华为云用户手册
-
AK/SK认证 AK/SK签名认证方式仅支持消息体大小12MB以内,12MB以上的请求请使用Token认证。 AK/SK认证就是使用AK/SK对请求进行签名,在请求时将签名信息添加到消息头,从而通过身份认证。 AK(Access Key ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。 签名SDK只提供签名功能,与服务提供的SDK不同,使用时请注意。 AK/SK获取方式请参考获取AK/SK。
-
Token认证 需要使用同一个Token鉴权时,可以缓存起来,避免频繁调用。 关于Token有效期的详细说明请参见获取 IAM 用户Token(使用密码)。 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 username、domainname、project name可登录控制台“我的凭证”页面获取。password为用户密码。 获取Token 时,如果出现账密报错“The username or password is wrong.”,请参见如何处理账密报错。 POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens Content-Type: application/json Request Body: { "auth": { "identity": { "methods": [ "password" ], "password": { "user": { "name": "username", "password": "********", "domain": { "name": "domainname" } } } }, "scope": { "project": { "name": "project name" } } } } 如下图所示,返回的响应消息头中“x-subject-token”就是需要获取的用户Token。获取Token之后,您就可以使用Token认证调用FRS服务API。 您还可以通过这个视频教程了解如何使用Token认证:https://bbs.huaweicloud.com/videos/101333 。 图1 获取用户Token响应消息头
-
请求消息头 附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 Content-Type:消息体的类型(格式),必选,默认取值为“application/json”,有其他取值时会在具体接口中专门说明。 X-Auth-Token:用户Token,可选,当使用Token方式认证时,必须填充该字段。用户Token请参考认证鉴权。 添加消息头后的请求如下所示。 POST https://face.cn-north-4.myhuaweicloud.com/v2/{project_id}/face-detect Content-Type: application/json x-auth-token: MIIaBgYJKoZIhvcNAQcC…
-
请求URI 请求URI由如下部分组成。 {URI-scheme} :// {Endpoint} / {resource-path} ? {query-string} 表1 请求URI 参数 说明 URI-scheme 传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器 域名 或IP,不同服务在不同区域时,对应Endpoint不同,可以从终端节点中获取。 例如IAM服务在“华北-北京四”区域的Endpoint为“iam.cn-north-4.myhuaweicloud.com”。 resource-path 资源路径,即API访问路径。从具体API的URI模块获取。 例如“获取用户Token”API的resource-path为“/v3/auth/tokens”。 例如调用人脸检测接口,API的resource-path为“/v2/{project_id}/face-detect”。 query-string 查询参数,可选,查询参数前面需要带一个“?”,形式为“参数名=参数取值”,例如“limit=10”,表示查询不超过10条数据。 例如,您需要在“华北-北京四”区域调用人脸检测API,URI如下所示。其中face.cn-north-4.myhuaweicloud.com表示“华北-北京四”区域的Endpoint,{project_id}表示与区域对应的项目id,可在“我的凭证”页面获取。 https://face.cn-north-4.myhuaweicloud.com/v2/{project_id}/face-detect 图1 URI示意图 为查看方便,服务每个具体API的URI,只给出resource-path部分,并将请求方法写在一起。这是因为URI-scheme都是HTTPS,而Endpoint在同一个区域也相同,所以简洁起见将这两部分省略。
-
请求方法 HTTP请求方法(也称为操作或动词),它告诉服务你正在请求什么类型的操作。 表2 HTTP方法 方法 说明 GET 请求服务器返回指定资源。 PUT 请求服务器更新指定资源。 POST 请求服务器新增资源或执行特殊操作。 DELETE 请求服务器删除指定资源,如删除对象等。 HEAD 请求服务器资源头部。 PATCH 请求服务器更新资源的部分内容。 当资源不存在的时候,PATCH可能会去创建一个新的资源。 人脸检测API的URI部分,您可以看到其请求方法为“POST”,则其请求为: POST https://face.cn-north-4.myhuaweicloud.com/v2/{project_id}/face-detect
-
请求消息体 请求消息体通常以结构化格式发出,与请求消息头中Content-type对应,传递除请求消息头之外的内容。若请求消息体中参数支持中文,则中文字符必须为UTF-8编码。 每个接口的请求消息体内容不同,也并不是每个接口都需要有请求消息体(或者说消息体为空),GET、DELETE操作类型的接口就不需要消息体,消息体具体内容需要根据具体接口而定。 例如,对于人脸检测接口,您可以从接口的请求部分看到所需的请求参数及参数说明。将消息体加入后的请求如下所示。 POST https://face.cn-north-4.myhuaweicloud.com/v2/{project_id}/face-detect Request Header: Content-Type: application/json X-Auth-Token: MIINRwYJKoZIhvcNAQcCoIINODCCDTQCAQExDT... Request Body: { "image_base64": "/9j/4AAQSkZJRgABAgEASABIAAD...", "attributes": "2,12,13" } 到这里为止这个请求需要的内容就具备齐全了,您可以使用curl、Postman或直接编写代码等方式发送请求调用API。
-
获取AK/SK 登录 人脸识别 管理控制台。 单击页面右上角的用户名,并选择“我的凭证”。 进入“我的凭证”页面。 单击“访问秘钥”页签下的“新增访问密钥”。 弹出“新增访问密钥”对话框。 输入“登录密码”,如果绑定了手机或者邮箱,还需要获取验证码并进行验证。 验证成功后,弹出访问密钥下载对话框。 单击“确定”,并根据提示下载保存访问密钥。 如果已生成过AK/SK,找到原来已下载的AK/SK文件,文件名一般为:credentials.csv。 父主题: 获取项目ID/账号名/AK/SK
-
申请步骤 登录人脸识别管理控制台。 根据业务需求,选择服务部署区域,开通所需服务(例如:人脸检测),单击右侧的“开通服务”。 香港、曼谷区域API也可以使用中国站账号进行开通;如您需要使用国际站账号开通香港、曼谷区域API,请联系客服获取开通支持。 图1 开通服务 由于应用可能需要使用 对象存储服务 (OBS)中的数据, 人脸识别服务 需要您授权可以操作对象存储服务。单击左侧“委托授权”,完成OBS授权,已授权过的服务,该页面提示“已授权”。 OBS授权时,如果提示委托已达上限,则需要您登录到 统一身份认证 服务,对委托进行删除或创建新的委托。 服务状态显示“已开通”时,即可调用服务的API。 图2 服务授权
-
操作步骤 创建用户组并授权 使用主账号登录IAM服务控制台。 左侧导航窗格中,选择“用户组”页签,单击右上方的“+创建用户组”。 在“创建用户组”界面,输入“用户组名称”,例如“开发人员组”、“测试人员组”。 在用户组列表中,单击新建用户组右侧的“授权”。 选择权限的作用服务。此处选择“ 人证核身 服务(IVS)”,并为该用户组设置所需的权限。 单击“下一步”,设置用户组的最小授权范围。单击“确定”,完成用户组授权。 所有资源:不设置最小授权范围,授权后,用户根据权限使用账号中所有资源。 指定区域项目资源:授权后,用户根据权限使用已选区域项目中的资源。 创建IAM用户并加入用户组 在IAM控制台中创建用户。单击右上方的“+创建用户”,配置用户基本信息。 单击“下一步”,将用户加入至用户组。 单击“创建用户”,完成IAM用户创建。 用户登录并验证权限 新创建的用户登录控制台,切换至授权区域,验证权限: 假设当前权限仅包含IVS ReadOnlyAccess。 进入IVS控制台界面,单击“开通服务”,如果无法开通,提示权限不足,表示“IVS ReadOnlyAccess”已生效。
-
IVS权限 默认情况下,管理员创建的IAM用户没有任何权限,需要将其加入用户组,并给用户组授予策略或角色,才能使得用户组中的用户获得对应的权限,这一过程称为授权。授权后,用户就可以基于被授予的权限对云服务进行操作。 IVS部署时通过物理区域划分,为项目级服务。授权时,“作用范围”需要选择“区域级项目”,然后在指定区域(如华北-北京四)对应的项目(cn-north-4)中设置相关权限,并且该权限仅对此项目生效;如果在“所有项目”中设置权限,则该权限在所有区域项目中都生效。访问IVS时,需要先切换至授权区域。 如表1所示,包括了IVS的所有系统角色。 表1 IVS系统策略 策略名称 描述 策略类型 依赖关系 IVS FullAccess 所有权限 系统策略 无 IVS ReadOnlyAccess 只读访问权限 系统策略 无 表2列出了IVS常用操作与系统策略的授权关系,您可以参照该表选择合适的系统策略。 表2 IVS操作与系统策略关系 Action Action说明 IVS FullAccess IVS ReadOnlyAccess ivs:standard:subscribe 订阅人证核身标准版(三要素) √ × ivs:standard:unsubscribe 取消人证核身标准版(三要素) √ × ivs:standard:getSubscribeUserList 查询订阅人证核身标准版(三要素)的用户列表 √ √ ivs:standard:subscribeAllUsers 为子用户订阅人证核身标准版(三要素) √ × ivs:standard:unsubscribeAllUsers 为子用户取消订阅人证核身标准版(三要素) √ × ivs:idCardExtention:subscribe 订阅人证核身证件版(二要素) √ × ivs:idCardExtention:unsubscribe 取消订阅人证核身证件版(二要素) √ × ivs:idCardExtention:getSubscribeUserList 查询订阅人证核身证件版(二要素)的用户列表 √ √ ivs:idCardExtention:subscribeAllUsers 为子用户订阅人证核身证件版(二要素) √ × ivs:idCardExtention:unsubscribeAllUsers 为子用户取消订阅人证核身证件版(二要素) √ ×
-
操作步骤 在 云日志 服务管理控制台,单击“日志管理”。 在日志组列表中,单击接入ELB日志的日志组名称,进入日志流详情页面。 或者在日志流列表中,单击接入ELB日志的日志流名称,进入日志流详情页面。 在右上角选择时间范围。 在搜索框输入“status 500”,单击查询,开始搜索。 显示近一小时内ELB日志错误码为500的日志,status字段开启快速分析后会同步现在执行正常和异常状态占比。 单击查看原始日志的上下文,了解该问题发生时的应用运行状态。 设置日志结构化后,下拉框会同步显示系统内置字段及结构化配置的字段。 创建快速分析后,LTS会统计对应字段在日志流的日志文件中出现的条数,并生成日志指标(百分比)。
-
SQL语法支持的数据类型 SQL查询中支持的数据类型如表1。如果当前字段数据类型需要改为其他数据类型,我们会进行数据类型的转换。例如STRING类型的字段转为LONG类型。字段数据类型转换之后的结果将会显示默认值,如STRING类型的数据转换为LONG类型的数据,结果会显示为LONG类型的默认值0。同理,当空值被转换为非空类型值时,也会使用默认值进行替换。例如,当把STRING类型空值转换为数字类型时,将会返回默认值0。 SQL语法中,字符必须被单引号('')包裹,无符号或双引号("")包裹的为字段或表名称,如:'msg'表示字符串msg,msg或"msg"表示日志结构化msg字段。 表1 SQL查询支持的数据类型 原生数据类型 默认值 说明 STRING "" 原生STRING类型 FLOAT 0.0 原生FLOAT类型 LONG 0 原生LONG类型 父主题: SQL查询语法
-
使用案例 控制单节点的执行 通过参数配置实现 from modelarts import workflow as wf condition_equal = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=wf.Placeholder(name="is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True) # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的OBS对象 obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory") # 通过JobStep来定义一个训练节点,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm( subscription_id="subscription_id", # 算法订阅ID item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data), # JobStep的输入在运行时配置;data字段也可使用data=wf.data.OBSPath(obs_path="fake_obs_path")表示 outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出 spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) ), # 训练资源规格信息 policy=wf.steps.StepPolicy( skip_conditions=[condition_equal] # 通过skip_conditions中的计算结果决定job_step是否跳过 ) ) workflow = wf.Workflow( name="new-condition-demo", desc="this is a demo workflow", steps=[job_step], storages=storage ) 案例中job_step配置了相关的跳过策略,并且通过一个bool类型的参数进行控制。当name为is_skip的Placeholder参数配置为True时,condition_equal的计算结果为True,此时job_step会被置为跳过,反之job_step正常执行,其中Condition对象详情可参考条件节点。 通过获取JobStep输出的相关metric指标信息实现 from modelarts import workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True, create_dir=True, description="description_info") # name字段必填,title, description可选填 # 定义输入的OBS对象 obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory") # 通过JobStep来定义一个训练节点,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm( subscription_id="subscription_id", # 算法订阅ID item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data), outputs=[ wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), wf.steps.JobOutput(name="metrics", metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json", create_dir=False))) # 指定metric的输出路径,相关指标信息由作业脚本代码根据指定的数据格式自行输出(示例中需要将metric信息输出到训练输出目录下的metrics.json文件中) ], spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) ) # 训练资源规格信息 ) # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) # 定义条件对象 condition_lt = wf.steps.Condition( condition_type=wf.steps.ConditionTypeEnum.LT, left=wf.steps.MetricInfo(job_step.outputs["metrics"].as_input(), "accuracy"), right=0.5 ) model_step = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), # job_step的输出作为输入 outputs=wf.steps.ModelOutput(name='model_output', model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), # ModelStep的输出 depend_steps=[job_step], # 依赖的作业类型节点对象 policy=wf.steps.StepPolicy(skip_conditions=condition_lt) # 通过skip_conditions中的计算结果决定model_step是否跳过 ) workflow = wf.Workflow( name="new-condition-demo", desc="this is a demo workflow", steps=[job_step, model_step], storages=storage ) 案例中model_step配置了相关的跳过策略,并且通过获取job_step输出的accuracy指标信息与预置的值进行比较,决定是否需要进行模型注册。当job_step输出的accuracy指标数据小于阈值0.5时,condition_lt的计算结果为True,此时model_step会被置为跳过,反之model_step正常执行。 job_step输出的metric文件格式要求可参考分支控制部分,并且在Condition中只支持使用type为float类型的指标数据作为输入。 此案例中metrics.json的内容示例如下: [ { "key": "loss", "title": "loss", "type": "float", "data": { "value": 1.2 } }, { "key": "accuracy", "title": "accuracy", "type": "float", "data": { "value": 0.8 } } ] 控制多分支的部分执行 from modelarts import workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True, create_dir=True, description="description_info") # name字段必填,title, description可选填 # 定义输入的OBS对象 obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory") condition_equal_a = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=wf.Placeholder(name="job_step_a_is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True) # 通过JobStep来定义一个训练节点,并将训练结果输出到OBS job_step_a = wf.steps.JobStep( name="training_job_a", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm( subscription_id="subscription_id", # 算法订阅ID item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data), outputs=[wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path_a")))], spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) ), # 训练资源规格信息 policy=wf.steps.StepPolicy(skip_conditions=condition_equal_a) ) condition_equal_b = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=wf.Placeholder(name="job_step_b_is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True) # 通过JobStep来定义一个训练节点,并将训练结果输出到OBS job_step_b = wf.steps.JobStep( name="training_job_b", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm( subscription_id="subscription_id", # 算法订阅ID item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=obs_data), outputs=[wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path_b")))], spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) ), # 训练资源规格信息 policy=wf.steps.StepPolicy(skip_conditions=condition_equal_b) ) # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) model_step = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 inputs=wf.steps.ModelInput(name='model_input', data=wf.data.DataConsumptionSelector(data_list=[job_step_a.outputs["train_url"].as_input(), job_step_b.outputs["train_url"].as_input()])), # 选择job_step_a或者job_step_b的输出作为输入 outputs=wf.steps.ModelOutput(name='model_output', model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), # ModelStep的输出 depend_steps=[job_step_a, job_step_b], # 依赖的作业类型节点对象 ) workflow = wf.Workflow( name="new-condition-demo", desc="this is a demo workflow", steps=[job_step_a, job_step_b, model_step], storages=storage ) 案例中job_step_a和job_step_b均配置了跳过策略,并且都使用参数进行控制。当参数值配置不同时,model_step的执行可以分为以下几种情况(model_step没有配置跳过策略,因此会遵循默认规则): job_step_a_is_skip参数值 job_step_b_is_skip参数值 model_step是否执行 True True 跳过 False 执行 False True 执行 False 执行 默认规则:当某个节点依赖的所有节点状态均为跳过时,该节点自动跳过,否则正常执行,此判断逻辑可扩展至任意节点。 在上述案例的基础上,如果需要打破默认规则,在job_step_a以及job_step_b跳过时,model_step也允许执行,则只需要在model_step中也配置跳过策略即可(跳过策略的优先级高于默认规则)。
-
异步推理服务部署相关信息配置 在ModelArts管理控制台,左侧菜单栏选择“Workflow”进入Workflow页面。 在服务部署节点启动之后会等待用户设置相关配置信息,选择AI应用及版本为异步推理模型,设置服务启动参数,配置完成后直接单击继续运行即可。 图1 选择异步推理AI应用 其中服务启动参数与您选择的异步推理AI应用相关,选择了需要的AI应用及版本后,系统会自动匹配响应的服务启动参数。
-
MLOps功能介绍 机器学习开发流程主要可以定义为四个步骤:项目设计、数据工程、模型构建、部署落地。AI开发并不是一个单向的流水线作业,在开发的过程中,会根据数据和模型结果进行多轮的实验迭代。算法工程师会根据数据特征以及数据的标签做多样化的数据处理以及多种模型优化,以获得在已有的数据集上更好的模型效果。传统的AI应用交付会直接在实验迭代结束后以输出的模型为终点。当应用上线后,随着时间的推移,会出现模型漂移的问题。新的数据和新的特征在已有的模型上表现会越来越差。在MLOps中,实验迭代的产物将会是一条固化下来的流水线,这条流水线将会包含数据工程、模型算法、训练配置等。用户将会使用这条流水线在持续产生的数据中持续迭代训练,确保这条流水线生产出来的模型的AI应用始终维持在一个较好的状态。 图1 MLOps MLOps的整条链路需要有一个工具去承载,MLOps打通了算法开发到交付运维的全流程。和以往的开发交付不同,以往的开发与交付过程是分离的,算法工程师开发完的模型,一般都需要交付给下游系统工程师。MLOps和以往的开发交付不同,在这个过程中,算法工程师参与度还是非常高的。企业内部一般都是有一个交付配合的机制。从项目管理角度上需要增加一个AI项目的工作流程机制管理,流程管理不是一个简单的流水线构建管理,它是一个任务管理体系。 这个工具需要具备以下的能力: 流程分析:沉淀行业样例流水线,帮助用户能快速进行AI项目的参考设计,启动快速的AI项目流程设计。 流程定义与重定义:以流水线作为承载项,用户能快速定义AI项目,实现训练+推理上线的工作流设计。 资源分配:支持账号管理机制给流水线中的参与人员(包含开发者和运维人员)分配相应的资源配额与权限,并查看相应的资源使用情况等。 时间安排:围绕子流水线配置相应的子任务安排,并加以通知机制,实现流程执行过程之间配合的运转高效管理。 流程质量与效率测评:提供流水线的任务执行过程视图,增加不同的检查点,如数据评估、模型评估、性能评估等,让AI项目管理者能很方便的查看流水线执行过程的质量与效率。 流程优化:围绕流水线每一次迭代,用户可以自定义输出相关的核心指标,并获取相应的问题数据与原因等,从而基于这些指标,快速决定下一轮迭代的执行优化。
-
什么是MLOps MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。随着机器学习的发展,人们对它的期待不仅仅是学术研究方面的领先突破,更希望这些技术能够系统化地落地到各个场景中。但技术的真实落地和学术研究还是有比较大的差别的。在学术研究中,一个AI算法的开发是面向固定的数据集(公共数据集或者某个特定场景固定数据集),基于单个数据集,不断做算法的迭代与优化。面向场景的AI系统化开发的过程中,除了模型的开发,还有整套系统的开发,于是软件系统开发中成功经验“DevOps”被自然地引入进来。但是,在人工智能时代,传统的DevOps已经不能完全覆盖一个人工智能系统开发的全流程了。
-
DevOps DevOps,即Development and Operations,是一组过程、方法与系统的统称,用于促进软件开发、运维和质量保障部门之间的沟通、协作与整合。在大型的软件系统开发中,DevOps被验证是一个非常成功的方法。DevOps不仅可以加快业务与开发之间的互动与迭代,还可以解决开发与运维之间的冲突。开发侧很快,运维侧太稳,这个就是常说的开发与运维之间固有的、根因的冲突。在AI应用落地的过程中,也有类似的冲突。AI应用的开发门槛较高,需要有一定的算法基础,而且算法需要快速高效地迭代。专业的运维人员追求的更多是稳定、安全和可靠;专业知识也和AI算法大相径庭。运维人员需要去理解算法人员的设计与思路才能保障服务,这对于运维人员来说,门槛更高了。在这种情况下,更多时候可能需要一个算法人员去端到端负责,这样一来,人力成本就会过高。这种模式在少量模型应用的场景是可行的,但是当规模化落地AI应用时,人力问题将会成为瓶颈。
-
使用订阅自AI Gallery的算法 from modelarts import workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的数据集对象 dataset = wf.data.DatasetPlaceholder(name="input_dataset") # 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm( subscription_id="subscription_id", # 算法订阅ID,也可直接填写版本号 item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[ wf.AlgorithmParameters( name="parameter_name", value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info") ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型 ] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示 outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出 spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) )# 训练资源规格信息 ) workflow = wf.Workflow( name="job-step-demo", desc="this is a demo workflow", steps=[job_step], storages=[storage] )
-
使用算法管理中的算法 from modelarts import workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的数据集对象 dataset = wf.data.DatasetPlaceholder(name="input_dataset") # 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.Algorithm( algorithm_id="algorithm_id", # 算法ID parameters=[ wf.AlgorithmParameters( name="parameter_name", value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info") ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型 ] ), # 训练使用的算法对象,示例中的算法来源于算法管理;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示 outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出 spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) )# 训练资源规格信息 ) workflow = wf.Workflow( name="job-step-demo", desc="this is a demo workflow", steps=[job_step], storages=[storage] )
-
使用自定义算法(代码目录+启动文件+官方镜像) from modelarts import workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的数据集对象 dataset = wf.data.DatasetPlaceholder(name="input_dataset") # 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.BaseAlgorithm( code_dir="fake_code_dir", # 代码目录存储的路径 boot_file="fake_boot_file", # 启动文件存储路径,需要在代码目录下 engine=wf.steps.JobEngine(engine_name="fake_engine_name", engine_version="fake_engine_version"), # 官方镜像的名称以及版本信息 parameters=[ wf.AlgorithmParameters( name="parameter_name", value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info") ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型 ] ), # 自定义算法使用代码目录+启动文件+官方镜像的方式实现 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示 outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出 spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) )# 训练资源规格信息 ) workflow = wf.Workflow( name="job-step-demo", desc="this is a demo workflow", steps=[job_step], storages=[storage] )
-
使用自定义算法(代码目录+脚本命令+ 自定义镜像 ) from modelarts import workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的数据集对象 dataset = wf.data.DatasetPlaceholder(name="input_dataset") # 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.BaseAlgorithm( code_dir="fake_code_dir", # 代码目录存储的路径 command="fake_command", # 执行的脚本命令 engine=wf.steps.JobEngine(image_url="fake_image_url"), # 自定义镜像的url,格式为:组织名/镜像名称:版本号,不需要携带相应的域名地址;如果image_url需要设置为运行态可配置,则使用如下方式:image_url=wf.Placeholder(name="image_url", placeholder_type=wf.PlaceholderType.STR, placeholder_format="swr", description="自定义镜像") parameters=[ wf.AlgorithmParameters( name="parameter_name", value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info") ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型 ] ), 自定义算法使用代码目录+脚本命令+自定义镜像的方式实现 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示 outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出 spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) )# 训练资源规格信息 ) workflow = wf.Workflow( name="job-step-demo", desc="this is a demo workflow", steps=[job_step], storages=[storage] )
-
从训练作业中注册模型(模型输入来源JobStep的输出) import modelarts.workflow as wf # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的数据集对象 dataset = wf.data.DatasetPlaceholder(name="input_dataset") # 通过JobStep来定义一个训练节点,输入使用数据集,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm( subscription_id="subscription_id", # 算法订阅ID,也可直接填写版本号 item_version_id="item_version_id", # 算法订阅版本ID,也可直接填写版本号 parameters=[ wf.AlgorithmParameters( name="parameter_name", value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR, default="fake_value",description="description_info") ) # 算法超参的值使用Placeholder对象来表示,支持int, bool, float, str四种类型 ] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep的输入在运行时配置;data字段也可使用wf.data.Dataset(dataset_name="fake_dataset_name", version_name="fake_version_name")表示 outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep的输出 spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) )# 训练资源规格信息 ) # 通过ModelStep来定义一个模型注册节点,输入来源于JobStep的输出 # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) model_registration = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), # ModelStep的输入来源于依赖的JobStep的输出 outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), # ModelStep的输出 depend_steps=job_step # 依赖的作业类型节点对象 ) # job_step是wf.steps.JobStep的 实例对象,train_url是wf.steps.JobOutput的name字段值 workflow = wf.Workflow( name="model-step-demo", desc="this is a demo workflow", steps=[job_step, model_registration], storages=[storage] )
-
从训练作业中注册模型(模型输入来源OBS路径,训练完成的模型已存储到OBS路径) import modelarts.workflow as wf # 通过ModelStep来定义一个模型注册节点,输入来源于OBS中 # 定义OBS数据对象 obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory" ) # object_type必须是file或者directory # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) model_registration = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 inputs=wf.steps.ModelInput(name='model_input', data=obs), # ModelStep的输入在运行时配置;data字段的值也可使用wf.data.OBSPath(obs_path="fake_obs_path")表示 outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow"))# ModelStep的输出 ) workflow = wf.Workflow( name="model-step-demo", desc="this is a demo workflow", steps=[model_registration] )
-
使用模板的方式注册模型 import modelarts.workflow as wf # 通过ModelStep来定义一个模型注册节点,并通过预置模板进行注册 # 定义预置模板对象,Template对象中的字段可使用Placeholder表示 template = wf.steps.Template( template_id="fake_template_id", infer_format="fake_infer_format", template_inputs=[ wf.steps.TemplateInputs( input_id="fake_input_id", input="fake_input_file" ) ] ) # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) model_registration = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 outputs=wf.steps.ModelOutput( name='model_output', model_config=wf.steps.ModelConfig( model_name=model_name, model_type="Template", template=template ) )# ModelStep的输出 ) workflow = wf.Workflow( name="model-step-demo", desc="this is a demo workflow", steps=[model_registration] )
-
从自定义镜像中注册模型 import modelarts.workflow as wf # 通过ModelStep来定义一个模型注册节点,输入来源于自定义镜像地址 # 定义镜像数据 swr = wf.data.SWRImagePlaceholder(name="placeholder_name") # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) model_registration = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 inputs=wf.steps.ModelInput(name="input",data=swr), # ModelStep的输入在运行时配置;data字段的值也可使用wf.data.SWRImage(swr_path="fake_path")表示 outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow"))# ModelStep的输出 ) workflow = wf.Workflow( name="model-step-demo", desc="this is a demo workflow", steps=[model_registration] )
-
使用自定义镜像+OBS的方式注册模型 import modelarts.workflow as wf # 通过ModelStep来定义一个模型注册节点,输入来源于自定义镜像地址 # 定义镜像数据 swr = wf.data.SWRImagePlaceholder(name="placeholder_name") # 定义OBS模型数据 model_obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory" ) # object_type必须是file或者directory # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) model_registration = wf.steps.ModelStep( name="model_registration", # 模型注册节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="模型注册", # 标题信息 inputs=[ wf.steps.ModelInput(name="input",data=swr), # ModelStep的输入在运行时配置;data字段的值也可使用wf.data.SWRImage(swr_path="fake_path")表示 wf.steps.ModelInput(name="input",data=model_obs) # ModelStep的输入在运行时配置;data字段的值也可使用wf.data.OBSPath(obs_path="fake_obs_path")表示 ], outputs=wf.steps.ModelOutput( name='model_output', model_config=wf.steps.ModelConfig( model_name=model_name, model_type="Custom", dynamic_load_mode="Single" ) )# ModelStep的输出 ) workflow = wf.Workflow( name="model-step-demo", desc="this is a demo orkflow", steps=[model_registration] )
-
发布到AI Gallery Workflow支持发布到gallery,分享给其他用户使用,执行如下代码即可完成发布。 workflow.release_to_gallery() 发布完成后可前往gallery查看相应的资产信息,资产权限默认为private,可在资产的console页面自行修改。 其中release_to_gallery()方法包含以下入参: 参数名称 描述 是否必填 参数类型 content_id Workflow资产ID 否 str version Workflow资产的版本号,格式为x.x.x 否 str desc Workflow资产版本的描述信息 否 str title Workflow资产名称,该参数未填写时默认使用Workflow的名称作为资产名称 否 str visibility Workflow资产可见性,支持"public"-公开、"group"-白名单、"private"-私有,仅自己可见三种,默认为"private"。 否 str group_users 白名单列表,仅支持填写domain_id,当visibility为"group"时才需要填写该字段 否 list[str] 根据方法的入参不同,主要可分为以下两种使用场景: Workflow.release_to_gallery(title="资产名称")发布Workflow新资产,版本号为"1.0.0";如果Workflow包含非gallery的算法,则自动将依赖算法发布至gallery,版本号为"1.0.0"。 Workflow.release_to_gallery(content_id="**", title="资产名称")基于指定的Workflow资产,发布新的版本,版本号自动增加;如果Workflow包含gallery的算法,则自动将依赖的算法资产发布新版本,版本号也自动增加。 Workflow资产白名单设置: 在资产第一次发布时,可以通过release_to_gallery方法的visibility+group_users字段进行设置,后续需要对指定资产进行用户白名单添加或删除操作时,可执行如下命令: from modelarts import workflow as wf # 添加指定的白名单用户列表 wf.add_whitelist_users(content_id="**", version_num="*.*.*", user_groups=["**", "**"]) # 删除指定的白名单用户列表 wf.delete_whitelist_users(content_id="**", version_num="*.*.*", user_groups=["**", "**"]) 在给Workflow资产添加或删除指定白名单用户列表时,会自动查询该版本依赖的算法资产信息,同步对算法资产进行相应的白名单设置。 父主题: 发布Workflow
-
新增在线服务 import modelarts.workflow as wf # 通过ServiceStep来定义一个服务部署节点,输入指定的模型进行服务部署 # 定义模型名称参数 model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR) service_step = wf.steps.ServiceStep( name="service_step", # 服务部署节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="新增服务", # 标题信息 inputs=wf.steps.ServiceInput(name="si_service_ph", data=wf.data.ServiceInputPlaceholder(name="si_placeholder1", # 模型名称的限制/约束,在运行态只能选择该模型名称;一般与模型注册节点中的model_name使用同一个参数对象 model_name=model_name)),# ServiceStep的输入列表 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep的输出 ) workflow = wf.Workflow( name="service-step-demo", desc="this is a demo workflow", steps=[service_step] )
-
使用案例 统一存储主要用于JobStep中,下面代码示例全部以单训练节点为例。 from modelarts import workflow as wf # 构建一个InputStorage对象, 并且假设配置的根目录为"/root/input-data/" input_storage = wf.data.InputStorage(name="input_storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 构建一个OutputStorage对象, 并且假设配置的根目录为"/root/output/" output_storage = wf.data.OutputStorage(name="output_storage_name", title="title_info", description="description_info") # name字段必填,title, description可选填 # 通过JobStep来定义一个训练节点,输入数据来源为OBS,并将训练结果输出到OBS中 job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 title="图像分类训练", # 标题信息,不填默认使用name algorithm=wf.AIGalleryAlgorithm(subscription_id="subscription_ID", item_version_id="item_version_ID"), # 训练使用的算法对象,示例中使用AIGallery订阅的算法 inputs=[ wf.steps.JobInput(name="data_url_1", data=wf.data.OBSPath(obs_path = input_storage.join("/dataset1/new.manifest"))), # 获得的路径为:/root/input-data/dataset1/new.manifest wf.steps.JobInput(name="data_url_2", data=wf.data.OBSPath(obs_path = input_storage.join("/dataset2/new.manifest"))) # 获得的路径为:/root/input-data/dataset2/new.manifest ], outputs=wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=output_storage.join("/model/"))), # 训练输出的路径为:/root/output/执行ID/model/ spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ), log_export_path=wf.steps.job_step.LogExportPath(obs_url=output_storage.join("/logs/")) # 日志输出的路径为:/root/output/执行ID/logs/ )# 训练资源规格信息 ) # 定义一个只包含job_step的工作流 workflow = wf.Workflow( name="test-workflow", desc="this is a test workflow", steps=[job_step], storages=[input_storage, output_storage] # 注意在整个工作流中使用到的Storage对象需要在这里添加 ) 父主题: 统一存储
-
属性总览 您可以使用CreateDatasetStep来构建数据集创建节点,CreateDatasetStep及相关对象结构如下。 表1 CreateDatasetStep 属性 描述 是否必填 数据类型 name 数据集创建节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复。 是 str inputs 数据集创建节点的输入列表。 是 CreateDatasetInput或者CreateDatasetInput的列表 outputs 数据集创建节点的输出列表。 是 CreateDatasetOutput或者CreateDatasetOutput的列表 properties 数据集创建相关的配置信息。 是 DatasetProperties title title信息,主要用于前端的名称展示。 否 str description 数据集创建节点的描述信息。 否 str policy 节点执行的policy。 否 StepPolicy depend_steps 依赖的节点列表。 否 Step或者Step的列表 表2 CreateDatasetInput 属性 描述 是否必填 数据类型 name 数据集创建节点的输入名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输入名称不能重复。 是 str data 数据集创建节点的输入数据对象。 是 OBS相关对象,当前仅支持OBSPath、OBSConsumption、OBSPlaceholder、DataConsumptionSelector 表3 CreateDatasetOutput 属性 描述 是否必填 数据类型 name 数据集创建节点的输出名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输出名称不能重复。 是 str config 数据集创建节点的输出相关配置。 是 当前仅支持OBSOutputConfig 表4 DatasetProperties 属性 描述 是否必填 数据类型 dataset_name 数据集的名称,只能是中文、字母、数字、下划线或中划线组成的合法字符串,长度为1-100位。 是 str、Placeholder dataset_format 数据集格式,默认为0,表示文件类型。 否 0:文件类型 1:表格类型 data_type 数据类型,默认为FREE_FORMAT。 否 DataTypeEnum description 描述信息。 否 str import_data 是否要导入数据,当前只支持表格数据,默认为False。 否 bool work_path_type 数据集输出路径类型,当前仅支持OBS,默认为0。 否 int import_config 标签导入的相关配置,默认为None,当基于已标注的数据创建数据集时,可指定该字段导入相关标注信息。 否 ImportConfig 表5 Importconfig 属性 描述 是否必填 数据类型 import_annotations 是否自动导入输入目录下的标注信息,支持检测/图像分类/文本分类。可选值如下: true:导入输入目录下的标注信息(默认值) false:不导入输入目录下的标注信息 否 str、Placeholder import_type 导入方式。可选值如下: dir:目录导入 manifest:按manifest文件导入 否 0:文件类型ImportTypeEnum annotation_format_config 导入的标注格式的配置参数。 否 DAnnotationFormaTypeEtConumfig的列表 表6 AnnotationFormatConfig 属性 描述 是否必填 数据类型 format_name 标注格式的名称。 否 AnnotationFormatEnum scene 标注场景,可选参数。 否 LabelTaskTypeEnum 枚举类型 枚举值 ImportTypeEnum DIR MANIFEST DataTypeEnum IMAGE TEXT AUDIO TABULAR VIDEO FREE_FORMAT AnnotationFormatEnum MA_IMAGE_CLASSIFICATION_V1 MA_IMAGENET_V1 MA_PASCAL_VOC_V1 YOLO MA_IMAGE_SEGMENTATION_V1 MA_TEXT_CLASSIFICATION_COMBINE_V1 MA_TEXT_CLASSIFICATION_V1 MA_AUDIO_CLASSIFICATION_DIR_V1 父主题: 数据集创建节点
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- ...
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章