华为云用户手册

  • Kafka应用开发流程介绍 Kafka客户端角色包括Producer和Consumer两个角色,其应用开发流程是相同的。 开发流程中各个阶段的说明如图1和表1所示。 图1 Kafka客户端程序开发流程 表1 Kafka客户端开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具。同时完成JDK、Maven等初始配置。 准备本地应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接 MRS 集群,配置文件通常包括集群组件信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接Kafka集群配置文件 配置并导入样例工程 Kafka提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。 导入并配置Kafka样例工程 配置安全认证 如果您使用的是开启了Kerberos认证的MRS集群,需要进行安全认证。 配置Kafka应用安全认证 根据业务场景开发程序 提供了Producer和Consumer相关API的使用样例,包含了API和多线程的使用场景,帮助用户快速熟悉Kafka接口。 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 开发Kafka应用 编译与运行程序 指导用户将开发好的程序编译并提交运行并查看结果。 调测Kafka应用 父主题: Kafka开发指南(安全模式)
  • MapReduce样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-normal MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMapper实现数据分析、处理,并输出满足用户需要的数据信息。 相关样例介绍请参见MapReduce统计样例程序。 MapReduce作业访问多组件的应用开发示例: 以MapReduce访问HDFS、HBase、Hive为例,介绍如何编写MapReduce作业访问多个服务组件。帮助用户理解认证、配置加载等关键使用方式。 相关样例介绍请参见MapReduce访问多组件样例程序。 父主题: MapReduce开发指南(普通模式)
  • Master Master是中心管理节点,负责管理所有的tablet、tablet server以及副本之间的关联关系。同一时间集群中只有一个acting master(leader master),如果leader master挂了,一个新的master会通过Raft算法选举出来。所有的master数据都存放在一个tablet中,这个tablet会被复制到所有的candidate master上;tablet server会定期向master发送心跳。
  • 参数解释 FS Action节点中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 name FS活动的名称 delete 删除指定的文件和目录的标签 move 将文件从源目录移动到目标目录的标签 chmod 修改文件或目录权限的标签 path 当前文件路径 source 源文件路径 target 目标文件路径 permissions 权限字符串 “${变量名}”表示:该值来自“job.properties”所定义。 例如:${nameNode}表示的就是“hdfs://hacluster”。(可参见配置Oozie作业运行参数)
  • 开发思路 作为存储引擎,通常情况下会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 于此同时可以在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java API接口来进行描述: 建立Kudu连接 创建Kudu表 写Kudu数据 修改Kudu表 删除Kudu表
  • 准备ClickHouse应用开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置。版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 华为提供开源镜像站,各服务样例工程依赖的Jar包通过华为开源镜像站下载,剩余所依赖的开源Jar包请直接从Maven中央库或者其他用户自定义的仓库地址下载,详情请参考配置华为开源镜像仓。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。 父主题: 准备ClickHouse应用开发环境
  • Storm对外接口介绍 Storm-HDFS采用的接口同开源社区版本保持一致,详情参见:https://github.com/apache/storm/tree/v1.2.1/external/storm-hdfs。 Storm-HBase采用的接口同开源社区版本保持一致,详情参见:https://github.com/apache/storm/tree/v1.2.1/external/storm-hbase。 Storm-Kafka采用的接口同开源社区版本保持一致,详情参见:https://github.com/apache/storm/tree/v1.2.1/external/storm-kafka。 Storm-JDBC采用的接口同开源社区版本保持一致,详情参见:https://github.com/apache/storm/tree/v1.2.1/external/storm-jdbc。 父主题: Storm应用开发常见问题
  • 问题 Flink任务配置State Backend为RocksDB时,运行报如下错误: Caused by: java.lang.UnsatisfiedLinkError: /srv/BigData/hadoop/data1/nm/usercache/***/appcache/application_****/rocksdb-lib-****/librocksdbjni-linux64.so: /lib64/libpthread.so.0: version `GLIBC_2.12` not found (required by /srv/BigData/hadoop/***/librocksdbjni-linux64.so) at java.lang.ClassLoader$NativeLibrary.load(Native Method) at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1965) at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1890) at java.lang.Runtime.load0(Runtime.java:795) at java.lang.System.load(System.java:1062) at org.rocksdb.NativeLibraryLoader.loadLibraryFromJar(NativeLibraryLoader.java:78) at org.rocksdb.NativeLibraryLoader.loadLibrary(NativeLibraryLoader.java:56) at org.apache.flink.contrib.streaming.state.RocksDBStateBackend.ensureRocksDBIsLoaded(RocksDBStateBackend.java:734) ... 11 more
  • 简介 Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高 保证无数据丢失 容错性好 多语言 易于构建和操控
  • 准备本地应用开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的: X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 用于开发HBase应用程序的工具,版本要求:2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Junit插件 开发环境的基本配置。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 华为提供开源镜像站,各服务样例工程依赖的Jar包通过华为开源镜像站下载,剩余所依赖的开源Jar包请直接从Maven中央库或者其他用户自定义的仓库地址下载,详情请参考配置华为开源镜像仓。 7-zip 用于解压“*.zip”和“*.rar”文件。 支持7-Zip 16.04版本。 父主题: 准备HBase应用开发环境
  • 数据库配置—Derby数据库配置过程 首先应下载一个数据库,可根据具体场景选择最适合的数据库。 该任务以Derby数据库为例。Derby是一个小型的,java编写的,易于使用却适合大多数应用程序的开放源码数据库。 Derby数据库的获取。在官网下载最新版的Derby数据库,将下载下来的数据库将传入Linux客户端(如"/opt"),并解压。 在Derby的安装目录下,进入bin目录,输入如下命令: export DERBY_INSTALL=/opt/db-derby-10.12.1.1-bin export CLASSPATH=$DERBY_INSTALL/lib/derbytools.jar:$DERBY_INSTALL\lib\derbynet.jar:. export DERBY_HOME=/opt/db-derby-10.12.1.1-bin . setNetworkServerCP ./startNetworkServer -h 主机名 执行./ij命令,输入connect 'jdbc:derby://主机名:1527/example;create=true';,建立连接。 数据库建立好后,可以执行sql语句进行操作,需要建立两张表ORIGINAL和GOAL,并向ORIGINAL中插入一组数据,命令如下:(表名仅供参考,可自行设定) CREATE TABLE GOAL(WORD VARCHAR(12),COUNT INT ); CREATE TABLE ORIGINAL(WORD VARCHAR(12),COUNT INT ); INSERT INTO ORIGINAL VALUES('orange',1),('pineapple',1),('banana',1),('watermelon',1);
  • 操作场景 本文档主要说明如何使用开源Storm-JDBC工具包,完成Storm和JDBC之间的交互。Storm-JDBC中包含两类Bolt:JdbcInsertBolt和JdbcLookupBolt。其中,JdbcLookupBolt主要负责从数据库中查数据,JdbcInsertBolt主要向数据库中存数据。当然,JdbcLookupBolt和JdbcInsertBolt中也可以增加处理逻辑对数据进行处理。 本章节只适用Storm与JDBC组件间的访问。本章中描述的jar包的具体版本信息请以实际情况为准。
  • 应用开发操作步骤 确认产品Storm组件已经安装,且正常运行。 参考获取MRS应用开发样例工程,获取样例代码解压目录中“src\storm-examples”目录下的样例工程文件夹storm-examples并将storm-examples导入到IntelliJ IDEA开发环境,参见准备Storm应用开发环境。 工程导入后,修改样例工程的“resources/flux-examples”目录下的“jdbc.properties”文件,根据实际环境信息修改相关参数。 #配置JDBC服务端IP地址 JDBC_SERVER_NAME= #配置JDBC服务端端口 JDBC_PORT_NUM= #配置JDBC登录用户名 JDBC_USER_NAME= #配置JDBC登录用户密码 #密码明文存储存在安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全 JDBC_PASSWORD= #配置database表名 JDBC_BASE_TBL= 在Linux环境下安装Storm客户端。 集群的Master节点或者Core节点使用客户端可参考集群内节点使用MRS客户端,MRS集群外客户端的安装操作可参考集群外节点使用MRS客户端。
  • Impala应用开发常用概念 客户端 客户端直接面向用户,可通过Java API、Thrift API访问服务端进行Impala的相关操作。本文中的Impala客户端特指Impala client的安装目录,里面包含通过Java API访问Impala的样例代码。 HiveQL语言 Hive Query Language,类SQL语句,与Hive类似。 Statestore Statestore管理Impala集群中所有的Impalad实例的健康状态,并将实例健康信息广播到所有实例上。当某一个Impalad实例发生故障,比如节点异常、网络异常等,Statestore将通知其他Impalad实例,后续的查询请求等将不会向该实例分发。 Catalog Catalog实例服务将每个Impalad实例上发生的元数据变动同步到集群内其他Impalad实例,从而避免在一个Impalad实例中更改元数据,其他各个实例需要执行REFRESH操作来更新。但是,在Hive中建表、修改表等,则需要执行REFRESH或者INVALIDATE METADATA操作。 父主题: Impala应用开发概述
  • MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介 准备开发和运行环境 使用IntelliJ IDEA工具,请根据指导完成开发环境配置。 MapReduce的运行环境即MapReduce客户端,请根据指导完成客户端的安装和配置。 准备MapReduce开发和运行环境 准备工程 MapReduce提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。或者您可以根据指导,新建一个MapReduce工程。 导入并配置MapReduce样例工程 根据场景开发工程 提供了样例工程。 帮助用户快速了解MapReduce各部件的编程接口。 开发MapReduce应用 编译并运行程序 指导用户将开发好的程序编译并提交运行。 调测MapReduce应用 查看程序运行结果 程序运行结果会写在用户指定的路径下。用户还可以通过UI查看应用运行情况。 调测MapReduce应用 父主题: MapReduce开发指南(普通模式)
  • Oozie应用开发样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下Oozie相关样例工程: 表1 Oozie相关样例工程 样例工程位置 描述 oozie-examples/ooziesecurity-examples/OozieMapReduceExample Oozie提交MapReduce任务示例程序。 本示例演示了如何通过Java API提交MapReduce作业和查询作业状态,对网站的日志文件进行离线分析。 oozie-examples/ooziesecurity-examples/OozieSparkHBaseExample 使用Oozie调度Spark访问HBase的示例程序。 oozie-examples/ooziesecurity-examples/OozieSparkHiveExample 使用Oozie调度Spark访问Hive的示例程序。 父主题: Oozie应用开发概述
  • 回答 导致这个问题的主要原因是,yarn-client和yarn-cluster模式在提交任务时setAppName的执行顺序不同导致,yarn-client中setAppName是在向yarn注册Application之前读取,yarn-cluser模式则是在向yarn注册Application之后读取,这就导致yarn-cluster模式设置的应用名不生效。 解决措施: 在spark-submit脚本提交任务时用--name设置应用名和sparkconf.setAppName(appname)里面的应用名一样。 比如代码里设置的应用名为Spark Pi,用yarn-cluster模式提交应用时可以这样设置,在--name后面添加应用名,执行的命令如下: ./spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --name SparkPi jars/original-spark-examples*.jar 10
  • 回答 问题原因: 在IBM JDK下建立的Hive connection时间超过登录用户的认证超时时间(默认一天),导致认证失败。 IBM JDK的机制跟Oracle JDK的机制不同,IBM JDK在认证登录后的使用过程中做了时间检查却没有检测外部的时间更新,导致即使显式调用Hive relogin也无法得到刷新。 解决措施: 通常情况下,在发现Hive connection不可用的时候,可以关闭该connection,重新创建一个connection继续执行。
  • 代码样例 下面代码片段在com.huawei.storm.example.wordcount包的“WordCountTopology”类的“main”方法中,作用在于构建应用程序并提交。 public static void main(String[] args) throws Exception { TopologyBuilder builder = buildTopology(); /* * 任务的提交认为三种方式 * 1、命令行方式提交,这种需要将应用程序jar包复制到客户端机器上执行客户端命令提交 * 2、远程方式提交,这种需要将应用程序的jar包打包好之后在IntelliJ IDEA中运行main方法提交 * 3、本地提交 ,在本地执行应用程序,一般用来测试 * 命令行方式和远程方式安全和普通模式都支持 * 本地提交仅支持普通模式 * * 用户同时只能选择一种任务提交方式,默认命令行方式提交,如果是其他方式,请删除代码注释即可 */ submitTopology(builder, SubmitType.CMD); } private static void submitTopology(TopologyBuilder builder, SubmitType type) throws Exception { switch (type) { case CMD: { cmdSubmit(builder, null); break; } case REMOTE: { remoteSubmit(builder); break; } case LOCAL: { localSubmit(builder); break; } } } /** * 命令行方式远程提交 * 步骤如下: * 打包成Jar包,然后在客户端命令行上面进行提交 * 远程提交的时候,要先将该应用程序和其他外部依赖(非excemple工程提供,用户自己程序依赖)的jar包打包成一个大的jar包 * 再通过storm客户端中storm -jar的命令进行提交 * * 如果是安全环境,客户端命令行提交之前,必须先通过kinit命令进行安全登录 * * 运行命令如下: * ./storm jar ../example/example.jar com.huawei.storm.example.WordCountTopology */ private static void cmdSubmit(TopologyBuilder builder, Config conf) throws AlreadyAliveException, InvalidTopologyException, NotALeaderException, AuthorizationException { if (conf == null) { conf = new Config(); } conf.setNumWorkers(1); StormSubmitter.submitTopologyWithProgressBar(TOPO LOG Y_NAME, conf, builder.createTopology()); } private static void localSubmit(TopologyBuilder builder) throws InterruptedException { Config conf = new Config(); conf.setDebug(true); conf.setMaxTaskParallelism(3); LocalCluster cluster = new LocalCluster(); cluster.submitTopology(TOPOLOGY_NAME, conf, builder.createTopology()); Thread.sleep(10000); cluster.shutdown(); } private static void remoteSubmit(TopologyBuilder builder) throws AlreadyAliveException, InvalidTopologyException, NotALeaderException, AuthorizationException, IOException { Config config = createConf(); String userJarFilePath = "替换为用户jar包地址"; System.setProperty(STORM_SUBMIT_JAR_PROPERTY, userJarFilePath); //安全模式下的一些准备工作 if (isSecurityModel()) { securityPrepare(config); } config.setNumWorkers(1); StormSubmitter.submitTopologyWithProgressBar(TOPOLOGY_NAME, config, builder.createTopology()); } private static TopologyBuilder buildTopology() { TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("spout", new RandomSentenceSpout(), 5); builder.setBolt("split", new SplitSentenceBolt(), 8).shuffleGrouping("spout"); builder.setBolt("count", new WordCountBolt(), 12).fieldsGrouping("split", new Fields("word")); return builder; } 如果拓扑开启了ack,推荐acker的数量不大于所设置的worker数量。
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/user.keytab”,“/opt/krb5.conf”。 运行样例程序前,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”)。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/” )下。
  • 数据规划 创建HBase表,构造数据,列需要包含key,modify_time,valid。其中每条数据key值全表唯一,modify_time代表修改时间,valid代表是否为有效数据(该样例中'1'为有效,'0'为无效数据)。 示例:进入hbase shell,执行如下命令: create 'hbase_table','key','info' put 'hbase_table','1','info:modify_time','2019-11-22 23:28:39' put 'hbase_table','1','info:valid','1' put 'hbase_table','2','info:modify_time','2019-11-22 23:28:39' put 'hbase_table','2','info:valid','1' put 'hbase_table','3','info:modify_time','2019-11-22 23:28:39' put 'hbase_table','3','info:valid','0' put 'hbase_table','4','info:modify_time','2019-11-22 23:28:39' put 'hbase_table','4','info:valid','1' 上述数据的modify_time列可设置为当前时间之前的值。 put 'hbase_table','5','info:modify_time','2021-03-03 15:20:39' put 'hbase_table','5','info:valid','1' put 'hbase_table','6','info:modify_time','2021-03-03 15:20:39' put 'hbase_table','6','info:valid','1' put 'hbase_table','7','info:modify_time','2021-03-03 15:20:39' put 'hbase_table','7','info:valid','0' put 'hbase_table','8','info:modify_time','2021-03-03 15:20:39' put 'hbase_table','8','info:valid','1' put 'hbase_table','4','info:valid','0' put 'hbase_table','4','info:modify_time','2021-03-03 15:20:39' 上述数据的modify_time列可设置为样例程序启动后30分钟内的时间值(此处的30分钟为样例程序默认的同步间隔时间,可修改)。 put 'hbase_table','9','info:modify_time','2021-03-03 15:32:39' put 'hbase_table','9','info:valid','1' put 'hbase_table','10','info:modify_time','2021-03-03 15:32:39' put 'hbase_table','10','info:valid','1' put 'hbase_table','11','info:modify_time','2021-03-03 15:32:39' put 'hbase_table','11','info:valid','0' put 'hbase_table','12','info:modify_time','2021-03-03 15:32:39' put 'hbase_table','12','info:valid','1' 上述数据的modify_time列可设置为样例程序启动后30分钟到60分钟内的时间值,即第二次同步周期。 在sparksql中创建HBase的hive外表,命令如下: create table external_hbase_table(key string ,modify_time STRING, valid STRING) using org.apache.spark.sql.hbase.HBaseSource options(hbaseTableName "hbase_table", keyCols "key", colsMapping "modify_time=info.modify_time,valid=info.valid"); 在sparksql中创建CarbonData表: create table carbon01(key string,modify_time STRING, valid STRING) stored as carbondata; 初始化加载当前hbase表中所有数据到CarbonData表; insert into table carbon01 select * from external_hbase_table where valid='1'; 用spark-submit提交命令: spark-submit --master yarn --deploy-mode client --keytab /opt/FIclient/user.keytab --principal sparkuser --class com.huawei.bigdata.spark.examples.HBaseExternalHivetoCarbon /opt/example/HBaseExternalHivetoCarbon-1.0.jar
  • 准备开发环境 在进行应用开发时,需要准备的本地开发环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,推荐Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置。版本要求如下: MRS集群的服务端和客户端仅支持自带的Oracle JDK(版本为1.8),不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的,支持Oracle JDK和IBM JDK。 Oracle JDK:支持1.7和1.8版本。 IBM JDK:推荐1.7.8.10、1.7.9.40和1.8.3.0版本。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 准备开发用户 参考准备MRS应用开发用户进行操作,准备用于应用开发的集群用户并授予相应权限。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-zip 16.04版本。
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的testModifyTable方法中 public void testModifyTable() { LOG.info("Entering testModifyTable."); // Specify the column family name. byte[] familyName = Bytes.toBytes("education"); Admin admin = null; try { // Instantiate an Admin object. admin = conn.getAdmin(); // Obtain the table descriptor. TableDescriptor htd = admin.getDescriptor(tableName); // Check whether the column family is specified before modification. if (!htd.hasColumnFamily(familyName)) { // Create the column descriptor. TableDescriptor tableBuilder = TableDescriptorBuilder.newBuilder(htd) .setColumnFamily(ColumnFamilyDescriptorBuilder.newBuilder(familyName).build()).build(); // Disable the table to get the table offline before modifying // the table. admin.disableTable(tableName);//注[1] // Submit a modifyTable request. admin.modifyTable(tableBuilder); // Enable the table to get the table online after modifying the // table. admin.enableTable(tableName); } LOG.info("Modify table successfully."); } catch (IOException e) { LOG.error("Modify table failed " ,e); } finally { if (admin != null) { try { // Close the Admin object. admin.close(); } catch (IOException e) { LOG.error("Close admin failed " ,e); } } } LOG.info("Exiting testModifyTable."); }
  • 问题 Flink内核升级到1.3.0之后,当Kafka调用带有非static的KafkaPartitioner类对象为参数的FlinkKafkaProducer010去构造函数时,运行时会报错。 报错内容如下: org.apache.flink.api.common.InvalidProgramException: The implementation of the FlinkKafkaPartitioner is not serializable. The object probably contains or references non serializable fields.
  • Kafka样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下Kafka相关样例工程: 表1 Kafka相关样例工程 样例工程位置 描述 kafka-examples 单线程生产数据,相关样例请参考使用Producer API向安全Topic生产消息。 单线程消费数据,相关样例请参考使用Consumer API订阅安全Topic并消费。 多线程生产数据,相关样例请参考使用多线程Producer发送消息。 多线程消费数据,相关样例请参考使用多线程Consumer消费消息。 基于KafkaStreams实现WordCount,相关样例请参考使用KafkaStreams统计数据 父主题: Kafka开发指南(安全模式)
  • 功能介绍 主要分为三个部分: 从HDFS原文件中抽取name信息,查询HBase、Hive相关数据,并进行数据拼接,通过类MultiComponentMapper继承Mapper抽象类实现。 获取拼接后的数据取最后一条输出到HBase、HDFS,通过类MultiComponentReducer继承Reducer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到Hadoop集群。
  • 问题 Structured Streaming的cluster模式,在数据处理过程中终止ApplicationManager,执行应用时显示如下异常。 2017-05-09 20:46:02,393 | INFO | main | client token: Token { kind: YARN_CLIENT_TOKEN, service: } diagnostics: User class threw exception: org.apache.spark.sql.AnalysisException: This query does not support recovering from checkpoint location. Delete hdfs://hacluster/structuredtest/checkpoint/offsets to start over.; ApplicationMaster host: 10.96.101.170 ApplicationMaster RPC port: 0 queue: default start time: 1494333891969 final status: FAILED tracking URL: https://9-96-101-191:8090/proxy/application_1493689105146_0052/ user: spark2x | org.apache.spark.internal.Logging$class.logInfo(Logging.scala:54) Exception in thread "main" org.apache.spark.SparkException: Application application_1493689105146_0052 finished with failed status
  • 回答 原因分析:显示该异常是因为“recoverFromCheckpointLocation”的值判定为false,但却配置了checkpoint目录。 参数“recoverFromCheckpointLocation”的值为代码中“outputMode == OutputMode.Complete()”语句的判断结果(outputMode的默认输出方式为“append”)。 处理方法:编写应用时,用户可以根据具体情况修改数据的输出方式。 将输出方式修改为“complete”,“recoverFromCheckpointLocation”的值会判定为true。此时配置了checkpoint目录时就不会显示异常。
  • 样例代码 使用Python方式提交数据分析任务,参考样例程序中的“hive-examples/python-examples/pyCLI_sec.py”。 导入HAConnection类。 from pyhs2.haconnection import HAConnection 声明HiveServer的IP地址列表。本例中hosts代表HiveServer的节点,xxx.xxx.xxx.xxx代表业务IP地址。 hosts = ["xxx.xxx.xxx.xxx", "xxx.xxx.xxx.xxx"] 如果HiveServer实例被迁移,原始的示例程序会失效。在HiveServer实例迁移之后,用户需要更新示例程序中使用的HiveServer的IP地址。 在HAConnection的第三个参数填写正确的用户名,密码可以不填写。创建连接,执行HQL,样例代码中仅执行查询所有表功能,可根据实际情况修改HQL内容,输出查询的列名和结果到控制台。 try: with HAConnection(hosts = hosts, port = 21066, authMechanism = "PLAIN", user='root', password='******') as haConn: with haConn.getConnection() as conn: with conn.cursor() as cur: # Show databases print cur.getDatabases() # Execute query cur.execute("show tables") # Return column info from query print cur.getSchema() # Fetch table results for i in cur.fetch(): print i except Exception, e: print e
  • 操作步骤 查看Spark应用运行结果数据。 结果数据存储路径和格式已经由Spark应用程序指定,可通过指定文件获取。 查看Spark应用程序运行情况。 Spark主要有两个Web页面。 Spark UI页面,用于展示正在执行的应用的运行情况。 页面主要包括了Jobs、Stages、Storage、Environment和Executors五个部分。Streaming应用会多一个Streaming标签页。 页面入口:在YARN的Web UI界面,查找到对应的Spark应用程序。单击应用信息的最后一列“ApplicationMaster”,即可进入SparkUI页面。 History Server页面,用于展示已经完成的和未完成的Spark应用的运行情况。 页面包括了应用ID、应用名称、开始时间、结束时间、执行时间、所属用户等信息。单击应用ID,页面将跳转到该应用的SparkUI页面。 查看Spark日志获取应用运行情况。 您可以查看Spark日志了解应用运行情况,并根据日志信息调整应用程序。相关日志信息可参考Spark2x日志介绍。
共100000条