定这种类型组成的数组中分隔值的定界符。 可以把delimiter设置为一个特定字符,默认的定界符是逗号(,)。 collatable 可选参数。如果这个类型的操作可以使用排序规则信息,则为TRUE。默认为FALSE。 如果collatable为TRUE,这种类型的列定义和表达式可能通过使用COLLATE子句携带有排序规则信息。在该类型上操作的函数的实现负责真正利用这些信息,仅把类型标记为可排序的并不会让它们自动地去使用这类信息。 label 可选参数。与枚举类型的一个值相关的文本标签,其值为长度不超过63个字符的非空字符串。
  • 语法格式 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 CREATE TYPE name AS ( [ attribute_name data_type [ COLLATE collation ] [, ... ] ] ); CREATE TYPE name ( INPUT = input_function, OUTPUT = output_function [ , RECEIVE = receive_function ] [ , SEND = send_function ] [ , TYPMOD_IN = type_modifier_input_function ] [ , TYPMOD_OUT = type_modifier_output_function ] [ , ANALYZE = analyze_function ] [ , INTERNALLENGTH = { internallength | VARIABLE } ] [ , PASSEDBYVALUE ] [ , ALIGNMENT = alignment ] [ , STORAGE = storage ] [ , LIKE = like_type ] [ , CATEGORY = category ] [ , PREFERRED = preferred ] [ , DEFAULT = default ] [ , ELEMENT = element ] [ , DELIMITER = delimiter ] [ , COLLATABLE = collatable ] ); CREATE TYPE name; CREATE TYPE name AS ENUM ( [ 'label' [, ... ] ] );
  • 功能描述 在当前数据库中定义一种新的数据类型。定义数据类型的用户将成为该数据类型的拥有者。类型只适用于行存表。 有五种形式的CREATE TYPE,分别为:基本类型、shell类型、枚举类型和集合类型。 基本类型 用户可以自定义一种新的基本类型(标量类型)。通常来说这些函数必须是用C或者另外一种低层语言所编写。 shell类型 shell类型是一种用于后面要定义的类型的占位符,通过发出一个不带除类型名之外其他参数的CREATE TYPE命令可以创建这种类型。在创建基本类型时,需要shell类型作为一种向前引用。 枚举类型 由若干个标签构成的列表,每一个标签值都是一个非空字符串,且字符串长度必须不超过64个字节。 被授予CREATE ANY TYPE权限的用户,可以在public模式和用户模式下创建类型。
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 CREATE OR REPLACE PROCEDURE test_get_time1() AS declare start_time bigint; end_time bigint; BEGIN start_time:= dbe_utility.get_time (); pg_sleep(1); end_time:=dbe_utility.get_time (); dbe_output.print_line(end_time - start_time); END; / CREATE PROCEDURE -- 给表名字符串做规范 declare cname varchar2(50); begin dbe_utility.canonicalize('seg1', cname, 50); dbe_output.put_line(cname); end; / -- 预期结果为: SEG1 ANONYMOUS BLOCK EXECUTE -- 将输入的字符串转换成一个表名的数组 DECLARE tab_list VARCHAR2(100) := 't1,t2'; len BINARY_INTEGER; tab varchar2[]; BEGIN dbe_output.put_line('table list is :' || tab_list); dbe_utility.comma_to_table(tab_list, len, tab); END; / -- 预期结果为: table list is: t1,t2 ANONYMOUS BLOCK EXECUTE -- 查看数据库的版本号和兼容性版本号 declare v_version varchar2; begin dbe_utility.db_version(v_version); v_version:=left(v_version, 8); dbe_output.print_line('version:' || v_version); end; / -- 预期结果为: version:gaussdb ANONYMOUS BLOCK EXECUTE -- 查看当前CPU处理时间的测量值 DECLARE cputime NUMBER; BEGIN cputime := dbe_utility.get_cpu_time; dbe_output.put_line('cpu time:' || cputime); END; / -- 预期结果为(数值并非固定): cpu time:70179 ANONYMOUS BLOCK EXECUTE -- 获取数据库所在平台字节序的大小端信息 BEGIN dbe_output.PUT_LINE(dbe_utility.GET_ENDIANNESS); END; / -- 预期结果为: 2 ANONYMOUS BLOCK EXECUTE -- 获取一个给定字符串的hash值 DECLARE result NUMBER(28); BEGIN result := dbe_utility.get_hash_value('hello',10,10); dbe_output.put_line(result); END; / -- 预期结果为: 11 ANONYMOUS BLOCK EXECUTE -- 判断当前数据库是否为集群模式 DECLARE is_cluster BOOLEAN; BEGIN is_cluster := dbe_utility.IS_CLUSTER_DATABASE; dbe_output.put_line('CLUSTER DATABASE: ' || CASE WHEN is_cluster THEN 'TRUE' ELSE 'FALSE' END); END; / -- 预期结果为: CLUSTER DATABASE: TRUE ANONYMOUS BLOCK EXECUTE -- 获取当前用户环境下的数据库模式名称 DECLARE schm varchar2(100); BEGIN schm := dbe_utility.old_current_schema; dbe_output.put_line('current schema: ' || schm); END; / -- 预期结果为(结果为当前数据库的模式名,并非固定): current schema: public ANONYMOUS BLOCK EXECUTE -- 获取当前用户名称 select dbe_utility.old_current_user from sys_dummy; -- 预期结果为(结果为当前数据库的用户名,并非固定): old_current_user ------------------ test (1 row)
  • 接口介绍 高级功能包DBE_UTILITY支持的所有接口请参见表1。 表1 DBE_UTILITY 接口名称 描述 DBE_UTILITY.FORMAT_ERROR_BACKTRACE 输出存储过程异常的调用堆栈。 DBE_UTILITY.FORMAT_ERROR_STACK 输出存储过程异常的具体信息。 DBE_UTILITY.FORMAT_CALL_STACK 输出存储过程的调用堆栈。 DBE_UTILITY.GET_TIME 输出当前时间,一般用于做差得到执行时长。 DBE_UTILITY.CANONICALIZE 用于给表名字符串做规范。 DBE_UTILITY.COMMA_TO_TABLE 将用逗号隔开的名字列表的字符串转换为PL/SQL表名列表。 DBE_UTILITY.DB_VERSION 返回数据库的版本号和兼容性版本号。 DBE_UTILITY.EXEC_DDL_STATEMENT 用于执行用户输入的DDL语句。 DBE_UTILITY.EXPAND_SQL_TEXT_PROC 用于展开SQL查询的视图。 DBE_UTILITY.GET_CPU_TIME 返回当前CPU处理时间的测量值。 DBE_UTILITY.GET_ENDIANNESS 用于获取数据库所在平台字节序的大小端信息。 DBE_UTILITY.GET_HASH_VALUE 返回一个给定字符串的hash值。 DBE_UTILITY.GET_SQL_HASH 输出一个给定字符串的hash值,该存储过程在不打开proc_outparam_override时使用。 DBE_UTILITY.IS_BIT_SET 用于检查参数n是否存在于r。 DBE_UTILITY.IS_CLUSTER_DATABASE 用于判断当前数据库是否在数据库集群模式下运行。 DBE_UTILITY.NAME_RESOLVE 解析给定的对象名称,包括同义词翻译和必要的授权检查。 DBE_UTILITY.NAME_TOKENIZE 用于解析a [. b [. c ]][@ dblink ]形式的名字。 DBE_UTILITY.OLD_CURRENT_SCHEMA 返回当前用户环境下的数据库模式名称。 DBE_UTILITY.OLD_CURRENT_USER 返回当前用户的名称。 DBE_UTILITY.TABLE_TO_COMMA 将PL/SQL中的表名转换为用逗号隔开的名字列表的字符串。 DBE_UTILITY.GET_SQL_HASH_FUNC 功能同DBE_UTILITY.GET_SQL_HASH,该函数在打开proc_outparam_override时使用。 DBE_UTILITY.EXPAND_SQL_TEXT 内部函数,不建议用户使用。 DBE_UTILITY.CANONICALIZE_RET 内部函数,不建议用户使用。 DBE_UTILITY.COMMA_TO_TABLE_FUN 内部函数,不建议用户使用。 DBE_UTILITY.COMPILE_SCHEMA 内部函数,不建议用户使用,已废弃。 DBE_UTILITY.NAME_SEPARATE 内部函数,不建议用户使用。 DBE_UTILITY.NAME_TOKENIZE_FUNC 内部函数,不建议用户使用。 DBE_UTILITY.NAME_TOKENIZE_LOWER 内部函数,不建议用户使用。 DBE_UTILITY.NAME_TOKENIZE_LOWER_FUNC 内部函数,不建议用户使用。 DBE_UTILITY.PRIVILEGE_CHECK 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_CLASS_WITH_NSPOID_ONAME_TYPE 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_OBJE CTS 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_OBJECTS_SYNONYM_FILL_SECHEMA 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_PROCEDURE_WITH_NSPOID_ONAME 内部函数,不建议用户使用。 DBE_UTILITY.SEARCH_SYNONM_WITH_NSPOID_ONAME 内部函数,不建议用户使用。 DBE_UTILITY.TABLE_TO_COMMA_FUNC 内部函数,不建议用户使用。 DBE_UTILITY.USER_NAME 内部函数,不建议用户使用。 DBE_UTILITY.FORMAT_ERROR_BACKTRACE 存储过程FORMAT_ERROR_BACKTRACE返回在执行过程中出现错误时,出现错误位置的调用堆栈。DBE_UTILITY.FORMAT_ERROR_BACKTRACE函数原型为: 1 2 DBE_UTILITY.FORMAT_ERROR_BACKTRACE() RETURN TEXT; DBE_UTILITY.FORMAT_ERROR_STACK 存储过程FORMAT_ERROR_STACK返回在执行过程中出现错误时,出现错误位置的具体信息。DBE_UTILITY.FORMAT_ERROR_STACK函数原型为: 1 2 DBE_UTILITY.FORMAT_ERROR_STACK() RETURN TEXT; DBE_UTILITY.FORMAT_CALL_STACK 存储过程FORMAT_CALL_STACK设置输出函数调用堆栈。DBE_UTILITY.FORMAT_CALL_STACK函数原型为: 1 2 DBE_UTILITY.FORMAT_CALL_STACK() RETURN TEXT; DBE_UTILITY.GET_TIME 存储过程GET_TIME设置输出时间,通常用于做差,单独的返回值没有意义。DBE_UTILITY.GET_TIME函数原型为: 1 2 DBE_UTILITY.GET_TIME() RETURN BIGINT;
  • 数据库连接控制函数 数据库连接控制函数控制与GaussDB服务器的连接。一个应用程序一次可以与多个服务器建立连接,如一个客户端连接多个数据库的场景。每个连接都是用一个从函数PQconnectdb、PQconnectdbParams或PQsetdbLogin获得的PGconn对象表示。注意,这些函数总是返回一个非空的对象指针,除非内存分配失败,会返回一个空的指针。连接建立的接口保存在PGconn对象中,可以调用PQstatus函数来检查一下返回值查看连接是否成功。 PQconnectdbParams PQconnectdb PQbackendPID PQsetdbLogin PQfinish PQreset PQstatus 父主题: libpq接口参考
  • 定义分区表 分区表是一种逻辑表,数据是由普通表存储的,主要用于提升查询性能。所涉及的SQL语句,请参考表7。 表7 分区表定义相关SQL 功能 相关SQL 创建分区表 CREATE TABLE PARTITION 创建分区 ALTER TABLE PARTITION 修改分区表属性 ALTER TABLE PARTITION 删除分区 ALTER TABLE PARTITION 删除分区表 DROP TABLE
  • 定义DATABASE LINK对象 DATABASE LINK是可以操作远程数据库对象,所涉及的SQL语句,请参考表13。 表13 DATABASE LINK对象相关SQL 功能 相关SQL 创建一个新的DATABASE LINK对象 CREATE DATABASE LINK 修改DATABASE LINK对象 ALTER DATABASE LINK 删除DATABASE LINK对象 DROP DATABASE LINK
  • 定义列加密密钥 列加密密钥主要用于密态数据库特性中,用来加密数据。列加密密钥定义主要包括创建列加密密钥、轮转加密列加密密钥的客户端主密钥以及删除列加密密钥。所涉及的SQL语句,请参考表1。 表2 列加密密钥定义相关SQL 功能 相关SQL 创建列加密密钥 CREATE COLUMN ENCRYPTION KEY 修改列加密密钥指定的客户端主密钥 7.14.173-ALTER COLUMN ENCRYPTION KEY 删除列加密密钥 DROP COLUMN ENCRYPTION KEY
  • 参数说明 OR REPLACE 可选。如果同义词已存在,则重新定义。 synonym_name 创建的同义词名字,可以带模式名。 取值范围:字符串,要符合标识符命名规范。 object_name 关联的对象名字,可以带模式名。 取值范围:字符串,要符合标识符命名规范。 object_name可以是不存在的对象名称。 object_name可以是使用DATABASE LINK方式访问远程对象。DATABASE LINK详细使用方式请见DATABASE LINK。
  • 示例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 --创建模式ot。 gaussdb=# CREATE SCHEMA ot; --创建表ot.t1及其同义词t1。 gaussdb=# CREATE TABLE ot.t1(id int, name varchar2(10)) DISTRIBUTE BY hash(id); gaussdb=# CREATE OR REPLACE SYNONYM t1 FOR ot.t1; --使用同义词t1。 gaussdb=# SELECT * FROM t1; gaussdb=# INSERT INTO t1 VALUES (1, 'ada'), (2, 'bob'); gaussdb=# UPDATE t1 SET t1.name = 'cici' WHERE t1.id = 2; --创建同义词v1及其关联视图ot.v_t1。 gaussdb=# CREATE SYNONYM v1 FOR ot.v_t1; gaussdb=# CREATE VIEW ot.v_t1 AS SELECT * FROM ot.t1; --使用同义词v1。 gaussdb=# SELECT * FROM v1; --创建重载函数ot.add及其同义词add。 gaussdb=# CREATE OR REPLACE FUNCTION ot.add(a integer, b integer) RETURNS integer AS $$ SELECT $1 + $2 $$ LANGUAGE sql; gaussdb=# CREATE OR REPLACE FUNCTION ot.add(a decimal(5,2), b decimal(5,2)) RETURNS decimal(5,2) AS $$ SELECT $1 + $2 $$ LANGUAGE sql; gaussdb=# CREATE OR REPLACE SYNONYM add FOR ot.add; --使用同义词add。 gaussdb=# SELECT add(1,2); gaussdb=# SELECT add(1.2,2.3); --创建存储过程ot.register及其同义词register。 gaussdb=# CREATE PROCEDURE ot.register(n_id integer, n_name varchar2(10)) SECURITY INVOKER AS BEGIN INSERT INTO ot.t1 VALUES(n_id, n_name); END; / gaussdb=# CREATE OR REPLACE SYNONYM register FOR ot.register; --使用同义词register,调用存储过程。 gaussdb=# CALL register(3,'mia'); --删除同义词。 gaussdb=# DROP SYNONYM t1; gaussdb=# DROP SYNONYM IF EXISTS v1; gaussdb=# DROP SYNONYM IF EXISTS add; gaussdb=# DROP SYNONYM register; gaussdb=# DROP SCHEMA ot CASCADE;
  • 注意事项 定义同义词的用户成为其所有者。 若指定模式名称,则同义词在指定模式中创建。否则,在当前模式创建。 支持通过同义词访问的数据库对象包括:表、视图、类型、包、函数和存储过程。 使用同义词时,用户需要具有对关联对象的相应权限。 支持使用同义词的DML语句包括:SELECT、INSERT、UPDATE、DELETE、EXPLAIN、CALL。 不支持关联函数或存储过程的CREATE SYNONYM语句出现在存储过程中,建议存储过程中使用系统表pg_synonym中已存在的同义词对象。 不建议对临时表创建同义词。如果需要创建的话,需要指定同义词的目标临时表的模式名,否则无法正常使用该同义词,并且在当前会话结束前执行DROP SYNONYM命令。 删除原对象后,与之关联同义词不会被级联删除,继续访问该同义词会报错,对于表提示已失效,对于函数、存储过程、包的等会提示对象不存在。 被授予了CREATE ANY SYNONYM权限的用户能够在用户模式下创建同义词。 不支持针对包含加密列的密态表及基于密态表的视图、函数、存储过程创建同义词。 同义词的SCHEMA是用户所在SCHEMA时,该同义词OWNER为SCHEMA的OWNER,其他场景同义词OWNER默认为同义词的创建者。 设置SEARCH_PATH,未指定同义词SCHEMA情况下,存储过程和函数会优先按照名称检索PG_PROC表,在没有同名函数时,检索同义词,最后按照SEARCH_PATH检索;其他对象优先检索SEARCH_PATH,同SCHEMA下,本名的对象优先于同义词被访问。 不支持通过DDL语句CREATE、DROP、ALTER操作同义词的方式访问同义词所关联的对象。
  • GLOBAL_MEMORY_NODE_DETAIL 显示当前集群中所有正常节点下的内存使用情况。 表1 GLOBAL_MEMORY_NODE_DETAIL字段 名称 类型 描述 nodename text 节点名称。 memorytype text 内存使用的名称。 max_process_memory:数据库节点可用内存的最大值。 process_used_memory:进程所使用的内存大小。 max_dynamic_memory:最大动态内存。 dynamic_used_memory:已使用的动态内存。 dynamic_peak_memory:内存的动态峰值。 dynamic_used_shrctx:已使用的动态共享内存上下文。 dynamic_peak_shrctx:共享内存上下文的动态峰值。 max_shared_memory:最大共享内存。 shared_used_memory:已使用的共享内存。 max_sctpcomm_memory:TCP代理通信所允许使用的最大内存。 sctpcomm_used_memory:TCP代理通信已使用的内存大小。 sctpcomm_peak_memory:TCP代理通信的内存峰值。 other_used_memory:其他已使用的内存大小。 gpu_max_dynamic_memory:GPU最大动态内存。 gpu_dynamic_used_memory:GPU已使用的动态内存。 gpu_dynamic_peak_memory:GPU内存的动态峰值。 pooler_conn_memory:连接池申请内存计数。 pooler_freeconn_memory:连接池空闲连接的内存计数。 storage_compress_memory:存储模块压缩使用的内存大小。 udf_reserved_memory:UDF预留的内存大小。 memorymbytes integer 内存使用的大小,单位为MB。 父主题: Memory
  • 存储过程 商业规则和业务逻辑可以通过程序存储在GaussDB中,这个程序就是存储过程。 存储过程是SQL、PL/SQL、Java语句的组合。存储过程使执行商业规则的代码可以从应用程序中移动到数据库。从而,代码存储一次能够被多个程序使用。 存储过程的创建及调用办法请参考CREATE PROCEDURE。 PL/SQL语言函数节所提到的PL/SQL语言创建的函数与存储过程的应用方法相同。下面各节中,除非特别声明,否则内容通用于存储过程和PL/SQL语言函数。 父主题: 存储过程
共100000条