华为云用户手册

  • 示例 CREATE TABLE IF NOT EXISTS productdb.productSalesTable ( productNumber Int, productName String, storeCity String, storeProvince String, productCategory String, productBatch String, saleQuantity Int, revenue Int) STORED AS carbondata TBLPROPERTIES ( 'table_blocksize'='128', 'SORT_COLUMNS'='productBatch, productName')
  • 使用场景 通过指定列创建表 CREATE TABLE命令与Hive DDL相同。CarbonData的额外配置将作为表格属性给出。 CREATE TABLE [IF NOT EXISTS] [db_name.]table_name [(col_name data_type , ...)] STORED AS carbondata [TBLPROPERTIES (property_name=property_value, ...)];
  • 参数描述 表1 CREATE TABLE参数描述 参数 描述 db_name Database名称,由字母、数字和下划线(_)组成。 col_name data_type 以逗号分隔的带数据类型的列表。列名由字母、数字和下划线(_)组成。 说明: 在CarbonData表创建过程中,不允许使用tupleId,PositionId和PositionReference为列命名,因为具有这些名称的列由二级索引命令在内部使用。 table_name Database中的表名,由字母、数字和下划线(_)组成。 STORED AS 参数carbondata,定义和创建CarbonData table。 TBLPROPERTIES CarbonData table属性列表。
  • Loader数据导出简介 Loader支持将数据或者文件从 MRS 系统中导出到关系型数据库或文件系统中,Loader支持如下数据导出方式: 从HDFS/OBS中导出数据到SFTP服务器 从HDFS/OBS中导出数据到关系型数据库 从HBase中导出数据到SFTP服务器 从HBase中导出数据到关系型数据库 从Phoenix表导出数据到SFTP服务器 从Phoenix表导出数据到关系型数据库 从Hive中导出数据到SFTP服务器 从Hive中导出数据到关系数据库 从同一集群内HBase导出数据到HDFS/OBS
  • Loader数据导入简介 Loader是实现MRS与外部数据源如关系型数据库、SFTP服务器、FTP服务器之间交换数据和文件的ETL工具,支持将数据或文件从关系型数据库或文件系统导入到MRS系统中。 Loader支持如下数据导入方式: 从关系型数据库导入数据到HDFS/OBS 从关系型数据库导入数据到HBase 从关系型数据库导入数据到Phoenix表 从关系型数据库导入数据到Hive表 从SFTP服务器导入数据到HDFS/OBS 从SFTP服务器导入数据到HBase 从SFTP服务器导入数据到Phoenix表 从SFTP服务器导入数据到Hive表 从FTP服务器导入数据到HDFS/OBS 从FTP服务器导入数据到HBase 从FTP服务器导入数据到Phoenix表 从FTP服务器导入数据到Hive表 从同一集群内HDFS/OBS导入数据到HBase MRS与外部数据源交换数据和文件时需要连接数据源。系统提供以下连接器,用于配置不同类型数据源的连接参数: generic-jdbc-connector:关系型数据库连接器。 ftp-connector:FTP数据源连接器。 hdfs-connector:HDFS数据源连接器。 oracle-connector:Oracle数据库专用连接器,使用row_id作为分区列,相对generic-jdbc-connector来说,Map任务分区更均匀,并且不依赖分区列是否有创建索引。 mysql-fastpath-connector:MYSQL数据库专用连接器,使用MYSQL的mysqldump和mysqlimport工具进行数据的导入导出,相对generic-jdbc-connector来说,导入导出速度更快。 sftp-connector:SFTP数据源连接器。 oracle-partition-connector:支持Oracle分区特性的连接器,专门对Oracle分区表的导入导出进行优化。 使用FTP数据源连接器时不加密数据,可能存在安全风险,建议使用SFTP数据源连接器。 建议将SFTP服务器、FTP服务器和数据库服务器与Loader部署在独立的子网中,以保障数据安全地导入。 与关系数据库连接时,可以选择通用数据库连接器(generic-jdbc-connector)或者专用数据库连接器(oracle-connector、oracle-partition-connector、mysql-fastpath-connector),专用数据库连接器特别针对具体数据库类型进行优化,相对通用数据库连接器来说,导出、导入速度更快。 使用mysql-fastpath-connector时,要求在NodeManager节点上有MySQL的mysqldump和mysqlimport命令,并且此两个命令所属MySQL客户端版本与MySQL服务器版本兼容,如果没有这两个命令或版本不兼容,请参考http://dev.mysql.com/doc/refman/5.7/en/linux-installation-rpm.html,安装MySQL client applications and tools。 使用oracle-connector时,要求给连接用户赋予如下系统表或者视图的select权限: dba_tab_partitions、dba_constraints、dba_tables 、dba_segments 、v$version、dba_objects、v$instance、SYS_CONTEXT函数、dba_extents、 dba_tab_subpartitions。 使用oracle-partition-connector时,要求给连接用户赋予如下系统表的select权限:dba_objects、dba_extents。
  • 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 配置字段 配置常量字段相关信息: 输出字段名:配置字段名。 类型:配置字段类型。 时间格式:字段类型为“DATE”或“TIME”或“TIMESTAMP”时,需指定特定时间格式,其他类型指定无效。时间格式如:“yyyyMMdd HH:mm:ss”。 长度:配置字段长度,字段值实际长度太长则按配置的长度截取,“类型”为“CHAR”时实际长度不足则空格补齐,“类型”为“VARCHAR”时实际长度不足则不补齐。 常量值:配置符合类型的常量值。 map 是 无
  • Bitwise函数 bit_count(x, bits) → bigint 计算2的补码表示法中x中设置的位数(视为有符号位的整数)。 SELECT bit_count(9, 64); -- 2 SELECT bit_count(9, 8); -- 2 SELECT bit_count(-7, 64); -- 62 SELECT bit_count(-7, 8); -- 6 bitwise_and(x, y) → bigint 以二进制补码形式返回x和y按位与的结果。 select bitwise_and(8, 7); -- 0 bitwise_not(x) → bigint 以二进制补码形式返回x按位非的结果。 select bitwise_not(8);-- -9 bitwise_or(x, y) → bigint 以二进制补码形式返回x和y按位或的结果。 select bitwise_or(8,7);-- 15 bitwise_xor(x, y) → bigint 以二进制补码形式返回x和y按位异或的结果。 SELECT bitwise_xor(19,25); -- 10 bitwise_left_shift(value, shift) → [same as value] 描述:返回value左移shift位后的值。 SELECT bitwise_left_shift(1, 2); -- 4 SELECT bitwise_left_shift(5, 2); -- 20 SELECT bitwise_left_shift(0, 1); -- 0 SELECT bitwise_left_shift(20, 0); -- 20 bitwise_right_shift(value, shift) → [same as value] 描述:返回value右移shift位后的值。 SELECT bitwise_right_shift(8, 3); -- 1 SELECT bitwise_right_shift(9, 1); -- 4 SELECT bitwise_right_shift(20, 0); -- 20 SELECT bitwise_right_shift(0, 1); -- 0 -- 右移超过64位,返回0 SELECT bitwise_right_shift( 12, 64); -- 0 bitwise_right_shift_arithmetic(value, shift) → [same as value] 描述:返回value的算术右移值,当shift小于64位时,返回结果与bitwise_right_shift一样,当移动位数达到或者超过64位时,value是正数时返回0,负数时返回-1: SELECT bitwise_right_shift_arithmetic( 12, 64); -- 0 SELECT bitwise_right_shift_arithmetic(-45, 64); -- -1 父主题: HetuEngine SQL函数和操作符说明
  • 日志级别 DBService中提供了如表2所示的日志级别。日志级别优先级从高到低分别是ERROR、WARN、INFO、DEBUG。程序会打印高于或等于所设置级别的日志,设置的日志等级越高,打印出来的日志就越少。 表2 日志级别 级别 描述 ERROR ERROR表示当前时间处理存在错误信息。 WARN WARN表示当前事件处理存在异常信息。 INFO INFO表示记录系统及各事件正常运行状态信息。 DEBUG DEBUG表示记录系统及系统的调试信息。
  • 操作步骤 以客户端安装用户,登录安装Oozie客户端的节点。 执行以下命令,获取安装环境信息。其中“/opt/client”为客户端安装路径,该操作的客户端目录只是举例,请根据实际安装目录修改。 source /opt/client/bigdata_env 判断集群认证模式。 安全模式,执行kinit命令进行用户认证。 例如,使用oozieuser用户进行认证。 kinit oozieuser 普通模式,执行4。 根据提交任务类型,进入对应样例目录。 表1 样例目录列表 任务类型 样例目录 Mapreduce任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/map-reduce Java任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/java-main Shell任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/shell Streaming任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/streaming SubWorkflow任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/subwf SSH任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/ssh 定时任务 客户端安装目录/Oozie/oozie-client-*/examples/apps/cron 其他任务样例中已包含HDFS任务样例。 样例目录下需关注文件如表2所示。 表2 文件说明 文件名称 描述 job.properties 工作流的参数变量定义文件。 workflow.xml 工作流的规则定制文件。 lib 工作流运行依赖的jar包目录。 coordinator.xml “cron”目录下存在,定时任务配置文件,用于设置定时策略。 oozie_shell.sh “shell”目录下存在,提交Shell任务需要的Shell脚本文件。 执行以下命令,编辑“job.properties”文件。 vi job.properties 修改如下内容: 更改“userName”的参数值为提交任务的人机用户名,例如“userName=oozieuser”。 执行oozie job命令,运行工作流文件。 oozie job -oozie https://oozie角色的主机名:21003/oozie -config job.properties文件所在路径 -run 例如: oozie job -oozie https://10-1-130-10:21003/oozie -config /opt/client/Oozie/oozie-client-*/examples/apps/map-reduce/job.properties -run 命令参数解释如下: -oozie 实际执行任务的Oozie服务器URL -config 工作流属性文件 -run 运行工作流 执行完工作流文件,显示job id表示提交成功,例如:job: 0000021-140222101051722-oozie-omm-W。登录Oozie管理页面,查看运行情况。 使用oozieuser用户,登录Oozie WebUI页面:https://oozie角色的ip地址:21003/oozie 。 Oozie的WebUI界面中,可在页面表格根据jobid查看已提交的工作流信息。
  • 前提条件 Oozie组件及客户端已经安装,并且正常运行。 已创建或获取访问Oozie服务的人机用户账号及密码。 Shell任务: 该用户需要从属于hadoop、supergroup组,添加Oozie的角色操作权限,并确保Shell脚本在每个nodemanager节点都有执行权限。 SSH任务: 该用户需要从属于hadoop、supergroup组,添加Oozie的角色操作权限,并完成互信配置。 其他任务: 该用户需要从属于hadoop、supergroup组,添加Oozie的角色操作权限,并具备对应任务类型所需的权限。 用户同时还需要至少manager_viewer权限的角色。 获取运行状态的Oozie服务器(任意实例)URL,如“https://10.1.130.10:21003/oozie”。 获取运行状态的Oozie服务器主机名,如“10-1-130-10”。 获取Yarn ResourceManager主节点IP,如10.1.130.11。
  • 前提条件 已获取待连接数据库对应的驱动Jar包。 仅数据源MySQL、Oracle(MRS 3.3.0及之后版本支持)需要上传相应的驱动,驱动对应的版本号如表1所示,且驱动需要在MySQL或Oracle官网下载。 表1 MySQL、Oracle数据源支持的驱动 数据源 支持的驱动包 MySQL mysql-connector-java-8.0.24.jar Oracle(MRS 3.3.0及之后版本支持) ojdbc8-12.2.0.1.jar 此处Oracle仅作为ThirdKafka数据源使用。 开启Kerberos认证的集群需已参考CDL用户权限管理创建具有CDL管理操作权限的用户。
  • 回答 ZooKeeper IO瓶颈观测手段: 通过Manager的监控页面查看单个节点上ZooKeeper请求监控,判断是否严重超出规格限制。 通过观测ZooKeeper的日志以及HBase的日志,查看是否有大量的IO Exception Timeout或者SocketTimeout Exception异常。 调优建议: 将ZooKeeper实例个数调整为5个及以上,可以通过设置peerType=observer来增加observer的数目。 通过控制单个任务并发的map数或减少每个节点下运行task的内存,降低节点负载。 升级ZooKeeper数据磁盘,如SSD等。
  • Kafka API简单说明 Producer API 指org.apache.kafka.clients.producer.KafkaProducer中定义的接口,在使用“kafka-console-producer.sh”时,默认使用此API。 Consumer API 指org.apache.kafka.clients.consumer.KafkaConsumer中定义的接口,在使用“kafka-console-consumer.sh”时,默认会调用此API。 MRS 3.x后,Kafka不支持旧Producer API和旧Consumer API。
  • Kafka访问协议说明 请参考修改集群服务配置参数查看或配置参数。 Kafka当前支持四种协议类型的访问:PLAINTEXT、SSL、SASL_PLAINTEXT、SASL_SSL。 Kafka服务启动时,默认会启动PLAINTEXT和SASL_PLAINTEXT两种协议类型的访问监测。可通过设置Kafka服务配置“ssl.mode.enable”为“true”,来启动SSL和SASL_SSL两种协议类型的访问监测。下表是四种协议类型的简单说明: 协议类型 说明 默认端口 PLAINTEXT 支持无认证的明文访问 获取参数“port”的值,默认为9092 SASL_PLAINTEXT 支持Kerberos认证的明文访问 获取参数“sasl.port”的值,默认为21007 SSL 支持无认证的SSL加密访问 获取参数“ssl.port”的值,默认为9093 SASL_SSL 支持Kerberos认证的SSL加密访问 获取参数“sasl-ssl.port”的值,默认为21009
  • 针对不同的Topic访问场景,Kafka中API使用说明 场景一:访问设置了ACL的Topic 使用的API 用户属组 客户端参数 服务端参数 访问的端口 API 用户需满足以下条件之一即可: 加入System_administrator角色 属于kafkaadmin组 属于kafkasuperuser组 被授权的kafka组的用户 security.inter.broker.protocol=SASL_PLAINTEXT sasl.kerberos.service.name = kafka - sasl.port(默认21007) security.protocol=SASL_SSL sasl.kerberos.service.name = kafka “ssl.mode.enable”配置为true sasl-ssl.port(默认21009) 场景二:访问未设置ACL的Topic 使用的API 用户属组 客户端参数 服务端参数 访问的端口 API 用户需满足以下条件之一: 加入System_administrator角色 属于kafkaadmin组 属于kafkasuperuser组 security.protocol=SASL_PLAINTEXT sasl.kerberos.service.name = kafka - sasl.port(默认21007) 用户属于kafka组 “allow.everyone.if.no.acl.found”配置为true 说明: 普通集群下不涉及服务端参数“allow.everyone.if.no.acl.found”的修改 sasl.port(默认21007) 用户需满足以下条件之一: 加入System_administrator角色 属于kafkaadmin组 kafkasuperuser组用户 security.protocol=SASL_SSL sasl.kerberos.service.name = kafka “ssl.mode.enable”配置为“true” sasl-ssl.port(默认21009) 用户属于kafka组 “allow.everyone.if.no.acl.found”配置为“true” “ssl.mode.enable”配置为“true” sasl-ssl.port(默认21009) - security.protocol=PLAINTEXT “allow.everyone.if.no.acl.found”配置为“true” port(默认9092) - security.protocol=SSL “allow.everyone.if.no.acl.found”配置为“true” “ssl.mode.enable”配置为“true” ssl.port(默认9063)
  • 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor.extraJavaOptions配置项中添加参数:"-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps" ),如果频繁出现Full GC,需要优化GC。把RDD做Cache操作,通过日志查看RDD在内存中的大小,如果数据太大,需要改变RDD的存储级别来优化。
  • 操作步骤 优化GC,调整老年代和新生代的大小和比例。在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor.extraJavaOptions配置项中添加参数:-XX:NewRatio。如," -XX:NewRatio=2",则新生代占整个堆空间的1/3,老年代占2/3。 开发Spark应用程序时,优化RDD的数据结构。 使用原始类型数组替代集合类,如可使用fastutil库。 避免嵌套结构。 Key尽量不要使用String。 开发Spark应用程序时,建议序列化RDD。 RDD做cache时默认是不序列化数据的,可以通过设置存储级别来序列化RDD减小内存。例如: testRDD.persist(StorageLevel.MEMORY_ONLY_SER)
  • Color 函数 bar(x, width) 描述:使用默认的低频红色和高频绿色渲染ANSI条形图中的单个条形。例如,如果将25%的x和40的宽度传递给此函数。将绘制一个10个字符的红色条形,后跟30个空格,以创建一个40个字符的条形。 bar(x, width, low_color, high_color) 描述:在ANSI条形图中以指定宽度绘制一条直线。参数x是0到1之间的一个双精度值。x的值超出[0,1]范围将被截断为0或1值。low_color和high_color捕获用于水平条形图任一端的颜色。例如,如果x为0.5,宽度为80,low_color为0xFF0000,high_color为0x00FF00,则此函数将返回一个40个字符的条形,该条形由红色(0xFF0000)和黄色(0xFFFF00)组成,其余80个字符条为用空格填充。 select bar(0.75,80,rgb(255,0,0),rgb(0,255,0)); render(b) 描述:根据布尔值返回对错符号。 select render(true),render(false); 父主题: HetuEngine SQL函数和操作符说明
  • 操作步骤 设置JD BCS erver的公平调度策略。 Spark默认使用FIFO(First In First Out)的调度策略,但对于多并发的场景,使用FIFO策略容易导致短任务执行失败。因此在多并发的场景下,需要使用公平调度策略,防止任务执行失败。 在Spark中设置公平调度,具体请参考http://spark.apache.org/docs/3.1.1/job-scheduling.html#scheduling-within-an-application。 在JDBC客户端中设置公平调度。 在BeeLine命令行客户端或者JDBC自定义代码中,执行以下语句, 其中PoolName是公平调度的某一个调度池。 SET spark.sql.thriftserver.scheduler.pool=PoolName; 执行相应的SQL命令,Spark任务将会在上面的调度池中运行。 设置BroadCastHashJoin的超时时间。 BroadCastHashJoin有超时参数,一旦超过预设的时间,该查询任务直接失败,在多并发场景下,由于计算任务抢占资源,可能会导致BroadCastHashJoin的Spark任务无法执行,导致超时出现。因此需要在JDB CS erver的“spark-defaults.conf”配置文件中调整超时时间。 表1 参数描述 参数 描述 默认值 spark.sql.broadcastTimeout BroadcastHashJoin中广播表的超时时间,当任务并发数较高的时候,可以调高该参数值。 -1(数值类型,实际为五分钟)
  • 操作步骤 请参考修改集群服务配置参数,进入HDFS的“全部配置”页面。 调整HDFS写数据时的依据的磁盘选择策略参数。搜索“dfs.block.replicator.classname”参数,并将参数的值改为“org.apache.hadoop.hdfs.server.blockmanagement.AvailableSpaceBlockPlacementPolicy”。 保存修改的配置。保存完成后请重新启动配置过期的服务或实例以使配置生效。
  • 对系统的影响 修改磁盘选择策略为“节点磁盘可用空间块放置策略(org.apache.hadoop.hdfs.server.blockmanagement.AvailableSpaceBlockPlacementPolicy)”,经过测试验证,在该测试结果中,修改前后,HDFS写文件性能影响范围在3%以内。 NameNode默认的副本存储策略为: 第一副本:存放到客户端所在节点。 第二副本:远端机架的数据节点。 第三副本:存放到客户端所在节点的相同机架的不同节点。 如还有更多副本,则随机选择其它DataNode。 “节点磁盘可用空间块放置策略”的副本选择机制为: 第一个副本:存放在客户端所在DataNode(和默认的存放策略一样)。 第二个副本: 选择存储节点的时候,先挑选2个满足要求的数据节点。 比较这2个节点磁盘空间使用比例,如果磁盘空间使用率的相差小于5%,随机存放到第一个节点。 如果磁盘空间使用率相差超过5%,即有60%(由dfs.namenode.available-space-block-placement-policy.balanced-space-preference-fraction指定,默认值0.6)的概率写到磁盘空间使用率低的节点。 第三副本等其他后续副本的存储情况,也参考第二个副本的选择方式。
  • 操作示例 beeline启动断线重连功能。 示例: beeline -e "${SQL}" --hivevar batchid=xxxxx beeline kill正在运行的任务。 示例: beeline -e "" --hivevar batchid=xxxxx --hivevar kill=true 登录beeline客户端,启动断线重连机制。 登录beeline客户端后,执行“set hivevar:batchid=xxxx” 使用说明: 其中“xxxx”表示每一次通过beeline提交任务的批次号,通过该批次号,可以识别出先提交的任务。如果提交任务时不带批次号,该特性功能不会启用。“xxxx”的值是执行任务时指定的,如下所示,“xxxx”值为“012345678901”: beeline -f hdfs://hacluster/user/hive/table.sql --hivevar batchid=012345678901 如果运行的SQL脚本依赖数据的失效性,建议不启用断点重连机制,或者每次运行时使用新的batchid。因为重复执行时,可能由于某些SQL语句已经执行过了不再重新执行,导致获取到过期的数据。 如果SQL脚本中使用了一些内置时间函数,建议不启用断点重连机制,或者每次运行时使用新的batchid,理由同上。 一个SQL脚本里面会包含一个或多个子任务。如果SQL脚本中存在先创建再删除临时表的逻辑,建议将删除临时表的逻辑放到脚本的最后。假定删除临时表子任务的后续子任务执行失败,并且删除临时表的子任务之前的子任务用到了该临时表;当下一次以相同batchid执行该SQL脚本时,因为临时表在上一次执行时已被删除,则会导致删除临时表的子任务之前用到该临时表的子任务(不包括创建该临时表的子任务,因为上一次已经执行成功,本次不会再执行,仅可编译)编译失败。这种情况下,建议使用新的batchid执行脚本。 参数说明: zk.cleanup.finished.job.interval:执行清理任务的间隔时间,默认隔60s执行一次。 zk.cleanup.finished.job.outdated.threshold:节点的过期时间,每个批次的任务都会生成对应节点,从当前批次任务的结束时间开始算,如果超过60分钟,则表示已经过期了,那么就清除节点。 batch.job.max.retry.count:单批次任务的最大重试次数,当单批次的任务失败重试次数超过这个值,就会删除该任务记录,下次运行时将从头开始运行,默认是10次。 beeline.reconnect.zk.path:存储任务执行进度的根节点,Hive服务默认是/beeline。
  • 操作场景 在批处理任务运行过程中,beeline客户端由于网络异常等问题断线时,Hive能支持beeline在断线前已经提交的任务继续运行。当再次运行该批处理任务时,已经提交过的任务不再重新执行,直接从下一个任务开始执行。 在批处理任务运行过程中,HiveServer服务由于某些原因导致故障时,Hive能支持当再次运行该批处理任务时,已经成功执行完成的任务不再重新执行,直接从HiveServer2故障时正在运行的任务开始运行。
  • 前提条件 已创建用于访问HetuEngine WebUI界面的用户,如hetu_user,用户创建具体操作请参见创建HetuEngine权限角色。 已在待操作集群创建所需租户。请确保修改HetuEngine计算实例配置时,对应的租户有足够的内存和CPU资源。 创建HetuEngine计算实例时必须使用“叶子租户”类型的租户,只有叶子租户的队列才能提交Yarn任务。 为了避免资源竞争带来的不确定性因素,建议为HetuEngine使用的租户创建独立资源池。
  • 计算实例状态说明 计算实例创建成功后,可在“计算实例”页签查看当前已创建的实例信息,包括实例所属租户名、对应实例数量、实例状态和资源总量等,实例状态信息如下: 图1 计算实例状态 绿色图标:实例处于运行中或亚健康状态。 红色图标:实例故障。 灰色图标:实例已停止、待启动。 蓝色图标:实例处于其他状态,包括扩容中、缩容中、滚动重启中、创建中、启动中、安全启动中、停止中、安全停机中、删除中、已删除、停止中等。
  • Flink对接HDFS分区 Flink对接HDFS支持自定义分区。 Flink文件系统分区支持使用标准的Hive格式。不需要将分区预先注册到表目录中,分区是根据目录结构推断。 例如,根据下面的目录分区的表将被推断为包含日期时间和小时分区。 path └── datetime=2021-09-03 └── hour=11 ├── part-0.parquet ├── part-1.parquet └── hour=12 ├── part-0.parquet └── datetime=2021-09-24 └── hour=6 ├── part-0.parquet 分区文件的滚动策略。 分区目录中的数据被拆分为part文件,每个分区将至少包含一个part文件,用于接收sink的子任务的数据写入。 如下参数介绍分区文件如何进行滚动。 配置项 默认值 类型 描述 sink.rolling-policy.file-size 128MB MemorySize 分区文件达到该阈值后,进行滚动。 sink.rolling-policy.rollover-interval 30min Duration 分区文件在滚动前可以保持打开的最长持续时间。 sink.rolling-policy.check-interval 1min Duration 检查基于时间的滚动策略的时间间隔。 分区目录的文件合并。 支持文件压缩,允许应用程序具有更小的检查点间隔,而无需生成大量文件。 仅压缩单个检查点中的文件,即生成的文件数量至少与检查点数量相同。合并前的文件是不可见的,因此文件的可见性是:检查点间隔+压缩时间之后。如果压缩时间太长,将延长检查点的时间段。 配置项 默认值 类型 描述 auto-compaction false Boolean 是否启用自动压缩。数据将写入临时文件。检查点完成后,检查点生成的临时文件将被压缩。压缩前临时文件不可见。 compaction.file-size none MemorySize 压缩目标文件大小,默认值为滚动文件大小。 分区文件的提交。 文件写入分区后,通常需要通知下游应用程序。如将分区添加到Hive元存储中,或在目录中写入_SUC CES S文件。分区文件的提交操作基于触发器和策略的组合方式。 分区文件提交触发器相关配置 配置项 默认值 类型 描述 sink.partition-commit.trigger process-time String process-time:基于计算节点的系统时间,它既不需要分区时间提取,也不需要生成watermark。即“当前系统时间”超过“分区创建时的系统时间”加上“延迟”时间,就提交分区。 partition-time:基于从分区提取的时间,它需要生成watermark。即“watermark时间”超过“从分区提取的时间”加上“延迟”时间,就提交分区。 sink.partition-commit.delay 0 s Duration 分区在延迟时间之前不会提交。如果是每日分区,则应为“1 d”,如果是每小时分区,则应为“1 h”。 分区问文件提交策略相关配置 配置项 默认值 类型 描述 sink.partition-commit.policy.kind - String 提交分区的策略。 metastore:将分区添加到元存储。只有hive表支持元存储策略,文件系统通过目录结构管理分区。 success-file:将success-file文件添加到目录中。 两者可以同时配置,即:'sink.partition-commit.policy.kind'='metastore,success-file'。 sink.partition-commit.policy.class - String 用于实现分区提交策略接口的分区提交策略类。 仅在自定义提交策略中生效。 sink.partition-commit.success-file.name _SUCCESS String success-file分区提交策略的文件名,默认值为_SUCCESS。
  • 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 换行符 用户根据数据实际情况,填写字符串作为换行符。支持任何字符串。默认使用操作系统的换行符。 string 否 \n 分割长度单位 长度单位,可选择“char”字符或“byte”字节。 enum 是 char 输入字段 配置输入字段相关信息: 固定长度:设置字段长度,第2个字段起点从第1个字段终点开始,以此类推。 字段名:配置输入字段名。 类型:配置字段类型。 数据格式:字段类型为“DATE”或“TIME”或“TIMESTAMP”时,需指定特定时间格式,其他字段类型指定无效。时间格式如:“yyyyMMdd HH:mm:ss”。 长度:配置字段长度,字段值实际长度太长则按配置的长度截取,“类型”为“CHAR”时实际长度不足则空格补齐,“类型”为“VARCHAR”时实际长度不足则不补齐。 map 是 无
  • 问题 运行一个Spark Streaming任务,确认有数据输入后,发现没有任何处理的结果。打开Web界面查看Spark Job执行情况,发现如下图所示:有两个Job一直在等待运行,但一直无法成功运行。 图1 Active Jobs 继续查看已经完成的Job,发现也只有两个,说明Spark Streaming都没有触发数据计算的任务(Spark Streaming默认有两个尝试运行的Job,就是图中两个) 图2 Completed Jobs
  • 回答 经过定位发现,导致这个问题的原因是:Spark Streaming的计算核数少于Receiver的个数,导致部分Receiver启动以后,系统已经没有资源去运行计算任务,导致第一个任务一直在等待,后续任务一直在排队。从现象上看,就是如问题中的图1中所示,会有两个任务一直在等待。 因此,当Web出现两个任务一直在等待的情况,首先检查Spark的核数是否大于Receiver的个数。 Receiver在Spark Streaming中是一个常驻的Spark Job,Receiver对于Spark是一个普通的任务,但它的生命周期和Spark Streaming任务相同,并且占用一个核的计算资源。 在调试和测试等经常使用默认配置的场景下,要时刻注意核数与Receiver个数的关系。
  • 使用方法 只有处于INACTIVE状态的索引才能进行批量构建,如需重建索引数据,请先修改索引状态。 数据表中存在大量数据时,构建耗时较长,建议使用nohup命令放在后台执行,避免操作被意外中断。 在HBase客户端执行以下命令可批量构建已有数据的索引数据: hbase org.apache.hadoop.hbase.hindex.global.mapreduce.GlobalTableIndexer -Dtablename.to.index='table' -Dindexnames.to.build='idx1' 相关参数介绍如下: tablename.to.index:表示需修改索引状态的数据表的名称。 indexnames.to.build:指定的需要批量生成数据的索引名,可以同时指定多个,用#号分割。 hbase.gsi.cleandata.enabled(可选):表示构建索引数据前是否需要清空索引表,默认值为“false”。 hbase.gsi.cleandata.timeout(可选):表示构建索引数据前等待清空索引表超时时间,默认值为“1800”,单位为:秒。
共100000条