华为云用户手册

  • Step9 推理 对于大尺寸、长时间的视频强制需要多卡推理,具体要求见下图,绿色允许只用单卡推理,蓝色至少双卡推理。 图5 推理视频要求 单卡推理 python inference.py configs/opensora-v1-2/inference/sample.py --num-frames 4s --resolution 720p --aspect-ratio 9:16 --prompt "a beautiful waterfall" 多卡推理 torchrun --nproc_per_node 2 inference.py configs/opensora-v1-2/inference/sample.py --num-frames 16s --resolution 720p --aspect-ratio 9:16 --prompt "a beautiful waterfall" 最终结果保存在samples/samples/sample_0000.mp4。
  • Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step4 构建与代码解耦的镜像和容器环境 Step3 构建标准镜像和容器环境 和 Step4 构建与代码解耦的镜像和容器环境 都是搭建容器环境,任选其中一个即可。 一、启动镜像 启动容器镜像,训练需要8卡,推理分为单卡推理和多卡推理,启动前可以根据实际需要增加修改参数。 docker run -itd --name ${container_name} -v /sys/fs/cgroup:/sys/fs/cgroup:ro -v /etc/localtime:/etc/localtime -v /usr/local/Ascend/driver:/usr/local/Ascend/driver -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi --shm-size 300g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --device=/dev/davinci1 --device=/dev/davinci2 --device=/dev/davinci3 --device=/dev/davinci4 --device=/dev/davinci5 --device=/dev/davinci6 --device=/dev/davinci7 --security-opt seccomp=unconfined --network=bridge -v ${work_dir}:${container_work_dir} {image_url} bash 参数说明: --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7,可根据需要选择挂载卡数。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。注意:将OpenSora1.2放入挂载目录下。 {image_url}镜像地址请参见表2。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 二、进入容器 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。 docker exec -it ${container_name} bash 三、构建环境 需要将OpenSora1.2放入挂载目录下,container_work_dir 是挂载目录。并保证文件权限能被ma-user用户使用和修改。 cp -r {container_work_dir}/OpenSora1.2 /home/ma-user/ cd /home/ma-user/OpenSora1.2 bash prepare.sh
  • 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表2 基础容器镜像地址 配套软件版本 镜像用途 镜像地址 配套 获取方式 6.3.910版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b cann_8.0.rc3 pytorch_2.1.0 驱动23.0.6 从SWR拉取 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。
  • Step5 下载权重文件 建议手动下载所需的权重文件,保证文件权限能被ma-user用户使用和修改,在/home/ma-user/OpenSora1.2/目录下进行操作。 创建文件夹存放不同的权重文件。 mkdir weights 下载 OpenSora-VAE-v1.2权重,将下载好的权重放在 ./weights 目录下。 OpenSora-VAE-v1.2 官网下载地址:https://huggingface.co/hpcai-tech/OpenSora-VAE-v1.2/tree/main 下载 OpenSora-STDiT-v3权重,将下载好的权重放在 ./weights 目录下。 OpenSora-STDiT-v3 官网下载地址:https://huggingface.co/hpcai-tech/OpenSora-STDiT-v3/tree/main 下载 t5-v1_1-xxl 权重,将下载好的权重放在 ./weights 目录下。 t5-v1_1-xxl 官网下载地址: https://huggingface.co/DeepFloyd/t5-v1_1-xxl/tree/main 下载 pixart_sigma_sdxlvae_T5_diffusers的vae权重,将下载好的权重放在 ./weights 目录下。 pixart_sigma_sdxlvae_T5_diffusers 官网下载地址:https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main 下载下图中vae文件夹的内容。注意:本地下载文件时配置文件会变成vae_config.json,修改为config.json 图1 下载vae文件夹的内容 下载vgg权重,将下载好的权重放在 ./weights 目录下。 vgg16-397923af.pth 官网下载地址: https://download.pytorch.org/models/vgg16-397923af.pth vgg.pth 官网下载地址:https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1 将权重vgg16-397923af.pth复制到 /home/ma-user/.cache/torch/hub/checkpoints/下,这个文件夹需要自己创建。 cp weights/vgg16-397923af.pth /home/ma-user/.cache/torch/hub/checkpoints/vgg16-397923af.pth 下载完成的权重文件如下图所示: 图2 下载完成的权重文件
  • Step8 DIT训练 dit训练分为3个阶段,后两次训练根据其前一次训练的结果继续训练。 第一阶段训练 torchrun --standalone --nproc_per_node 8 train.py configs/opensora-v1-2/train/stage1.py --data-path ./datasets/webvid_meta_data.csv 训练完后的权重文件保存在 ./outputs 文件夹下 (例如 ./outputs/XXX-STDiT3-XL-2/epochX-global_step200/model,X为按顺序自动生成的数字)。 具体位置打印在日志中: 图4 DIT第一阶段训练日志 训练完成后在目录底下生成loss.txt文件(例如./outputs/XXX-STDiT3-XL-2/epochX-global_step200/model)记录每一步的loss。 第二阶段训练 export pretrain_path="上阶段训练的权重,例如./outputs/XXX-STDiT3-XL-2/epochX-global_step200/model" torchrun --standalone --nproc_per_node 8 train.py configs/opensora-v1-2/train/stage2.py --data-path ./datasets/webvid_meta_data.csv --ckpt-path $pretrain_path 训练完后的权重文件保存在 ./outputs 文件夹下 (例如 ./outputs/001-STDiT3-XL-2/epochX-global_step200/model,X为按顺序自动生成的数字),具体位置打印在日志中。 第三阶段训练 export pretrain_path="上阶段训练的权重,例如 ./outputs/XXX-STDiT3-XL-2/epochX-global_step200/model" torchrun --standalone --nproc_per_node 8 train.py configs/opensora-v1-2/train/stage3.py --data-path ./datasets/webvid_meta_data.csv --ckpt-path $pretrain_path 训练完后的权重文件保存在 ./outputs 文件夹下 (例如 ./outputs/XXX-STDiT3-XL-2/epochX-global_step200/model,X为按顺序自动生成的数字),具体位置打印在日志中。
  • 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.910软件包中的AscendCloud-AIGC-6.3.910-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • Step3 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如ascendspeed。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 上传代码和数据到宿主机时使用的是root用户,此处需要执行如下命令统一文件属主为ma-user用户。 #统一文件属主为ma-user用户 sudo chown -R ma-user:ma-group ${container_work_dir} # ${container_work_dir}:/home/ma-user/ws 容器内挂载的目录 #例如:sudo chown -R ma-user:ma-group /home/ma-user/ws 使用ma-user用户安装依赖包。 #进入scripts目录换 cd /home/ma-user/ws/llm_train/AscendSpeed #执行安装命令 sh scripts/install.sh
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240528150158-b521cc0 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc2 PyTorch 2.1.0
  • Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 用户自定义执行权重转换参数修改说明 同样以 llama2 为例,用户可直接编辑 scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf.sh脚本,将执行的python命令复制下来,修改环境变量的值。进入到 /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户直接编辑scripts/llama2/2_convert_mg_hf.sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 命令,随后运行该脚本。 其中环境变量详细介绍如下: 表1 权重转换脚本中的环境变量 参数 示例 参数说明 $1 hf2hg、mg2hf 运行 2_convert_mg_hf.sh 时,需要附加的参数值。如下: hf2hg:用于Hugging Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/ws/model/Llama2-13B 原始Hugging Face模型路径 CONVERT_MODEL_PATH /home/ma-user/ws/llm_train/processed_for_ma_input/llama2-13b/converted_weights_TP8PP1 权重转换完成之后保存路径 TOKENIZER_PATH /home/ma-user/ws/tokenizers/Llama2-13B tokenizer路径,即:原始Hugging Face模型路径 MODEL_SAVE_PATH /home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b 训练完成后保存的权重路径。
  • HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir : 权重转换完成之后保存路径。 --tokenizer-model : tokenizer路径。
  • Megatron转HuggingFace参数说明 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果用户需要自动转换,则在运行脚本,例如0_pl_pretrain_13b.sh中,添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在运行脚本中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下: --model-type:模型类型。 --save-model-type:输出后权重格式。 --load-dir:训练完成后保存的权重路径。 --save-dir:需要填入原始HF模型路径,新权重会存于../Llama2-13B/mg2hg下。 --target-tensor-parallel-size:任务不同调整参数target-tensor-parallel-size,默认为1。 --target-pipeline-parallel-size :任务不同调整参数target-pipeline-parallel-size,默认为1。 输出转换后权重文件保存路径: 权重转换完成后,在 /home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。
  • 步骤一:检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 步骤三:启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如llamafactory。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。 #统一文件权限 chmod -R 777 ${work_dir} # ${work_dir}:/home/ma-user/ws 宿主机代码和数据目录 #例如: chmod -R 777 /home/ma-user/ws 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 使用ma-user用户安装依赖包。 #进入scripts目录 cd /home/ma-user/ws/llm_train/AscendFactory #执行安装命令,安装依赖包及LLaMAFactory代码包 sh install.sh llamafactory
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_3_ascend:pytorch_2.3.1-cann_8.0.rc3-py_3.10-hce_2.0.2409-aarch64-snt9b-20241213131522-aafe527 表2 模型镜像版本 模型 版本 CANN cann_8.0.RC3 驱动 23.0.6 PyTorch 2.3.1
  • 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python convert_awq_to_npu.py --model /home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。
  • Step2 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendFactory; sh ./scripts_modellink/install.sh; sh ./scripts_modellink/llama2/0_pl_sft_13b.sh 如果镜像使用E CS 中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendFactory; sh ./scripts_modellink/llama2/0_pl_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动任何参数。可以通过训练脚本中的SAVE_INTERVAL参数来指定间隔多少step保存checkpoint。
  • Step1 修改训练超参配置 以llama2-13b SFT全参微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、MBS、TP、PP】参数值可参考模型推荐参数、NPU卡数设置。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
  • Step10 推理部署 使用官方权重文件推理 官方权重下载链接:https://huggingface.co/LanguageBind/Open-Sora-Plan-v1.0.0/tree/main 创建文件夹存放官方权重文件, mkdir weights_inference cd weights_inference mkdir vae mkdir 65x512x512 以65x512x512为例: 1,进入链接https://huggingface.co/LanguageBind/Open-Sora-Plan-v1.0.0/tree/main 2,手动下载65x512x512目录下的权重文件diffusion_pytorch_model.safetensors和配置文件config.json,并放到weights_inference/65x512x512目录下 3,手动下载vae目录下的权重文件diffusion_pytorch_model.safetensors和配置文件config.json,并放到weights_inference/vae目录下。 4,执行如下命令使用官方权重推理。 bash sample_video_65.sh 使用训练生成的权重文件推理 在Step7 启动训练服务完成后,会在工作目录/home/ma-user/Open-Sora-Plan1.0/下自动生成一个t2v-f17-256-img4-videovae488-bf16-ckpt-xformers-bs4-lr2e-5-t5文件夹,训练后生成的权重文件存放在t2v-f17-256-img4-videovae488-bf16-ckpt-xformers-bs4-lr2e-5-t5文件夹中,例如t2v-f17-256-img4-videovae488-bf16-ckpt-xformers-bs4-lr2e-5-t5/010-F16S3-STDiT-XL-2/checkpoint-2000/model。 修改推理配置文件中的权重文件sample_video_65.sh中的路径参数:--model_path,并执行如下推理命令。 bash sample_video_65.sh
  • Step3 构建镜像 基于官方提供的基础镜像构建自定义镜像Open-Sora-Plan1.0:1.0。参考如下命令编写Dockerfile文件。镜像地址{image_url}请参见表2。 FROM {image_url} COPY --chown=ma-user:ma-group OpenSoraPlan1.0/* /home/ma-user/Open-Sora-Plan1.0 RUN cd /home/ma-user/Open-Sora-Plan1.0 && bash prepare.sh WORKDIR /home/ma-user/Open-Sora-Plan1.0
  • Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step7 下载数据集 先创建文件夹用来存放数据集。 mkdir datasets cd datasets 训练使用的开源数据集链接:https://huggingface.co/datasets/LanguageBind/Open-Sora-Plan-v1.0.0/tree/main。 由于数据集比较大,可以自行选择部分数据集手动下载解压,并放入 ./datasets文件夹下。 例如:这里下载了上述链接中mixkit.tar.gz和sharegpt4v_path_cap_64x512x512.json。 (备注:如果只下载了部分数据集,需要对应修改sharegpt4v_path_cap_64x512x512.json文件) 解压数据集: tar -xzvf mixkit.tar.gz 解压后的数据集结果如图所示。 图5 解压后的数据集文件
  • Step8 下载权重文件 建议手动下载所需的权重文件,在/home/ma-user/Open-Sora-Plan1.0/目录下进行操作。 创建文件夹存放不同的权重文件。 mkdir weights mkdir weights_t5 mkdir cache_dir 下载基础模型权重t2v.pt放到cache_dir文件夹下。 mkdir Latte cd Latte git clone -c http.sslVerify=false https://huggingface.co/maxin-cn/Latte cd Latte git reset --hard 83bdc71f7211963153464859d03d46d707e77865 然后将该目录下的t2v.pt文件复制到/home/ma-user/Open-Sora-Plan1.0/cache_dir目录下。 下载VAE权重vae-ft-mse-840000-ema-pruned.ckpt和配置文件config.json,放在weights文件夹下。 下载链接:https://huggingface.co/stabilityai/sd-vae-ft-ema/tree/main 下载text_encoder权重,放在weights_t5文件夹下。 下载链接:https://huggingface.co/DeepFloyd/t5-v1_1-xxl/tree/main,手动下载如图6所示文件,并放到weights_t5文件夹下 图6 Huggingface中t5-v1_1-xxl模型目录内容
  • Step9 启动训练服务 在/home/ma-user/Open-Sora-Plan1.0/目录下进行操作 训练至少需要单机8卡。 命令启动训练脚本。 例如:训练65帧的视频,拼接4张图片,则执行如下命令: bash train_videoae_65x512x512.sh 正常训练过程如下图所示。训练完成后,关注loss值,loss曲线收敛,记录总耗时和单步耗时。训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 图7 正常训练过程 训练完成后权重保存在自动生成的目录,例如:t2v-f17-256-img4-videovae488-bf16-ckpt-xformers-bs4-lr2e-5-t5/epoch1-global_step2000/checkpoint-2000/model。
  • 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表2 基础容器镜像地址 配套软件版本 镜像用途 镜像地址 配套 获取方式 6.3.907版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240727152329-0f2c29a cann_8.0.rc2 pytorch_2.1.0 驱动23.0.6 从SWR拉取 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。
  • Step4 启动镜像 启动容器镜像,推理只需要启动单卡,启动前可以根据实际需要增加修改参数。 docker run -itd --name ${container_name} -v /sys/fs/cgroup:/sys/fs/cgroup:ro -v /etc/localtime:/etc/localtime -v /usr/local/Ascend/driver:/usr/local/Ascend/driver -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi --shm-size 60g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --security-opt seccomp=unconfined --network=bridge Open-Sora-Plan1.0:1.0 bash 参数说明: --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 --device=/dev/davinci0:挂载NPU设备,该推理示例中挂载了1张卡davinci0。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。
  • 使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVI CES =0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path /home/ma-user/llama-2-7b/ --quantize-model --generate-scale --dataset-path /data/nfs/user/val.jsonl --scale-output scales/llama2-7b.pt --model-output quantized_model/llama2-7b --per-token --per-channel 参数说明: --model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,若之前已生成过量化系数,则可指定该参数,跳过生成scale的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16 父主题: 推理模型量化
  • 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E 请联系您所在企业的华为方技术支持下载获取。
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.908中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──LLaMAFactory # 基于LLaMAFactory的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──demo.yaml # 样例yaml配置文件 |──demo.sh # 指令微调启动shell脚本 |──intall.sh # 需要的依赖包 |──LLaMA-Factory # LLaMAFactory的代码目录 |──AscendSpeed # 基于AscendSpeed的训练代码
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全