华为云用户手册

  • HDFS样例工程介绍 MRS 样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下HDFS相关样例工程: 表1 HDFS相关样例工程 样例工程位置 描述 hdfs-example-security HDFS文件操作的Java示例程序。 本工程主要给出了创建HDFS文件夹、写文件、追加文件内容、读文件和删除文件/文件夹等相关接口操作示例。 hdfs-c-example HDFS C语言开发代码样例。 本示例提供了基于C语言的HDFS文件系统连接、文件操作如创建文件、读写文件、追加文件、删除文件等。相关业务场景介绍请参见HDFS C API接口介绍。 父主题: HDFS开发指南(安全模式)
  • 样例代码 -- 从本地文件系统/opt/impala_examples_data/目录下将employee_info.txt加载进employees_info表中. LOAD DATA LOCAL INPATH '/opt/impala_examples_data/employee_info.txt' OVERWRITE INTO TABLE employees_info; -- 从HDFS上/user/impala_examples_data/employee_info.txt加载进employees_info表中. LOAD DATA INPATH '/user/impala_examples_data/employee_info.txt' OVERWRITE INTO TABLE employees_info; 加载数据的实质是将数据复制到HDFS上指定表的目录下。 “LOAD DATA LOCAL INPATH”命令可以完成从本地文件系统加载文件到Impala的需求,但是当指定“LOCAL”时,这里的路径指的是当前连接的“Impalad”的本地文件系统的路径。
  • 通过Java API提交Oozie作业开发思路 通过典型场景,用户可以快速学习和掌握Oozie的开发过程,并且对关键的接口函数有所了解。 本示例演示了如何通过Java API提交MapReduce作业和查询作业状态,代码示例只涉及了MapReduce作业,其他作业的API调用代码是一样的,仅job配置“job.properties”与工作流配置“workflow.xml”需根据实际情况设置。 完成导入并配置Oozie样例工程操作后即可执行通过Java API提交MapReduce作业和查询作业状态。 父主题: 通过Java API提交Oozie作业
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上(文件上传的路径需要和生成的jar包路径一致)。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • 提交命令 假设用例代码打包后的jar包名为spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行,Java接口对应的类名前有Java字样,请参考具体样例代码进行书写。 yarn-client模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkLoadExample SparkOnHbaseJavaExample.jar /tmp/hfile bulkload-table-test python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode client --jars SparkOnHbaseJavaExample.jar HBaseBulkLoadExample.py /tmp/hfile bulkload-table-test yarn-cluster模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkLoadExample --files /opt/user.keytab,/opt/krb5.conf SparkOnHbaseJavaExample.jar /tmp/hfile bulkload-table-test python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode cluster --files /opt/user.keytab,/opt/krb5.conf --jars SparkOnHbaseJavaExample.jar HBaseBulkLoadExample.py /tmp/hfile bulkload-table-test
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中HBaseBulkLoadPythonExample文件: # -*- coding:utf-8 -*- """ 【说明】 (1)由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现 (2)如果使用yarn-client模式运行,请确认Spark2x客户端Spark2x/spark/conf/spark-defaults.conf中 spark.yarn.security.credentials.hbase.enabled参数配置为true """ from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession spark = SparkSession\ .builder\ .appName("JavaHBaseBulkLoadExample")\ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.HBaseBulkLoadPythonExample') # 创建类实例并调用方法,传递sc._jsc参数 spark._jvm.HBaseBulkLoadPythonExample().hbaseBulkLoad(spark._jsc, sys.argv[1], sys.argv[2]) # 停止SparkSession spark.stop()
  • 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去使用HBase,将要插入的数据的rowKey构造成rdd,然后通过HBaseContext的bulkLoad接口将rdd写入HFile中。将生成的HFile文件导入HBase表的操作采用如下格式的命令,不属于本接口范围,不在此进行详细说明: hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles {hfilePath} {tableName}
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“PhoenixSample”类的testPut方法中。 /** * Put data */ public void testPut() { LOG .info("Entering testPut."); String URL = "jdbc:phoenix:" + conf.get("hbase.zookeeper.quorum"); // Insert String upsertSQL = "UPSERT INTO TEST VALUES(1,'John','100000', TO_DATE('1980-01-01','yyyy-MM-dd'))"; try (Connection conn = DriverManager.getConnection(url, props); Statement stat = conn.createStatement()){ // Execute Update SQL stat.executeUpdate(upsertSQL); conn.commit(); LOG.info("Put successfully."); } catch (Exception e) { LOG.error("Put failed.", e); } LOG.info("Exiting testPut."); }
  • 准备开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示: 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端: Oracle JDK:支持1.8版本 IBM JDK:支持1.8.5.11版本 TaiShan客户端: OpenJDK:支持1.8.0_272版本 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 用于开发Storm应用程序的工具。版本要求:JDK使用1.8版本,IntelliJ IDEA使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 准备开发用户 参考准备MRS应用开发用户进行操作,准备用于应用开发的集群用户并授予相应权限。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。
  • MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备MapReduce开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接MRS集群,配置文件通常包括集群组件信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接MapReduce集群配置文件 配置并导入样例工程 MapReduce提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 导入并配置MapReduce样例工程 配置安全认证 如果您使用的是开启了Kerberos认证的MRS集群,需要进行安全认证。 配置MapReduce应用安全认证 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 开发MapReduce应用 编译并运行程序 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 调测MapReduce应用 父主题: MapReduce开发指南(安全模式)
  • 功能分解 根据上述的业务场景进行功能分解,需要开发的功能点如表2所示。 表2 在HBase中开发的功能 序号 步骤 代码实现 1 根据表1中的信息创建表。 请参见创建HBase表。 2 导入用户数据。 请参见向HBase表中插入数据。 3 增加“教育信息”列族,在用户信息中新增用户的学历、职称等信息。 请参见修改HBase表。 4 根据用户编号查询用户姓名和地址。 请参见使用Get API读取HBase表数据。 5 根据用户姓名进行查询。 请参见使用Filter过滤器读取HBase表数据。 6 为提升查询性能,创建二级索引或者删除二级索引。 请参见创建HBase表二级索引和基于二级索引查询HBase表数据。 7 用户销户,删除用户信息表中该用户的数据。 请参见删除HBase表数据。 8 A业务结束后,删除用户信息表。 请参见删除HBase表。
  • 场景说明 假定用户开发一个应用程序,用于管理企业中的使用A业务的用户信息,如表1所示,A业务操作流程如下: 创建用户信息表。 在用户信息中新增用户的学历、职称等信息。 根据用户编号查询用户姓名和地址。 根据用户姓名进行查询。 查询年龄段在[20-29]之间的用户信息。 数据统计,统计用户信息表的人员数、年龄最大值、年龄最小值、平均年龄。 用户销户,删除用户信息表中该用户的数据。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 张三 男 19 广东省深圳市 12005000202 李婉婷 女 23 河北省石家庄市 12005000203 王明 男 26 浙江省宁波市 12005000204 李刚 男 18 湖北省襄阳市 12005000205 赵恩如 女 21 江西省上饶市 12005000206 陈龙 男 32 湖南省株洲市 12005000207 周微 女 29 河南省南阳市 12005000208 杨艺文 女 30 重庆市开县 12005000209 徐兵 男 26 陕西省渭南市 12005000210 肖凯 男 25 辽宁省大连市
  • 准备运行环境 进行应用开发时,需要同时准备代码的运行调测的环境,用于验证应用程序运行正常。 如果本地Windows开发环境和集群业务平面网络互通,然后直接在Windows中进行程序调测。 如果使用Linux环境调测程序,需准备安装集群客户端的Linux节点并获取相关配置文件。 集群的Master节点或者Core节点使用客户端可参考集群内节点使用MRS客户端,MRS集群外客户端的安装操作可参考集群外节点使用MRS客户端。
  • 准备开发环境 在进行应用开发时,需要准备的本地开发环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,推荐Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置。版本要求如下: MRS集群的服务端和客户端仅支持自带的Oracle JDK(版本为1.8),不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的,支持Oracle JDK和IBM JDK。 Oracle JDK:支持1.7和1.8版本。 IBM JDK:推荐1.7.8.10、1.7.9.40和1.8.3.0版本。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-zip 16.04版本。
  • 操作步骤 客户端机器必须安装有Python,其版本不低于2.6.6,最高不能超过2.7.13。 在客户端机器的命令行终端输入python可查看Python版本号。如下显示Python版本为2.6.6。 Python 2.6.6 (r266:84292, Oct 12 2012, 14:23:48) [GCC 4.4.6 20120305 (Red Hat 4.4.6-4)] on linux2 Type "help", "copyright", "credits" or "license" for more information. 客户端机器必须安装有setuptools,其版本不低于5.0,最高不能超过36.8.0。可在https://pypi.org/project/setuptools/#files获取相应的安装包。 将下载的setuptools压缩文件复制到客户端机器上,解压后进入解压目录,在客户端机器的命令行终端执行以下命令: python setup.py install 如下内容表示安装setuptools的5.7版本成功: Finished processing dependencies for setuptools==5.7 安装Python客户端到客户端机器。 参考获取MRS应用开发样例工程,获取样例代码解压目录中“src\hive-examples”目录下的样例工程文件夹“python-examples”。 进入“python-examples”文件夹。 在命令行终端执行以下命令 python setup.py install 输出以下关键内容表示安装Python客户端成功: Finished processing dependencies for pyhs2==0.5.0 安装成功后,“python-examples/pyCLI_sec.py”为Python客户端样例代码,“python-examples/pyhs2/haconnection.py”为Python客户端接口API。 “python-examples/hive_python_client”脚本提供了直接执行SQL的功能,例如:sh hive_python_client 'show tables'。 该功能只适用于常规简单的SQL,并且需要依赖ZooKeeper的客户端。
  • 操作场景 本文档主要说明如何使用Storm-Kafka工具包,完成Storm和Kafka之间的交互。包含KafkaSpout和KafkaBolt两部分。KafkaSpout主要完成Storm从Kafka中读取数据的功能;KafkaBolt主要完成Storm向Kafka中写入数据的功能。 本章节代码样例基于Kafka新API,对应IntelliJ IDEA工程中com.huawei.storm.example.kafka.NewKafkaTopology.java。 本章节只适用于MRS产品Storm与Kafka组件间的访问。本章中描述的jar包的具体版本信息请以实际情况为准。
  • 应用开发操作步骤 确认华为MRS产品Storm和Kafka组件已经安装,并正常运行。 参考获取MRS应用开发样例工程,获取样例代码解压目录中“src\storm-examples”目录下的样例工程文件夹storm-examples并将storm-examples导入到IntelliJ IDEA开发环境,参见准备Storm应用开发环境。 在Linux环境下安装Storm客户端。 集群的Master节点或者Core节点使用客户端可参考集群内节点使用MRS客户端,MRS集群外客户端的安装操作可参考集群外节点使用MRS客户端。 下载并安装Kafka客户端程序。
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • 提交命令 假设用例代码打包后的jar包名为spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行,Java接口对应的类名前有Java字样,请参考具体样例代码进行书写。 yarn-client模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例),${ip}请使用实际执行nc -lk 9999的命令的机器ip bin/spark-submit --master yarn --deploy-mode client --class com.huawei.bigdata.spark.examples.streaming.JavaHBaseStreamingBulkPutExample SparkOnHbaseJavaExample-1.0.jar ${ip} 9999 streamingTable cf1 python版本(文件名等请与实际保持一致,此处仅为示例) bin/spark-submit --master yarn --jars SparkOnHbaseJavaExample-1.0.jar HBaseStreamingBulkPutExample.py ${ip} 9999 streamingTable cf1 yarn-cluster模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例),${ip}请使用实际执行nc -lk 9999的命令的机器ip bin/spark-submit --master yarn --deploy-mode client --deploy-mode cluster --class com.huawei.bigdata.spark.examples.streaming.JavaHBaseStreamingBulkPutExample SparkOnHbaseJavaExample-1.0.jar ${ip} 9999 streamingTable cf1 python版本(文件名等请与实际保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --jars SparkOnHbaseJavaExample-1.0.jar HBaseStreamingBulkPutExample.py ${ip} 9999 streamingTable cf1
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中HBaseStreamingBulkPutExample文件: # -*- coding:utf-8 -*- """ 【说明】 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现 """ from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession spark = SparkSession\ .builder\ .appName("JavaHBaseStreamingBulkPutExample")\ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.streaming.JavaHBaseStreamingBulkPutExample') # 创建类实例并调用方法,传递sc._jsc参数 spark._jvm.JavaHBaseStreamingBulkPutExample().execute(spark._jsc, sys.argv) # 停止SparkSession spark.stop()
  • 数据规划 在客户端执行hbase shell进入HBase命令行。 在HBase命令执行下面的命令创建HBase表: create 'streamingTable','cf1' 在客户端另外一个session通过linux命令构造一个端口进行接收数据(不同操作系统的机器,命令可能不同,suse尝试使用netcat -lk 9999): nc -lk 9999 在构造一个端口进行接收数据时,需要在客户端所在服务器上安装netcat
  • 准备Spark本地应用开发环境 Spark2x可以使用Java/Scala/Python语言进行应用开发,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK Java/Scala开发和运行环境的基本配置。版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 用于开发Spark应用程序的工具,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 安装Scala Scala开发环境的基本配置。版本要求:2.12.10。 安装Scala插件 Scala开发环境的基本配置。版本要求:2018.2.11或其他兼容版本。 安装Editra Python开发环境的编辑器,用于编写Python程序。或者使用其他编写Python应用程序的IDE。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。 安装Python 版本要求不低于3.6。 父主题: 准备Spark应用开发环境
  • 功能简介 HBase通过org.apache.hadoop.hbase.client.Admin对象的createTable方法来创建表,并指定表名、列族名。创建表有两种方式(强烈建议采用预分Region建表方式): 快速建表,即创建表后整张表只有一个Region,随着数据量的增加会自动分裂成多个Region。 预分Region建表,即创建表时预先分配多个Region,此种方法建表可以提高写入大量数据初期的数据写入速度。 表的列名以及列族名不能包含特殊字符,可以由字母、数字以及下划线组成。
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的testCreateTable方法中。 public void testCreateTable() { LOG.info("Entering testCreateTable."); // Specify the table descriptor. TableDescriptorBuilder htd = TableDescriptorBuilder.newBuilder(tableName);(1) // Set the column family name to info. ColumnFamilyDescriptorBuilder hcd = ColumnFamilyDescriptorBuilder.newBuilder(Bytes.toBytes("info"));(2) // Set data encoding methods, HBase provides DIFF,FAST_DIFF,PREFIX hcd.setDataBlockEncoding(DataBlockEncoding.FAST_DIFF); // Set compression methods, HBase provides two default compression // methods:GZ and SNAPPY // GZ has the highest compression rate,but low compression and // decompression effeciency,fit for cold data // SNAPPY has low compression rate, but high compression and // decompression effeciency,fit for hot data. // it is advised to use SNAANPPY hcd.setCompressionType(Compression.Algorithm.SNAPPY);//注[1] htd.setColumnFamily(hcd.build()); (3) Admin admin = null; try { // Instantiate an Admin object. admin = conn.getAdmin(); (4) if (!admin.tableExists(tableName)) { LOG.info("Creating table..."); admin.createTable(htd.build());//注[2] (5) LOG.info(admin.getClusterMetrics().toString()); LOG.info(admin.listNamespaceDescriptors().toString()); LOG.info("Table created successfully."); } else { LOG.warn("table already exists"); } } catch (IOException e) { LOG.error("Create table failed " ,e); } finally { if (admin != null) { try { // Close the Admin object. admin.close(); } catch (IOException e) { LOG.error("Failed to close admin " ,e); } } } LOG.info("Exiting testCreateTable."); }
  • 注意事项 注[1] 可以设置列族的压缩方式,代码片段如下: //设置编码算法,HBase提供了DIFF,FAST_DIFF,PREFIX三种编码算法。 hcd.setDataBlockEncoding(DataBlockEncoding.FAST_DIFF); //设置文件压缩方式,HBase默认提供了GZ和SNAPPY两种压缩算法 //其中GZ的压缩率高,但压缩和解压性能低,适用于冷数据 //SNAPPY压缩率低,但压缩解压性能高,适用于热数据 //建议默认开启SNAPPY压缩 hcd.setCompressionType(Compression.Algorithm.SNAPPY); 注[2] 可以通过指定起始和结束RowKey,或者通过RowKey数组预分Region两种方式建表,代码片段如下: // 创建一个预划分region的表 byte[][] splits = new byte[4][]; splits[0] = Bytes.toBytes("A"); splits[1] = Bytes.toBytes("H"); splits[2] = Bytes.toBytes("O"); splits[3] = Bytes.toBytes("U"); admin.createTable(htd, splits);
  • 回答 Spark部署时,如下jar包存放在客户端的“${SPARK_HOME}/jars/streamingClient010”目录以及服务端的“${BIGDATA_HOME}/ FusionInsight _Spark2x_8.1.0.1/install/FusionInsight-Spark2x-3.1.1/spark/jars/streamingClient010”目录: kafka-clients-xxx.jar kafka_2.12-xxx.jar spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar spark-token-provider-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 由于“$SPARK_HOME/jars/streamingClient010/*”默认没有添加到classpath,所以需要手动配置。 在提交应用程序运行时,在命令中添加如下参数即可,详细示例可参考在Linux环境中编包并运行Spark程序。 --jars $SPARK_CLIENT_HOME/jars/streamingClient010/kafka-client-2.4.0.jar,$SPARK_CLIENT_HOME/jars/streamingClient010/kafka_2.12-*.jar,$SPARK_CLIENT_HOME/jars/streamingClient010/spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 用户自己开发的应用程序以及样例工程都可使用上述命令提交。 但是Spark开源社区提供的KafkaWordCount等样例程序,不仅需要添加--jars参数,还需要配置其他,否则会报“ClassNotFoundException”错误,yarn-client和yarn-cluster模式下稍有不同。 yarn-client模式下 在除--jars参数外,在客户端“spark-defaults.conf”配置文件中,将“spark.driver.extraClassPath”参数值中添加客户端依赖包路径,如“$SPARK_HOME/jars/streamingClient010/*”。 yarn-cluster模式下 除--jars参数外,还需要配置其他,有三种方法任选其一即可,具体如下: 在客户端spark-defaults.conf配置文件中,在“spark.yarn.cluster.driver.extraClassPath”参数值中添加服务端的依赖包路径,如“${BIGDATA_HOME}/FusionInsight_Spark2x_8.1.0.1/install/FusionInsight-Spark2x-3.1.1/spark/jars/streamingClient010/*”。 将各服务端节点的“original-spark-examples_2.12-3.1.1-xxx.jar”包删除。 在客户端“spark-defaults.conf”配置文件中,修改或增加配置选项“spark.driver.userClassPathFirst” = “true”。
  • 参数解释 “job.properties”文件中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 nameNode HDFS NameNode集群地址 resourceManager Yarn ResourceManager地址 queueName 流程任务处理时使用的MapReduce队列名 dataLoadRoot 流程任务所在目录名 oozie.coord.application.path Coordinator流程任务在HDFS上的存放路径 start 定时流程任务启动时间 end 定时流程任务终止时间 workflowAppUri Workflow流程任务在HDFS上的存放路径 可以根据业务需要,以“key=values”的格式自定义参数及值。
  • 样例代码 nameNode=hdfs://hacluster resourceManager=10.1.130.10:26004 queueName=QueueA dataLoadRoot=examples oozie.coord.application.path=${nameNode}/user/oozie_cli/${dataLoadRoot}/apps/dataLoad start=2013-04-02T00:00Z end=2014-04-02T00:00Z workflowAppUri=${nameNode}/user/oozie_cli/${dataLoadRoot}/apps/dataLoad
  • 注意事项 如果yarn-session.sh使用-z配置特定的zookeeper的namespace,则在使用flink run时必须使用-yid指出applicationID,使用-yz指出zookeeper的namespace,前后namespace保持一致。 举例: bin/yarn-session.sh -z YARN101 bin/flink run -yid application_****_**** -yz YARN101 examples/streaming/WindowJoin.jar
  • 回答 bulkload是通过启动MapReduce任务直接生成HFile文件,再将HFile文件注册到HBase,因此错误的使用bulkload会因为启动MapReduce任务而占用更多的集群内存和CPU资源,也可能会生成大量很小的HFile文件频繁的触发Compaction,导致查询速度急剧下降。 错误的使用put,会造成数据加载慢,当分配给RegionServer内存不足时会造成RegionServer内存溢出从而导致进程退出。 下面给出bulkload和put适合的场景: bulkload适合的场景: 大量数据一次性加载到HBase。 对数据加载到HBase可靠性要求不高,不需要生成WAL文件。 使用put加载大量数据到HBase速度变慢,且查询速度变慢时。 加载到HBase新生成的单个HFile文件大小接近HDFS block大小。 put适合的场景: 每次加载到单个Region的数据大小小于HDFS block大小的一半。 数据需要实时加载。 加载数据过程不会造成用户查询速度急剧下降。
共100000条