华为云用户手册

  • 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行,需要购买ModelArts专属资源池。 准备权重 准备对应模型的权重文件。 准备代码 准备AscendCloud-6.3.910-xxx.zip。 准备镜像 准备推理模型适用的容器镜像。 准备Notebook 本案例在Notebook上部署推理服务进行调试,因此需要创建Notebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
  • 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ √ https://huggingface.co/huggyllama/llama-65b 4 llama2-7b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 5 llama2-13b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 7 llama3-8b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 8 llama3-70b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 9 yi-6b √ √ √ √ √ https://huggingface.co/01-ai/Yi-6B-Chat 10 yi-9b √ √ √ √ √ https://huggingface.co/01-ai/Yi-9B 11 yi-34b √ √ √ √ √ https://huggingface.co/01-ai/Yi-34B-Chat 12 deepseek-llm-7b √ x x x x https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat 13 deepseek-coder-33b-instruct √ x x x x https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct 14 deepseek-llm-67b √ x x x x https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat 15 qwen-7b √ √ √ √ x https://huggingface.co/Qwen/Qwen-7B-Chat 16 qwen-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen-14B-Chat 17 qwen-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen-72B-Chat 18 qwen1.5-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat 19 qwen1.5-7b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-7B-Chat 20 qwen1.5-1.8b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat 21 qwen1.5-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-14B-Chat 22 qwen1.5-32b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-32B/tree/main 23 qwen1.5-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-72B-Chat 24 qwen1.5-110b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-110B-Chat 25 qwen2-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 26 qwen2-1.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 27 qwen2-7b √ √ x √ x https://huggingface.co/Qwen/Qwen2-7B-Instruct 28 qwen2-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-72B-Instruct 29 qwen2.5-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct 30 qwen2.5-1.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct 31 qwen2.5-3b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-3B-Instruct 32 qwen2.5-7b √ √ x √ x https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 33 qwen2.5-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-14B-Instruct 34 qwen2.5-32b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-32B-Instruct 35 qwen2.5-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-72B-Instruct 36 baichuan2-7b √ x x √ x https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat 37 baichuan2-13b √ x x √ x https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 38 gemma-2b √ x x x x https://huggingface.co/google/gemma-2b 39 gemma-7b √ x x x x https://huggingface.co/google/gemma-7b 40 chatglm2-6b √ x x x x https://huggingface.co/THUDM/chatglm2-6b 41 chatglm3-6b √ x x x x https://huggingface.co/THUDM/chatglm3-6b 42 glm-4-9b √ x x x x https://huggingface.co/THUDM/glm-4-9b-chat 43 mistral-7b √ x x x x https://huggingface.co/mistralai/Mistral-7B-v0.1 44 mixtral-8x7b √ x x x x https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 45 falcon-11b √ x x x x https://huggingface.co/tiiuae/falcon-11B/tree/main 46 qwen2-57b-a14b √ x x x x https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct 47 llama3.1-8b √ √ √ √ x https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct 48 llama3.1-70b √ √ √ √ x https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct 49 llama-3.1-405B √ √ x x x https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4 50 llama-3.2-1B √ x x x x Llama-3.2-1B-Instruct · 模型库 (modelscope.cn) 51 llama-3.2-3B √ x x x x Llama-3.2-3B-Instruct · 模型库 (modelscope.cn) 52 llava-1.5-7b √ x x x x https://huggingface.co/llava-hf/llava-1.5-7b-hf/tree/main 53 llava-1.5-13b √ x x x x https://huggingface.co/llava-hf/llava-1.5-13b-hf/tree/main 54 llava-v1.6-7b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf/tree/main 55 llava-v1.6-13b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf/tree/main 56 llava-v1.6-34b √ x x x x llava-hf/llava-v1.6-34b-hf at main (huggingface.co) 57 internvl2-8B √ x x x x OpenGVLab/InternVL2-8B at main (huggingface.co) 58 internvl2-26B √ x x x x OpenGVLab/InternVL2-26B at main (huggingface.co) 59 internvl2-40B √ x x x x OpenGVLab/InternVL2-40B at main (huggingface.co) 60 MiniCPM-v2.6 √ x x x x https://huggingface.co/openbmb/MiniCPM-V-2_6/tree/main 61 deepseek-v2-236b x x √ x x https://huggingface.co/deepseek-ai/DeepSeek-V2 62 deepseek-v2-lite-16b √ x √ x x https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite 63 qwen2-vl-7B √ x x x x Qwen/Qwen2-VL-7B-Instruct at main (huggingface.co) 注意:Qwen2-VL 开源vllm依赖特定transformers版本, 请手动安装: pip install git+https://github.com/huggingface/transformers.git@21fac7abba2a37fae86106f87fcf9974fd1e3830 64 qwen-vl √ x x x x https://huggingface.co/Qwen/Qwen-VL 65 qwen-vl-chat √ x x x x https://huggingface.co/Qwen/Qwen-VL-Chat 66 MiniCPM-v2 √ x x x x https://huggingface.co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) 各模型支持的卡数请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明章节。
  • 约束限制 本方案目前仅适用于部分企业客户。 本文档适配昇腾云ModelArts 6.3.910版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。
  • 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction \ --input_name input \ --output_name output \ --code_type utf-8 其中: input_file_path:预训练json文件地址。 out_file_name:输出的sharegpt格式文件地址。 prefix_name:预训练json文件的前缀 字段名称 (可设置为None,此时预训练数据集只有 input output 两段)输入前缀,(例如:您是一个xxx专家,您需要回答下面问题) input_name:预训练json文件的指令输入 字段名称(例如:请问苹果是什么颜色) output_name output:预训练json文件的output字段名称,例如:苹果是红色的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。
  • 步骤四:执行训练 安装完成后,执行: accelerate launch -m --mixed_precision=bf16 eagle.train.main \ --tmpdir [path of data] \ --cpdir [path of checkpoints] \ --configpath [path of config file] \ --basepath [path of base_model] --bs [batch size] tmpdir:即为步骤三中的outdir,训练data地址 cpdir:为训练生成权重的地址 configpath:为模型config文件的地址 basepath:为大模型权重地址 bs:为batch大小 其中,要获取模型config文件, 首先到https://github.com/SafeAILab/EAGLE/页找到对应eagle模型地址。 图1 EAGLE Weights 以llama2-chat-7B为例,单击进入后 ,如下图所示config文件,即为对应模型的eagle config文件。
  • 步骤三:sharegpt格式数据生成为训练data数据集 若使用开源数据集,推荐使用原论文代码仓数据集,下载地址:https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V4.3_unfiltered_cleaned_split.json 否则使用第二步生成的开源数据集。 python allocation.py \ --outdir outdir0/sharegpt_0_99_mufp16 \ --end_num 100 \ --used_npus "0,1,2,3,4,5,6,7" \ --model_type llama \ --model_name ./llama-7B \ --data_path data_for_sharegpt.json \ --seed 42 \ --max_length 2048 \ --dtype bfloat16 其中 outdir:生成的训练data 地址 end_num:生成的data总条数 used_npus:使用哪些NPU model_type:使用模型类型 目前支持 qwen2 llama1 llama2 及 llama3,其中llama1、2及chat都填写llama model_name:模型地址 data_path:预训练数据集地址 即一中生成的文件地址 seed:生成训练data所使用的seed(此处42为开源训练设定参数) max_length:模型的max_length dtype:为模型dtype 默认为bfloat16
  • 步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。 然后在llm_tools/spec_decode/EAGLE文件夹,执行 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 --base-path:为大模型权重地址,例如 ./llama2-7b-chat --draft-path:小模型权重地址 即步骤四中config文件所在目录,例如 ./eagle_llama2-7b-chat --base-weight-name:为大模型包含lm_head的权重文件名,可以在 base-path 目录下的 model.safetensors.index.json 文件获取,例如llama2-7b-chat 的权重名为pytorch_model-00001-of-00002.bin --draft-weight-name 为小模型权重文件名,即刚才移动的.bin文件或者.safetensors 文件
  • 附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len is greater than the drived max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m", block_size=128) 问题4:使用llama3.1系模型进行推理时,报错:ValueError: 'rope_scaling' must be a dictionary with two fields, 'type' and 'factor', got {'factor': 8.0, 'low_freq_factor': 1.0, 'high_freq_factor': 4.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用SmoothQuant进行W8A8进行模型量化时,报错:AttributeError: type object 'LlamaAttention' has no attribute '_init_rope' 解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with two fields, `type` and `factor`, 解决方法:改问题通过将transformers升级到4.44.0,修改对应transformers中的transformers/models/llama/modeling_llama.py,在class LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。 以llama2-13b为例,NPU卡显存为32GB时,至少需要2张卡运行推理业务,2张卡运行的情况下,推荐的最大序列max-model-len长度最大是16K,此处的单位K是1024,即16*1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16 1 16 3 llama-65b 8 16 4 16 4 llama2-7b 1 16 1 32 5 llama2-13b 2 16 1 16 6 llama2-70b 8 32 4 64 7 llama3-8b 1 32 1 128 8 llama3.1-8b 1 32 1 128 9 llama3-70b 8 32 4 64 10 llama3.1-70b 8 32 4 64 11 llama3.2-1b 1 128 1 128 12 llama3.2-3b 1 128 1 128 13 qwen-7b 1 8 1 32 14 qwen-14b 2 16 1 16 15 qwen-72b 8 8 4 16 16 qwen1.5-0.5b 1 128 1 256 17 qwen1.5-7b 1 8 1 32 18 qwen1.5-1.8b 1 64 1 128 19 qwen1.5-14b 2 16 1 16 20 qwen1.5-32b 4 32 2 64 21 qwen1.5-72b 8 8 4 16 22 qwen1.5-110b - - 8 128 23 qwen2-0.5b 1 128 1 256 24 qwen2-1.5b 1 64 1 128 25 qwen2-7b 1 8 1 32 26 qwen2-72b 8 32 4 64 27 qwen2.5-0.5b 1 32 1 32 28 qwen2.5-1.5b 1 32 1 32 29 qwen2.5-3b 1 32 1 32 30 qwen2.5-7b 1 32 1 32 31 qwen2.5-14b 2 32 1 32 32 qwen2.5-32b 4 32 2 64 33 qwen2.5-72b 8 32 4 32 34 chatglm2-6b 1 64 1 128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64 41 yi-34b 4 32 2 64 42 deepseek-llm-7b 1 16 1 32 43 deepseek-coder-33b-instruct 4 32 2 64 44 deepseek-llm-67b 8 32 4 64 45 mistral-7b 1 32 1 128 46 mixtral-8x7b 4 8 2 32 47 gemma-2b 1 64 1 128 48 gemma-7b 1 8 1 32 49 falcon-11b 1 8 1 64 50 llava-1.5-7b 1 16 1 32 51 llava-1.5-13b 1 8 1 16 52 llava-v1.6-7b 1 16 1 32 53 llava-v1.6-13b 1 8 1 16 54 llava-v1.6-34b 4 32 2 64 55 internvl2-8b 2 8 1 16 56 internvl2-26b 2 8 1 8 57 internvl2-40b - - 2 32 58 MiniCPM-v2.6 2 4 1 32 59 llama-3.1-405B-AWQ - - 8 32 60 qwen2-57b-a14b - - 2 16 61 deepseek-v2-lite-16b 2 4 1 4 62 deepseek-v2-236b - - 8 4 63 qwen2-vl-7B 2 64 1 64 64 qwen-vl 1 64 1 64 65 qwen-vl-chat 1 64 1 64 66 MiniCPM-v2 2 16 1 16 “-”表示不支持。 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
  • Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。
  • Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在TensorRT-LLM/examples路径对应的模型文件夹下,例如:llama模型对应量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。 python convert_checkpoint.py \ --model_dir ./llama-models/llama-7b-hf \ --output_dir ./llama-models/llama-7b-hf/int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。
  • 使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ... 具体操作如下: 参考Step1 环境准备创建pod准备量化环境。 执行如下命令进入容器,并进入AutoSmoothQuant目录下 kubectl exec -it {pod_name} bash cd /home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools/AutoSmoothQuant/autosmoothquant/examples 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVI CES =0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,如果希望使用第一和第二张卡,则“export ASCEND_RT_VISIBLE_DEVICES=0,1”,注意编号不是填4、5。 图1 查询结果 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path /home/ma-user/llama-2-7b/ --quantize-model --generate-scale --dataset-path /data/nfs/user/val.jsonl --scale-output scales/llama2-7b.pt --model-output quantized_model/llama2-7b --per-token --per-channel 参数说明: --model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,如果之前已生成过量化系数,则可指定该参数,跳过生成scale的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16 父主题: 推理模型量化
  • Step1 环境准备 在节点自定义目录${node_path}下创建config.yaml文件 apiVersion: apps/v1 kind: Deployment metadata: name: yourapp labels: app: infers spec: replicas: 1 selector: matchLabels: app: infers template: metadata: labels: app: infers spec: schedulerName: volcano nodeSelector: accelerator/huawei-npu: ascend-1980 containers: - image: ${image_name} # 推理镜像名称 imagePullPolicy: IfNotPresent name: ${container_name} securityContext: runAsUser: 0 ports: - containerPort: 8080 command: - "sleep" - "1000000000000000000" resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变。 limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 volumeMounts: # 容器内部映射路径 - name: ascend-driver #驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons #驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: hccn #驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: localtime mountPath: /etc/localtime - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: model-path # 模型权重路径 mountPath: ${model-path} - name: node-path # 节点自定义目录,该目录下包含pod配置文件config.yaml mountPath: ${node-path} volumes: # 物理机外部路径 - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: hccn hostPath: path: /etc/hccn.conf - name: localtime hostPath: path: /etc/localtime - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: model-path hostPath: path: ${model-path} - name: node-path hostPath: path: ${node-path} 参数说明: ${container_name}:容器名称,此处可以自己定义一个容器名称,例如ascend-vllm。 ${image_name}:Step3 制作推理镜像构建的推理镜像名称。 ${node-path}:节点自定义目录,该目录下包含pod配置文件config.yaml。 ${model-path}:Step1 上传权重文件中上传的模型权重路径。 参考Step4 创建pod创建pod以用于后续进行模型量化
  • Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python convert_awq_to_npu.py --model /home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。
  • 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1
  • 步骤一:配置精度测试环境 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path},dtype=auto,tensor_parallel_size=${tensor_parallel_size},gpu_memory_utilization=${gpu_memory_utilization},add_bos_token=True,max_model_len=${max_model_len},quantization=${quantization} \ --tasks ${task} --batch_size ${batch_size} --log_samples --cache_requests true --trust_remote_code --output_path ${output_path} 参数说明: model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数; quantization是量化参数,使用非量化权重,去掉quantization参数;如果使用awq、smoothquant或者gptq加载的量化权重,根据量化方式选择对应参数,可选awq,smoothquant,gptq。 model:模型启动模式,可选vllm,openai或hf,hf代表huggingface。 tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令: lm_eval --model vllm --model_args pretrained="/data/nfs/benchmark/tokenizer/Llama-3.2-1B-Instruct/",dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096 \ --tasks openllm --batch_size auto --log_samples --cache_requests true --trust_remote_code --output_path ./ 使用lm-eval,比如smoothquant量化,llama3.1-70b模型的权重,参考命令: lm_eval --model vllm --model_args pretrained="/data/nfs/benchmark/tokenizer_w8a8/llama3.1-70b/",dtype=auto,tensor_parallel_size=4,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096,quantization="smoothquant" \ --tasks openllm --batch_size auto --log_samples --cache_requests true --trust_remote_code --output_path ./
  • benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
  • 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境并安装依赖。 cd /home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools/llm_evaluation/benchmark_tools conda activate python-3.9.10 pip install -r requirements.txt 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host 127.0.0.1 --port 8080 --tokenizer /path/to/tokenizer --epochs 5 \ --parallel-num 1 4 8 16 32 --prompt-tokens 1024 2048 --output-tokens 128 256 --num-scheduler-steps 8 --benchmark-csv benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1 --enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 --prefix-caching-num:构造的prompt的公共前缀的序列长度,prefix-caching-num值需小于prompt-tokens。 --use-spec-decode:是否使用投机推理进行输出统计,不输入默认为false。当使用投机推理时必须开启,否则会导致输出token数量统计不正确。注:由于投机推理的性能测试使用随机输入意义不大,建议开启--dataset-type、--dataset-path,并选择性开启--use-real-dataset-output-tokens使用真实数据集进行测试。 --dataset-type:当使用投机推理时开启,benchmark使用的数据类型,当前支持random、sharegpt、human-eval三种输入。random表示构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅当--dataset-type为sharegpt或者human-eval的时候生效。 --use-real-dataset-output-tokens:当使用投机推理时开启,设置输出长度是否使用数据集的真实长度,不输入默认为false。当使用该选项时,测试数据的输出长度为数据集的真实长度,--output-tokens的值会被忽略。 --num-speculative-tokens:仅当开启--use-spec-decode时生效,需和服务启动时配置的--num-speculative-tokens一致。默认为-1。当该值大于等于0时,会基于该值计算投机推理的接受率指标。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图)
  • 动态benchmark 本章节介绍如何进行动态benchmark验证。 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境。 cd /home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools/llm_evaluation/benchmark_tools conda activate python-3.9.10 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 python benchmark_serving.py --backend openai --host 127.0.0.1 --port 8080 --dataset custom_datasets.json --dataset-type custom \ --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 \ --max-tokens 4096 --max-prompt-tokens 3768 --num-scheduler-steps 8 --benchmark-csv benchmark_serving.csv --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图2 动态benchmark测试结果(示意图)
  • Step2 配置pod 在节点自定义目录${node_path}下创建config.yaml文件 apiVersion: apps/v1 kind: Deployment metadata: name: yourapp labels: app: infers spec: replicas: 1 selector: matchLabels: app: infers template: metadata: labels: app: infers spec: schedulerName: volcano nodeSelector: accelerator/huawei-npu: ascend-1980 containers: - image: ${image_name} # 推理镜像名称 imagePullPolicy: IfNotPresent name: ${container_name} securityContext: runAsUser: 0 ports: - containerPort: 8080 command: ["/bin/bash", "-c"] args: ["${node-path}/run_vllm.sh"] # 节点自定义目录,该目录下包含pod配置文件config.yaml和推理服务启动脚本run_vllm.sh resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变。 limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 volumeMounts: # 容器内部映射路径 - name: ascend-driver #驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons #驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: hccn #驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: localtime mountPath: /etc/localtime - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: model-path # 模型权重路径 mountPath: ${model-path} - name: node-path mountPath: ${node-path} volumes: # 物理机外部路径 - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: hccn hostPath: path: /etc/hccn.conf - name: localtime hostPath: path: /etc/localtime - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: model-path hostPath: path: ${model-path} - name: node-path hostPath: path: ${node-path} 参数说明: ${container_name}:容器名称,此处可以自己定义一个容器名称,例如ascend-vllm。 ${image_name}:Step3 制作推理镜像构建的推理镜像名称。 ${node-path}:节点自定义目录,该目录下包含pod配置文件config.yaml和推理服务启动脚本run_vllm.sh,run_vllm.sh内容见Step3 创建服务启动脚本。 ${model-path}:Step1 上传权重文件中上传的模型权重路径。
  • Step4 创建pod 在节点自定义目录${node_path}下执行如下命令创建pod。 kubectl apply -f config.yaml 检查pod启动情况,执行下述命令。如果显示“1/1 running”状态代表启动成功。 kubectl get pod -A 图1 启动pod成功 执行如下命令查看pod日志,如果打印类似下图信息表示服务启动成功。 kubectl logs -f ${pod_name} 参数说明: ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 图2 启动服务成功
  • Step2 获取推理镜像 建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 containerd 容器引擎有命名空间的概念。Kubernetes 下使用的 containerd 默认命名空间是 k8s.io。所以在导入镜像时需要指定命令空间为 k8s.io,否则使用 crictl images 无法查询到。以下命令可选其一进行镜像拉取: 使用 containerd 自带的工具 ctr 进行镜像拉取。 ctr -n k8s.io images pull {image_url} 使用 nerdctl 工具进行镜像拉取。 nerdctl --namespace k8s.io pull {image_url} 注意:集群有多个节点,要确保每个节点都拥有镜像。 镜像获取完成后可通过如下其中一个命令进行查看: # ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list
  • 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b cann_8.0.rc3
  • 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.910中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包 ├── build.sh # 推理构建脚本 ├── vllm_install.patch # 社区昇腾适配的补丁包 ├── Dockerfile # 推理构建镜像dockerfile ├── build_image.sh # 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval #精度评测 ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字
  • kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。 首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kubernetes集群信息。如果显示如图4的内容,则配置成功。 kubectl cluster-info 图4 查看Kubernetes集群信息正确弹出内容
  • 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ √ https://huggingface.co/huggyllama/llama-65b 4 llama2-7b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 5 llama2-13b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 7 llama3-8b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 8 llama3-70b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 9 yi-6b √ √ √ √ √ https://huggingface.co/01-ai/Yi-6B-Chat 10 yi-9b √ √ √ √ √ https://huggingface.co/01-ai/Yi-9B 11 yi-34b √ √ √ √ √ https://huggingface.co/01-ai/Yi-34B-Chat 12 deepseek-llm-7b √ x x x x https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat 13 deepseek-coder-33b-instruct √ x x x x https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct 14 deepseek-llm-67b √ x x x x https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat 15 qwen-7b √ √ √ √ x https://huggingface.co/Qwen/Qwen-7B-Chat 16 qwen-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen-14B-Chat 17 qwen-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen-72B-Chat 18 qwen1.5-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat 19 qwen1.5-7b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-7B-Chat 20 qwen1.5-1.8b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat 21 qwen1.5-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-14B-Chat 22 qwen1.5-32b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-32B/tree/main 23 qwen1.5-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-72B-Chat 24 qwen1.5-110b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-110B-Chat 25 qwen2-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 26 qwen2-1.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 27 qwen2-7b √ √ x √ x https://huggingface.co/Qwen/Qwen2-7B-Instruct 28 qwen2-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-72B-Instruct 29 qwen2.5-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct 30 qwen2.5-1.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct 31 qwen2.5-3b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-3B-Instruct 32 qwen2.5-7b √ √ x √ x https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 33 qwen2.5-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-14B-Instruct 34 qwen2.5-32b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-32B-Instruct 35 qwen2.5-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-72B-Instruct 36 baichuan2-7b √ x x √ x https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat 37 baichuan2-13b √ x x √ x https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 38 gemma-2b √ x x x x https://huggingface.co/google/gemma-2b 39 gemma-7b √ x x x x https://huggingface.co/google/gemma-7b 40 chatglm2-6b √ x x x x https://huggingface.co/THUDM/chatglm2-6b 41 chatglm3-6b √ x x x x https://huggingface.co/THUDM/chatglm3-6b 42 glm-4-9b √ x x x x https://huggingface.co/THUDM/glm-4-9b-chat 43 mistral-7b √ x x x x https://huggingface.co/mistralai/Mistral-7B-v0.1 44 mixtral-8x7b √ x x x x https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 45 falcon-11b √ x x x x https://huggingface.co/tiiuae/falcon-11B/tree/main 46 qwen2-57b-a14b √ x x x x https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct 47 llama3.1-8b √ √ √ √ x https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct 48 llama3.1-70b √ √ √ √ x https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct 49 llama-3.1-405B √ √ x x x https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4 50 llama-3.2-1B √ x x x x Llama-3.2-1B-Instruct · 模型库 (modelscope.cn) 51 llama-3.2-3B √ x x x x Llama-3.2-3B-Instruct · 模型库 (modelscope.cn) 52 llava-1.5-7b √ x x x x https://huggingface.co/llava-hf/llava-1.5-7b-hf/tree/main 53 llava-1.5-13b √ x x x x https://huggingface.co/llava-hf/llava-1.5-13b-hf/tree/main 54 llava-v1.6-7b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf/tree/main 55 llava-v1.6-13b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf/tree/main 56 llava-v1.6-34b √ x x x x llava-hf/llava-v1.6-34b-hf at main (huggingface.co) 57 internvl2-8B √ x x x x OpenGVLab/InternVL2-8B at main (huggingface.co) 58 internvl2-26B √ x x x x OpenGVLab/InternVL2-26B at main (huggingface.co) 59 internvl2-40B √ x x x x OpenGVLab/InternVL2-40B at main (huggingface.co) 60 MiniCPM-v2.6 √ x x x x https://huggingface.co/openbmb/MiniCPM-V-2_6/tree/main 61 deepseek-v2-236b x x √ x x https://huggingface.co/deepseek-ai/DeepSeek-V2 62 deepseek-v2-lite-16b √ x √ x x https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite 63 qwen2-vl-7B √ x x x x Qwen/Qwen2-VL-7B-Instruct at main (huggingface.co) 注意:Qwen2-VL 开源vllm依赖特定transformers版本, 请手动安装: pip install git+https://github.com/huggingface/transformers.git@21fac7abba2a37fae86106f87fcf9974fd1e3830 64 qwen-vl √ x x x x https://huggingface.co/Qwen/Qwen-VL 65 qwen-vl-chat √ x x x x https://huggingface.co/Qwen/Qwen-VL-Chat 66 MiniCPM-v2 √ x x x x https://huggingface.co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) 各模型支持的卡数请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明章节。
  • 约束限制 本方案目前仅适用于部分企业客户。 本文档适配昇腾云ModelArts 6.3.910版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的Lite k8s Cluster和昇腾Snt9B资源。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23.0.6。 适配的CANN版本是cann_8.0.rc3。
  • 附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len is greater than the drived max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m", block_size=128) 问题4:使用llama3.1系模型进行推理时,报错:ValueError: 'rope_scaling' must be a dictionary with two fields, 'type' and 'factor', got {'factor': 8.0, 'low_freq_factor': 1.0, 'high_freq_factor': 4.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用SmoothQuant进行W8A8进行模型量化时,报错:AttributeError: type object 'LlamaAttention' has no attribute '_init_rope' 解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:使用AWQ转换llama3.1系列模型权重出现报错ValueError: `rope_scaling` must be a dictionary with two fields, `type` and `factor`, 解决方法:该问题通过将transformers升级到4.44.0,修改对应transformers中的transformers/models/llama/modeling_llama.py,在class LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题8:使用autoAWQ进行qwen-7b模型量化时报错TypeError: 'NoneType' object is not subscriptable 解决办法:修改qwen-7b权重路径下modeling_qwen.py第39行为SUPPORT_FP16 = True 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。 以llama2-13b为例,NPU卡显存为32GB时,至少需要2张卡运行推理业务,2张卡运行的情况下,推荐的最大序列max-model-len长度最大是16K,此处的单位K是1024,即16*1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16 1 16 3 llama-65b 8 16 4 16 4 llama2-7b 1 16 1 32 5 llama2-13b 2 16 1 16 6 llama2-70b 8 32 4 64 7 llama3-8b 1 32 1 128 8 llama3.1-8b 1 32 1 128 9 llama3-70b 8 32 4 64 10 llama3.1-70b 8 32 4 64 11 llama3.2-1b 1 128 1 128 12 llama3.2-3b 1 128 1 128 13 qwen-7b 1 8 1 32 14 qwen-14b 2 16 1 16 15 qwen-72b 8 8 4 16 16 qwen1.5-0.5b 1 128 1 256 17 qwen1.5-7b 1 8 1 32 18 qwen1.5-1.8b 1 64 1 128 19 qwen1.5-14b 2 16 1 16 20 qwen1.5-32b 4 32 2 64 21 qwen1.5-72b 8 8 4 16 22 qwen1.5-110b - - 8 128 23 qwen2-0.5b 1 128 1 256 24 qwen2-1.5b 1 64 1 128 25 qwen2-7b 1 8 1 32 26 qwen2-72b 8 32 4 64 27 qwen2.5-0.5b 1 32 1 32 28 qwen2.5-1.5b 1 32 1 32 29 qwen2.5-3b 1 32 1 32 30 qwen2.5-7b 1 32 1 32 31 qwen2.5-14b 2 32 1 32 32 qwen2.5-32b 4 32 2 64 33 qwen2.5-72b 8 32 4 32 34 chatglm2-6b 1 64 1 128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64 41 yi-34b 4 32 2 64 42 deepseek-llm-7b 1 16 1 32 43 deepseek-coder-33b-instruct 4 32 2 64 44 deepseek-llm-67b 8 32 4 64 45 mistral-7b 1 32 1 128 46 mixtral-8x7b 4 8 2 32 47 gemma-2b 1 64 1 128 48 gemma-7b 1 8 1 32 49 falcon-11b 1 8 1 64 50 llava-1.5-7b 1 16 1 32 51 llava-1.5-13b 1 8 1 16 52 llava-v1.6-7b 1 16 1 32 53 llava-v1.6-13b 1 8 1 16 54 llava-v1.6-34b 4 32 2 64 55 internvl2-8b 2 8 1 16 56 internvl2-26b 2 8 1 8 57 internvl2-40b - - 2 32 58 MiniCPM-v2.6 2 4 1 32 59 llama-3.1-405B-AWQ - - 8 32 60 qwen2-57b-a14b - - 2 16 61 deepseek-v2-lite-16b 2 4 1 4 62 deepseek-v2-236b - - 8 4 63 qwen2-vl-7B 2 64 1 64 64 qwen-vl 1 64 1 64 65 qwen-vl-chat 1 64 1 64 66 MiniCPM-v2 2 16 1 16 “-”表示不支持。 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
共100000条