华为云用户手册
-
示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 1 2 3 from modelarts.session import Session session = Session() session.obs.upload_file(src_local_file='/home/ma-user/file1.txt', dst_obs_dir='obs://bucket-name/dir1/')
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_instance = Predictor(session, service_id="your_service_id") predictor_instance.delete_service() 方式2:根据查询服务对象列表返回的服务对象删除服务 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_object_list = Predictor.get_service_object_list(session) predictor_instance = predictor_object_list[0] predictor_instance.delete_service()
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务日志 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_instance = Predictor(session, service_id="your_service_id") predictor_log = predictor_instance.get_service_logs() print(predictor_log) 方式2:根据查询服务对象列表返回的服务对象进行查询服务日志 1 2 3 4 5 6 7 8 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_object_list = Predictor.get_service_object_list(session) predictor_instance = predictor_object_list[0] predictor_log = predictor_instance.get_service_logs() print(predictor_log)
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务监控 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_instance = Predictor(session, service_id="your_service_id") predictor_monitor = predictor_instance.get_service_monitor() print(predictor_monitor) 方式2:根据查询服务对象列表返回的服务对象进行查询服务监控 1 2 3 4 5 6 7 8 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_object_list = Predictor.get_service_object_list(session) predictor_instance = predictor_object_list[0] predictor_monitor = predictor_instance.get_service_monitor() print(predictor_monitor)
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有服务对象 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_list_object_resp = Predictor.get_service_object_list(session) print(predictor_list_object_resp) 场景2:按照检索条件查询当前用户服务对象 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_object_list = Predictor.get_service_object_list(session, service_name="digit", order="asc", offset="0", infer_type="real-time") print(predictor_object_list)
-
参数说明 查询服务列表,返回list,list大小等于当前用户所有已经部署的服务个数,list中每个元素都是Predictor对象,对象属性同本章初始化服务。 查询服务列表返回说明:service_list_resp = [service_instance1, service_instance2, service_instance3 ...],列表中元素“service_instance”对象即为服务管理章节描述的可调用服务接口。 支持按照检索参数查询服务列表,返回满足检索条件的服务list,检索参数如表1所示。 在查询列表时,返回list的同时,默认会打印模型列表的详细信息,如表2和表3所示。 表1 查询检索参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法见Session鉴权。 is_show 否 Boolean 是否打印出服务对象信息,默认为“True”。 service_id 否 String 服务ID,默认不过滤服务ID。 service_name 否 String 服务名称,默认不过滤服务名。 infer_type 否 String 推理方式,取值为:real-time/batch/edge,默认不过滤推理方式。 offset 否 Integer 分页列表的起始页,默认为“0”。 limit 否 Integer 指定每一页返回的最大条目数,默认为“1000”。 sort_by 否 String 指定排序字段,可选“publish_at”、“service_name”,默认可选“publish_at”。 order 否 String 排序方式,可选“asc”或“desc”,代表递增排序及递减排序,默认为:“desc”。 model_id 否 String 模型ID,默认不过滤模型ID。
-
参数说明 表1 查询检索参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法见Session鉴权。 service_id 否 String 服务ID,默认不过滤服务ID。 service_name 否 String 服务名称,默认不过滤服务名。 infer_type 否 String 推理方式,取值为:real-time/batch/edge,默认不过滤推理方式。 offset 否 Integer 分页列表的起始页,默认为:“0”。 limit 否 Integer 指定每一页返回的最大条目数,默认为:“1000”。 service_status 否 String 服务状态,默认不过滤服务状态。可根据服务状态查询,取值如下。 running:运行中,服务正常运行,正在计费。 deploying:部署中,服务正在部署,调度资源部署等。 concerning:告警,后端实例异常,可能正在计费。例如多实例的情况下,有的实例正常,有的实例异常。正常的实例会产生费用,此时服务状态是concerning。 failed:失败,服务部署失败,失败原因可以查看事件和日志标签。 stopped:停止。 finished:只有批量服务会有这个状态,表示运行完成。 sort_by 否 String 指定排序字段,可选“publish_at”、“service_name”,默认可选“publish_at”。 order 否 String 排序方式,可选“asc”或“desc”,代表递增排序及递减排序,默认为:“desc”。 model_id 否 String 模型ID,默认不过滤模型ID。
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有服务 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_list = Predictor.get_service_list(session) print(predictor_list) 场景2:按照检索条件查询当前用户服务 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_list = Predictor.get_service_list(session, service_name="digit", order="asc", offset="0", infer_type="real-time") print(predictor_list)
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_instance = Predictor(session, service_id="your_service_id") predict_result = predictor_instance.predict(data=data_path, data_type=data_type) print(predict_result)
-
参数说明 表1 参数说明 参数 是否必选 参数类型 描述 data_type 是 String 当前支持三种格式:files、images、json, 即文本、图片、json格式。 data 是 String 针对files、images类型的数据, 该参数为其本地路径,如 : data = "/home/ma-user/work/test.jpg" 针对json类型的数据, 该参数可以是其本地路径,如: data = "/home/ma-user/work/test.json" 同时也可以为“dict”类型的变量 ,如: data = { "is_training": "False", "observations": [[1,2,3,4]], "default_policy/eps:0" : "0.0" } path 否 String 服务内的推理路径,默认为"/"。
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行服务详情查询 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_instance = Predictor(session, service_id="your_service_id") predictor_info = predictor_instance.get_service_info() print(predictor_info) 方式2:根据查询服务对象列表返回的服务对象进行服务详情查询 1 2 3 4 5 6 7 8 from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_object_list = Predictor.get_service_object_list(session) predictor_instance = predictor_object_list[0] predictor_info = predictor_instance.get_service_info() print(predictor_info)
-
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。 本章节的示例代码都是在ModelArts Notebook中实现的,如果在其它开发环境使用,需要进行Session鉴权,请参见Session鉴权。 父主题: 服务管理
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型或模型调试生成的模型对象进行模型对象删除 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Model session = Session() model_instance = Model(session, model_id="your_model_id") model_instance.delete_model() 方式2:根据查询模型对象列表返回的模型对象进行模型删除 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Model session = Session() model_object_list = Model.get_model_object_list(session) model_instance = model_object_list[0] model_instance.delete_model()
-
参数说明 表1 get_model_info返回参数说明 参数 参数类型 描述 model_id String 模型ID。 model_name String 模型名称。 model_version String 模型版本。 tenant String 租户。 project String 项目。 owner String 用户。 create_at Long 模型创建时间,距'1970.1.1 0:0:0 UTC'的毫秒数。 source_location String 模型所在的OBS路径。 source_job_id String 来源训练作业的ID。 source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_size Long 模型大小,单位为字节数。 model_status String 模型状态,取值为:publishing/published/failed。 description String 模型描述信息。 execution_code String 执行代码存放的OBS地址,名称固定为“customize_service.py”。 schema_doc String 模型schema文档的下载地址。 image_address String 模型的执行镜像地址,镜像未构建之前(即当前模型从未发布成服务),显示为空。 input_params params结构数组 模型的输入参数集,默认为空 output_params params结构数组 模型的输出参数集,默认为空 dependencies dependency结构数组 运行代码及模型需安装的包。 model_metrics String 模型评测参数,仅当source_job_id和source_job_version有值且对应的训练作业有评测结果时会返回该结果。 apis String 模型所有的apis入参出参信息。 表2 params结构 参数 参数类型 描述 url String api代表的url路径。 param_name String 参数名,不超过64个字符。 param_type String 参数类型,取值为:int/string/float/timestamp/date/file。 min Number 当param_type为int或float时创建模型时,有配置min则返回,默认为空。 max Number 当param_type为int或float时创建模型时,有配置max则返回,默认为空。 param_desc String 参数描述,不超过100个字符,默认为空。 表3 dependency结构 参数 参数类型 描述 installer String 安装器名称。 packages package结构数组 依赖包集合。 表4 package结构 参数 参数类型 描述 package_name String 依赖包名称。 package_version String 依赖包版本。 restraint String 版本过滤条件,取值为: EXACT:等于给定版本 ATLEAST:不小于给定版本 ATMOST:不大于给定版本 表5 metric参数说明 参数 是否必选 参数类型 描述 f1 是 Double 平均数。 recall 是 Double 召回率。 precision 是 Double 精确率。 accuracy 是 Double 准确率。
-
示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型生成的模型对象进行模型详情查询 1 2 3 4 5 6 7 from modelarts.session import Session from modelarts.model import Model session = Session() model_instance = Model(session, model_id="your_model_id") model_info = model_instance.get_model_info() print(model_info) 方式2:根据查询模型对象列表返回的模型对象进行模型详情查询 1 2 3 4 5 6 7 8 from modelarts.session import Session from modelarts.model import Model session = Session() model_object_list = Model.get_model_object_list(session) model_instance = model_object_list[0] model_info = model_instance.get_model_info() print(model_info)
-
参数说明 查询模型列表,返回list,list大小等于当前用户所有已经部署的模型个数, list中每个元素都是Model对象,对象属性和查询模型详情相同。查询模型列表返回说明: model_list = [model_instance1, model_instance2, model_instance3 ...],列表中元素model_instance对象即为本章节描述的模型管理,可调用模型接口。 支持按照检索参数查询模型列表,返回满足检索条件的模型list,检索参数如表1所示。 在查询列表时,返回list的同时,会打印模型列表的详细信息,如表2和表3所示。 当前支持最大获取150个模型对象。 表1 查询检索参数说明 参数 是否必选 参数类型 说明 model_name 否 String 模型名称,可支持模糊匹配。 model_version 否 String 模型版本。 model_status 否 String 模型状态,可根据模型的“publishing”、“published”、“failed”三种状态执行查询。 description 否 String 描述信息,可支持模糊匹配。 offset 否 Integer 指定要查询页的索引,默认为“0”。 limit 否 Integer 指定每一页返回的最大条目数,默认为“280”。 sort_by 否 String 指定排序字段,可选“create_at”、“model_version”、“model_size”,默认是可选“create_at”。 order 否 String 排序方式,可选“asc”或“desc”,代表递增排序及递减排序,默认是“desc”。 workspace_id 否 String 工作空间ID,默认为“0”。 表2 get_model_list打印参数说明 参数 参数类型 描述 total_count Integer 不分页的情况下,符合查询条件的总模型数量。 count Integer 模型数量。 models model结构数组 模型元数据信息。
-
示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有模型对象 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Model session = Session() model_object_list = Model.get_model_object_list(session) print(model_object_list) 场景2:按照检索条件查询当前用户模型对象 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Model session = Session() model_object_list = Model.get_model_object_list(session, model_status="published", model_name="digit", order="desc") print(model_object_list)
-
示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有模型 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Model session = Session() model_list = Model.get_model_list(session) print(model_list) 场景2:按照检索条件查询当前用户模型 1 2 3 4 5 6 from modelarts.session import Session from modelarts.model import Model session = Session() model_list = Model.get_model_list(session, model_status="published", model_name="digit", order="desc") print(model_list)
-
参数说明 表1 查询检索参数说明 参数 是否必选 参数类型 说明 model_name 否 String 模型名称,可支持模糊匹配。 model_version 否 String 模型版本。 model_status 否 String 模型状态,可根据模型的“publishing”、“published”、“failed”三种状态执行查询。 description 否 String 描述信息,可支持模糊匹配。 offset 否 Integer 指定要查询页的索引,默认为“0”。 limit 否 Integer 指定每一页返回的最大条目数,默认为“280”。 sort_by 否 String 指定排序字段,可选“create_at”、“model_version”、“model_size”,默认是可选“create_at”。 order 否 String 排序方式,可选“asc”或“desc”,代表递增排序及递减排序,默认是“desc”。 workspace_id 否 String 工作空间ID,默认为“0”。 表2 get_model_list打印参数说明 参数 参数类型 描述 total_count Integer 不分页的情况下,符合查询条件的总模型数量。 count Integer 模型数量。 models model结构数组 模型元数据信息。
-
示例代码 账号与用户的概念介绍,请参见 IAM 基本概念。获取您的账号、用户名等信息,请参见获取用户名、用户ID、项目名称、项目ID。 使用账号认证 “username”填写您的账号名。 1 2 from modelarts.session import Session session = Session(username='***', password='***', region_name='***', project_id='***') 如果您的华为云账号已经升级为华为账号,则账号认证方式将不可用,请创建一个IAM用户,使用IAM用户认证。 使用IAM用户认证 “account”填写您的账号名,“username”填写您的IAM用户名。 1 2 from modelarts.session import Session session = Session(account='***', username='***', password='***', region_name='***', project_id='***')
-
用户名密码认证模式 本地安装完成ModelArts SDK后,可通过用户名密码认证模式进行Session鉴权。示例代码如下: 使用账号认证 “username”填写您的账号名。 1 2 3 4 5 6 7 from modelarts.session import Session # 认证用的password硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; # 本示例以password保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_SDK_PASSWORD。 __PASSWORD = os.environ["HUAWEICLOUD_SDK_PASSWORD"] # 如果进行了加密还需要进行解密操作 session = Session(username='***', password=__PASSWORD, region_name='***', project_id='***') 使用IAM用户认证 “account”填写您的账号名,“username”填写您的IAM用户名。 1 2 3 4 5 6 7 from modelarts.session import Session # 认证用的password硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; # 本示例以password保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_SDK_PASSWORD。 __PASSWORD = os.environ["HUAWEICLOUD_SDK_PASSWORD"] # 如果进行了加密还需要进行解密操作 session = Session(account='***', username='***', password=__PASSWORD, region_name='***', project_id='***') 账号与用户的概念介绍,请参见IAM基本概念。获取您的账号、用户名等信息,请参见获取用户名、用户ID、项目名称、项目ID。 如果您的华为云账号已经升级为华为账号,则账号认证方式将不可用,请创建一个IAM用户,使用IAM用户认证。
-
Session鉴权概述 Session模块的主要作用是实现与公有云资源的鉴权,并初始化ModelArts SDK Client、OBS Client。当成功建立Session后,您可以直接调用ModelArts的SDK接口。 ModelArts开发环境Notebook不需要Session鉴权,可以直接使用。示例代码如下: 1 2 from modelarts.session import Session session = Session() 本地PC使用ModelArts SDK时,需要进行Session鉴权。鉴权方式可参考如下认证方式,选择其中一种方式进行认证即可。 用户名密码认证模式: 支持OBS管理、数据管理、训练管理、模型管理、服务管理的鉴权。 用户AK-SK认证模式: 支持OBS管理、数据管理、训练管理、模型管理、服务管理的鉴权。
-
本地安装ModelArts SDK步骤 在本地安装ModelArts SDK,具体的配置步骤如下: 步骤一:下载ModelArts SDK 步骤二:配置运行环境 步骤三:安装ModelArts SDK ModelArts SDK支持安装在Windows和Linux操作系统中。 如果在Windows上安装ModelArts SDK时出现报错,可参见FAQ:安装ModelArts SDK报错处理报错。
-
文档导读 本文档指导您如何安装和配置开发环境、如何通过调用ModelArts SDK提供的接口函数进行二次开发。 章节 内容 SDK简介 简要介绍ModelArts SDK的概念。 快速开始 介绍如何使用ModelArts SDK进行二次开发。 (可选)本地服务器安装ModelArts SDK 介绍如何在本地安装ModelArts SDK。 (可选)Session鉴权 Session模块的主要作用是实现与公有云资源的鉴权,并初始化ModelArts SDK Client、OBS Client。 OBS管理概述 ModelArts SDK支持对OBS的SDK接口进行调用,包括创建OBS桶,上传/下载文件和文件夹,删除OBS对象和桶。 ModelArts SDK具体操作管理请参见如下章节: 数据管理 训练管理 模型管理 服务管理 介绍使用ModelArts SDK进行的常用操作。
-
使用SDK调测多机分布式训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改7和11中的 framework_type参数值即可,例如:MindSpore框架,此处framework_type=Ascend-Powered-Engine。 Session初始化,与使用SDK调测单机训练作业中的1相同。 准备训练数据,与使用SDK调测单机训练作业中的2相同,唯一的不同在于obs_path参数是必选的。 准备训练脚本。 from modelarts.train_params import TrainingFiles code_dir = os.path.join(base_local_path, "train/") # 这里提前将训练脚本放在了obs中,实际上训练脚本可以是任何来源,只要能够放到Notebook里边就行 session.obs.download_file(os.path.join(base_bucket_path, "train/test-pytorch.py"), code_dir) training_file = TrainingFiles(code_dir=code_dir, boot_file="test-pytorch.py", obs_path=base_bucket_path + 'train/') 参数解释: code_dir:必选参数,训练脚本所在的目录。在本地调试的情况下,必须是notebook目录,不能是OBS目录。 boot_file:必选参数,训练启动文件,在code_dir目录下。 obs_path:在多机分布式调测时必选参数,一个OBS目录,SDK会将notebook目录code_dir打包上传到obs_path中。 准备训练输出,与单机训练作业调试4相同。 查看训练支持的AI框架,与单机训练作业调试5相同。 保存当前Notebook为新镜像,与单机训练作业调试9相同。 Estimator初始化。 from modelarts.estimatorV2 import Estimator parameters = [] parameters.append({"name": "data_url", "value": data_local}) parameters.append({"name": "output_dir", "value": os.path.join(base_local_path, "output/")}) parameters.append({"name": "epoc_num", "value": 2}) # 启动脚本以parser.add_argument('--dist', action='store_true')的形式来接收该布尔类型的参数,如果要传入True,则以本行代码的形式传递; parameters.append({"name": "dist"}) estimator = Estimator(session=session, training_files=training_file, outputs=[output], parameters=parameters, framework_type='PyTorch', train_instance_type='local', train_instance_count=2, script_interpreter="/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python", log_url=base_bucket_path + 'log/', job_description='This is a image net train job') 参数解释: session:必选参数,1中初始化的参数。 training_files:必选参数,3中初始化的训练文件。 outputs:可选参数,这里传入的是一个list,每个元素都是步骤4中初始化的训练输出。 parameters:可选参数,一个list,每个元素都是一个字典,包含"name"和"value"两个字段,以"–name=value"的形式传递给训练启动文件。value支持字符串,整数,布尔等类型。对于布尔类型,建议用户在训练脚本中使用action='store_true'的形式来解析。 framework_type:必选参数,训练作业使用的AI框架类型,可参考步骤5的返回结果。 train_instance_type:必选参数,训练实例类型,这里指定’local’即为本地训练。 train_instance_count:必选参数,训练使用的worker个数,分布式调测时为2,训练开始时SDK还会再创建一个Notebook,与当前的Notebook组成一个2节点的分布式调试环境。 script_interpreter:可选参数,指定使用哪个python环境来执行训练任务,如果未指定,会默认使用当前的kernel。 log_url:可选参数,一个OBS地址,本地训练过程中,SDK会自动将训练的日志上传到该位置;但是如果训练任务运行在Ascend上,则是必选参数。 job_description:可选参数,训练任务的描述。 开始训练。 estimator.fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是步骤2中生成的实例; job_name:可选参数,训练任务名,便于区分和记忆。 本地分布式训练任务开始后,SDK会依次帮助用户完成以下流程: 将训练脚本打包成zip文件,上传到3中指定的obs_path中。 如果训练数据保存在Notebook中,则将其打包成zip文件并上传到指定的obs_path中。 创建一个附属Notebook,与当前使用的Notebook组成分布式训练的两个worker。 初始化训练作业,将数据下载到local_path中。 执行训练任务,用户的代码需要将训练输出保存在4指定的local_path中。 将训练任务得到的输出上传到4指定的obs_path中,日志上传到7指定的log_url中。 多次调试,与单机调测时8作用相同。 查询训练支持的工作节点类型,与单机调测时9相同。 提交远程训练作业。 from modelarts.estimatorV2 import Estimator parameters = [] parameters.append({"name": "data_url", "value": data_local}) parameters.append({"name": "output_dir", "value": os.path.join(base_local_path, "output/")}) parameters.append({"name": "epoc_num", "value": 2}) # 启动脚本以parser.add_argument('--dist', action='store_true')的形式来接收该布尔类型的参数,如果要传入True,则以本行代码的形式传递; parameters.append({"name": "dist"}) estimator = Estimator(session=session, training_files=training_file, outputs=[output], parameters=parameters, framework_type='PyTorch', train_instance_type='modelarts.p3.large.public.distributed', train_instance_count=2, script_interpreter="/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python", log_url=base_bucket_path + 'log/', job_description='This is a image net train job') estimator.fit(inputs=[input_data], job_name="cifar10-dis-1") Estimator初始化时与本地训练的区别在于参数train_instance_type,需要从10得到的结果中选择一个;参数train_instance_count的值取决于第10步中的max_num。 训练任务提交后,SDK会依次帮助用户完成以下流程: 将训练脚本打包成zip文件,上传到3中指定的obs_path中; 如果训练数据保存在Notebook中,则将其打包成zip文件并上传到指定的obs_path中; 将训练作业提交到ModelArts训练服务中,训练作业会使用当前Notebook的镜像来执行训练作业; 训练任务得到的输出上传到4指定的obs_path中,日志上传到log_url指定的位置中。 在这一步中需要注意的一个问题: 如果用户在自己的训练脚本中要创建新的目录或文件,请在以下几种目录中创建: (1)/home/ma-user/work; (2)/cache; (3)inputs或者outputs中指定的local_path,如在2中初始化InputData时,填写了local_path="/home/ma-user/work/xx/yy/",则在该目录下也可以创建新目录或文件; 父主题: 训练作业调测
-
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_type=Ascend-Powered-Engine。 Session初始化。 代码如下:这里只列出最常用的一种方式,更多方式请参考《Session鉴权章节》 from modelarts.session import Session session = Session() 准备训练数据,这里支持三种形式,用户可根据自己的情况选择一种。 import os from modelarts.train_params import InputData base_bucket_path = "obs://modelarts-xxx-a0de02a6/dis-train/cifar10/" base_local_path = "/home/ma-user/work/cifar10/" # 形式1,数据在OBS上,且是一个压缩文件 obs_path = os.path.join(base_bucket_path, "dataset-zip/dataset.zip") data_local = os.path.join(base_local_path, "dataset/") input_data = InputData(obs_path=obs_path, local_path=data_local, is_local_source=False) # 形式2,数据在OBS上,且是一个目录 #obs_path = os.path.join(base_bucket_path, "dataset/") #data_local = os.path.join(base_local_path, "dataset/") #input_data = InputData(obs_path=obs_path, local_path=data_local, is_local_source=False) # 形式3,数据在Notebook中,且是一个目录,一般是使用SFS挂载磁盘的场景 #obs_path = os.path.join(base_bucket_path, "dataset-local/") #data_local = os.path.join(base_local_path, "dataset/") #input_data = InputData(obs_path=obs_path, local_path=data_local, is_local_source=True) 参数解释: is_local_source:可选参数,默认为False,指定训练数据的保存位置。 False:训练数据保存在参数obs_path指定的位置中; True:训练数据保存在notebook中,由local_path指定。 obs_path:obs地址。根据is_local_source值的变化,有不同的含义。 is_local_source=False,此时是必选参数,代表训练数据位置,支持文件夹和压缩文件。 is_local_source=True,此时是可选参数。如果用户填写了该参数,则开始训练时会将Notebook中的训练数据压缩并上传到该位置,不可重复上传。如果第一次上传后,建议将is_local_source修改为False,obs_path指向刚才上传的压缩数据文件位置;如果用户没有填写,则不会进行压缩上传。 local_path:必选参数,Notebook中的路径。用户的训练脚本需要从该目录中读取数据,完成训练任务。根据is_local_source值的变化,有不同的含义。 is_local_source=True,此时代表训练数据位置,仅支持文件夹。 is_local_source=False,训练过程中SDK会帮助用户将数据下载到该位置,如果训练数据是压缩文件,下载完成后会进行解压缩。 准备训练脚本。 from modelarts.train_params import TrainingFiles code_dir = os.path.join(base_local_path, "train/") # 这里提前将训练脚本放在了obs中,实际上训练脚本可以是任何来源,只要能够放到Notebook里边就行 session.obs.download_file(os.path.join(base_bucket_path, "train/test-pytorch.py"), code_dir) training_file = TrainingFiles(code_dir=code_dir, boot_file="test-pytorch.py", obs_path=base_bucket_path + 'train/') 参数解释: code_dir:必选参数,训练脚本所在的目录。在训练任务调测的情况下,必须是notebook中的目录,不能是OBS目录。 boot_file:必选参数,训练启动文件路径,路径格式为基于code_dir目录的相对路径,如实例代码中boot_file的完整路径为/home/ma-user/work/cifar10/train/test-pytorch.py,这里就只需要填写test-pytorch.py。 obs_path:可选参数,一个OBS目录。仅在本地单机调试时不需要该参数,提交远程训练时必选,会将训练脚本压缩并上传到该路径。 准备训练输出,如果用户不需要将训练输出上传到OBS,可以省略这一步。 from modelarts.train_params import OutputData output = OutputData(local_path=os.path.join(base_local_path, "output/"), obs_path=os.path.join(base_bucket_path, 'output/')) local_path:必选参数,一个notebook中的路径,训练脚本需要将输出的模型或其他数据保存在该目录下。 obs_path:必选参数,一个OBS目录。SDK会将local_path中的模型文件自动上传到这里。 查看训练支持的AI框架。 from modelarts.estimatorV2 import Estimator Estimator.get_framework_list(session) 参数session即是第一步初始化的数据。如果用户知道要使用的AI框架,可以略过这一步。 Estimator初始化。 from modelarts.estimatorV2 import Estimator parameters = [] parameters.append({"name": "data_url", "value": data_local}) parameters.append({"name": "output_dir", "value": os.path.join(base_local_path, "output/")}) parameters.append({"name": "epoc_num", "value": 2}) estimator = Estimator(session=session, training_files=training_file, outputs=[output], parameters=parameters, framework_type='PyTorch', train_instance_type='local', train_instance_count=1, script_interpreter="/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python", log_url=base_bucket_path + 'log/', job_description='This is a image net train job') 参数解释: session:必选参数,1中初始化的参数。 training_files:必选参数,3中初始化的训练文件。 outputs:可选参数,这里传入的是一个list,每个元素都是4中初始化的训练输出。 parameters:可选参数,一个list,每个元素都是一个字典,包含"name"和"value"两个字段,以"--name=value"的形式传递给训练启动文件。value支持字符串,整数,布尔等类型。对于布尔类型,建议用户在训练脚本中使用action='store_true'的形式来解析。 framework_type:必选参数,训练作业使用的AI框架类型,可参考步骤5查询的返回结果。 train_instance_type:必选参数,训练实例类型,这里指定'local'即为在notebook中进行训练。 train_instance_count:必选参数,训练使用的worker个数,单机训练时为1,训练作业只在当前使用的notebook中运行。 script_interpreter:可选参数,指定使用哪个python环境来执行训练任务,如果未指定,会默认使用当前的kernel。 log_url:可选参数,一个OBS地址,训练过程中,SDK会自动将训练的日志上传到该位置。但是如果训练任务运行在Ascend上,则是必选参数。 job_description:可选参数,训练任务的描述。 开始训练。 estimator.fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化训练作业,如果2指定的训练数据在OBS上,这里会将数据下载到local_path中。 执行训练任务,用户的训练代码需要将训练输出保存在4中指定的local_path中。 将训练任务得到的输出上传到4指定的obs_path中,日志上传到第六步指定的log_url中。 同时,可以在任务名后增加时间后缀,区分不同的任务名称。 from datetime import datetime, timedelta import time base_name = "cifar10-dis" job_name = base_name + '-' + (datetime.now() + timedelta(hours=8)).strftime('%Y%m%d-%H%M%S') estimator.fit(inputs=[input_data], job_name=job_name) 多次调试。 上一步执行过程中,训练脚本的日志会实时打印到控制台,如果用户的代码或者参数有误的话,可以很方便的看到。在Notebook中经过多次调试,得到想要的结果后,可以进行下一步。 查询训练支持的计算节点类型和最大个数。 from modelarts.estimatorV2 import Estimator Estimator.get_spec_list(session=session) 参数session即是1初始化的数据。返回的是一个字典,其中flavors值是一个列表,描述了训练服务支持的所有规格的信息。每个元素中flavor_id是可直接用于远程训练任务的计算规格,max_num是该规格的最大节点数。如果用户知道要使用的计算规格,可以略过这一步。 提交远程训练作业。 from modelarts.estimatorV2 import Estimator parameters = [] parameters.append({"name": "data_url", "value": data_local}) parameters.append({"name": "output_dir", "value": os.path.join(base_local_path, "output/")}) parameters.append({"name": "epoch_num", "value": 2}) estimator = Estimator(session=session, training_files=training_file, outputs=[output], parameters=parameters, framework_type='PyTorch', train_instance_type='modelarts.vm.cpu.8u', train_instance_count=1, script_interpreter="/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python", log_url=base_bucket_path + 'log/', job_description='This is a image net train job') estimator.fit(inputs=[input_data], job_name="cifar10-dis") 在本地调测完成的基础上,只需要Estimator初始化时将参数train_instance_type修改为训练服务支持的规格即可(即第10步查询出来的flavor_id的值)。执行fit函数后,即可提交远程训练任务。 训练任务提交后,SDK会依次帮助用户完成以下流程: 将训练脚本打包成zip文件,上传到3中指定的obs_path中。 当训练数据保存在Notebook中,则将其打包成zip文件并上传到指定的obs_path中。 向ModelArts训练服务提交 自定义镜像 训练作业,使用的镜像为当前Notebook的镜像,这样保证了远程训练作业和在Notebook中的训练作业使用的运行环境一致。 训练任务得到的输出上传到4指定的obs_path中,日志上传到这一步log_url指定的位置中。 在这一步中需要注意的一个问题: 如果用户在自己的训练脚本中要创建新的目录或文件,请在以下几种目录中创建: /home/ma-user/work; /cache; inputs或者outputs中指定的local_path,如在步骤2中初始化InputData时,填写了local_path="/home/ma-user/work/xx/yy/",则在该目录下也可以创建新目录或文件。 父主题: 训练作业调测
-
数据标注 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 人工标注:用户创建单人标注作业,对数据进行手工标注。 智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 关于数据标注的详细信息,请参考数据标注。
-
数据导出 ModelArts训练管理模块支持通过ModelArts数据集或者OBS目录中的文件创建训练作业。如果选择通过OBS目录的方式创建训练任务,用户需要将数据集中准备好的数据导出到OBS中。 导出数据到OBS 在数据集详情页面中,选中需要导出的数据或筛选出需要导出的数据,然后单击右上角“导出”。 数据来源选择“OBS”,填写相关信息,然后单击“确定”,开始执行导出操作。 “保存路径”:即导出数据存储的路径。建议不要将数据存储至当前数据集所在的输入路径或输出路径。 图9 导出至OBS 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。 查看任务历史 当您导出数据后,可以通过任务历史查看导出任务明细。 在数据集详情页面中,单击右上角“任务历史 ”。 在弹出的“任务历史”对话框中,可以查看该数据集之前的导出任务历史。包括“任务ID”、“创建时间”、“导出方式”、“导出路径”、“导出样本总数”和“导出状态”。 图10 导出任务历史
-
数据标注 人工标注 在“未标注”页签图片列表中,单击图片,自动跳转到标注页面。 在标注页面的工具栏中选择合适的标注工具,本示例使用矩形框进行标注。 图4 标注工具 使用标注工具选中目标区域,在弹出的标签文本框中,直接输入新的标签名。如果已存在标签,从下拉列表中选择已有的标签。单击“添加”完成标注。 图5 添加物体检测标签 单击页面上方“返回数据标注预览”查看标注信息,在弹框中单击“确定”保存当前标注并离开标注页面。选中的图片被自动移动至“已标注”页签,且在“未标注”和“全部”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、标签对应的图片数量。 智能标注 通过人工标注完成少量数据标注后,可以通过智能标注对剩下的数据进行自动标注,提高标注的效率。 在数据集详情页面,单击右上角“启动智能标注”。 在“启动智能标注”窗口中,填写如下参数,然后单击“提交”。 智能标注类型:主动学习 算法类型:快速型 其他参数采用默认值。 图6 启动智能标注任务 查看智能标注任务进度 智能标注任务启动后,可以在“待确认”页签下查看智能标注任务进度。当任务完成后,即可在“待确认”页签下查看自动标注好的数据。 图7 查看智能标注任务进度 确认智能标注结果 在智能标注任务完成后,在“待确认”页签下,单击具体图片进入标注详情页面,可以查看或修改智能标注的结果。 如果智能标注的数据无误,可单击右侧的“确认标注”完成标注,如果标注信息有误,可直接删除错误标注框,然后重新标注,以纠正标注信息。针对物体检测任务,需逐一确认。确保所有图片已完成确认,然后执行下一步操作。 图8 确认智能标注结果
-
数据分析 数据集创建完成后,可以基于图片各项特征,如模糊度、亮度等进行分析,帮助用户更好的分析数据集的数据质量,判断数据集是否满足自己的算法和模型要求。 创建特征分析任务 在执行特征分析前,需先发布一个数据集版本。在数据集详情页单击右上角的“发布”,为数据集发布一个新版本。 版本发布完成后,选择“数据特征”页签,单击,在弹窗中选择刚才发布的数据集版本,并单击“确定”,启动特征分析任务。 图2 启动特征分析 查看任务进度 任务执行过程中,可以单击“任务历史”,查看任务进度。当任务状态变为“成功”时,表示任务执行完成。 图3 特征分析任务进度 查看特征分析结果 特征分析任务执行完成后,可以在“数据特征”页签下,选择数据集版本、类型和数据特征指标,页面将自动呈现您选择对应版本及其指标数据,您可以根据呈现的图表了解数据分布情况,帮助您更好的理解您的数据。 “版本选择”:根据实际情况选择已执行过特征任务的版本,可以选多个进行对比,也可以只选择一个。 “类型”:根据需要分析的类型选择。支持“all”、“train”、“eval”和“inference”。分别表示所有、训练、评估和推理类型。 “数据特征指标”:选择您需要展示的指标。详细指标解释,可参见特征分析指标列表。 在特征分析结果中,例如图片亮度指标,数据分布中,分布不均匀,缺少某一种亮度的图片,而此指标对模型训练非常关键。此时可选择增加对应亮度的图片,让数据更均衡,为后续模型构建做准备。
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- ...
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章