华为云用户手册

  • Step3 安装依赖 在容器中执行如下命令,安装pip依赖。 cd /home/ma-user/stable-diffusion-webui pip install --upgrade pip pip install -r requirements.txt --no-deps pip install lightning_utilities torchmetrics gradio_client matplotlib pydantic aiofiles starlette ffmpy pydub uvicorn orjson semantic_version altair antlr4-python3-runtime==4.8.0 ftfy regex pytorch_lightning==1.6.5 gitdb trampoline clip aenum facexlib torch==2.1.0 python-multipart gdown pip install -r requirements_versions.txt pip install httpx==0.24.1 pip install diffusers 安装Stable Diffusion依赖。 下载stablediffusion-main.zip文件解压后,重命名为stable-diffusion-stability-ai,然后复制到容器stable-diffusion-webui/repositories/目录下。stablediffusion-main.zip文件的官网下载地址:https://github.com/Stability-AI/stablediffusion。 docker cp stable-diffusion-stability-ai sdwebui:/home/ma-user/stable-diffusion-webui/repositories/ 如果stable-diffusion-webui/repositories/目录不存在,需要通过mkdir创建。 下载generative-models-main.zip文件解压后,重命名为generative-models,然后复制到容器stable-diffusion-webui/repositories/目录下。generative-models-main.zip文件的官网下载地址:https://github.com/Stability-AI/generative-models.git。 docker cp generative-models sdwebui:/home/ma-user/stable-diffusion-webui/repositories/ 下载k-diffusion-master.zip文件解压后,重命名为k-diffusion,然后复制到容器stable-diffusion-webui/repositories/目录下。k-diffusion-master.zip文件的官网下载地址:https://github.com/Stability-AI/k-diffusion。 docker cp k-diffusion sdwebui:/home/ma-user/stable-diffusion-webui/repositories/ # 修改文件夹权限 docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui/repositories/ 安装vaeapprox-sdxl.pt。 下载vaeapprox-sdxl.pt文件后,复制到容器/home/ma-user/stable-diffusion-webui/models/VAE-approx/目录下。vaeapprox-sdxl.pt的官网下载地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre。 docker cp vaeapprox-sdxl.pt sdwebui:/home/ma-user/stable-diffusion-webui/models/VAE-approx/ # 修改文件夹权限 docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui/models/VAE-approx/
  • Step2 下载软件包 下载stable-diffusion-webui-1.7.0.zip文件后解压,重命名为stable-diffusion-webui,然后复制到容器/home/ma-user目录下。 sdwebui 1.7.0版本软件包的官网下载地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui/tree/v1.7.0 docker cp stable-diffusion-webui sdwebui:/home/ma-user/ 修改文件夹权限。启动容器时默认用户为ma-user用户,在使用其他属组如root用户上传的数据和文件时,可能会存在权限不足的问题。 # 修改文件夹权限(注意:重新启动一个终端,使用root用户登录容器修改文件权限,修改完后关闭终端。) docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui 下载SD基础模型,并复制到容器/home/ma-user/stable-diffusion-webui/models/Stable-diffusion目录下。 SD基础模型的官网下载地址。 https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors docker cp sd_xl_base_1.0.safetensors sdwebui:/home/ma-user/stable-diffusion-webui/models/Stable-diffusion/ docker cp v1-5-pruned-emaonly.safetensors sdwebui:/home/ma-user/stable-diffusion-webui/models/Stable-diffusion/ # 修改文件夹权限 docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui/models/Stable-diffusion/ 下载controlnet插件sd-webui-controlnet-main.zip文件后解压,重命名为sd-webui-controlnet,然后复制到容器stable-diffusion-webui/extensions/目录下。 controlnet插件的官网下载地址:https://github.com/Mikubill/sd-webui-controlnet。 docker cp sd-webui-controlnet sdwebui:/home/ma-user/stable-diffusion-webui/extensions/ # 修改文件夹权限 docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui/extensions/ 根据需要下载controlnet模型,放在/home/ma-user/stable-diffusion-webui/extensions/sd-webui-controlnet/models目录下。 docker cp control_v11p_sd15_canny.pth sdwebui:/home/ma-user/stable-diffusion-webui/extensions/sd-webui-controlnet/models/ docker cp control_v11p_sd15_canny.yaml sdwebui:/home/ma-user/stable-diffusion-webui/extensions/sd-webui-controlnet/models/ docker cp diffusers_xl_canny_mid.safetensors sdwebui:/home/ma-user/stable-diffusion-webui/extensions/sd-webui-controlnet/models/ # 修改文件夹权限 docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui/extensions/sd-webui-controlnet/models/ controlnet模型官网下载地址: https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main https://huggingface.co/lllyasviel/sd_control_collection/tree/main 选择下载sd1.5 canny: https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.yaml 选择下载sdxl canny: https://huggingface.co/lllyasviel/sd_control_collection/blob/main/diffusers_xl_canny_mid.safetensors 安装插件代码包。 将获取到的插件代码包ascendcloud-aigc-6.3.902-*.tar.gz文件上传到容器的/home/ma-user/temp目录下。获取路径:Support网站。 解压插件代码包ascendcloud-aigc-6.3.902-*到/home/ma-user/temp目录下。 tar -zxvf ascendcloud-aigc-6.3.902-*.tar.gz #解压 再解压ascendcloud-aigc-extensions-webui.tar.gz tar -zxvf ascendcloud-aigc-extensions-webui.tar.gz 复制NPU插件代码webui_npu_extension复制到stable-diffusion-webui/extensions/目录下。 cp -rf webui_npu_extension /home/ma-user/stable-diffusion-webui/extensions/ 复制safety-checker代码到/home/ma-user/stable-diffusion-webui/modules/目录下。 cp third_paties/stable-diffusion-webui/safety_checker.py /home/ma-user/stable-diffusion-webui/modules/ 然后在/home/ma-user/stable-diffusion-webui/modules/目录下,修改processing.py文件。 cd /home/ma-user/stable-diffusion-webui/modules sed -i '17 i\from modules.safety_checker import check_safety' processing.py sed -i '621 i\ x_checked_image = sample.cpu().unsqueeze(0).permute(0, 2, 3, 1).numpy()' processing.py sed -i '622 i\ x_checked_image, has_nsfw_concept = check_safety(x_checked_image)' processing.py sed -i '623 i\ sample = torch.tensor(x_checked_image).permute(0, 3, 1, 2).squeeze(0).to(sample.device)' processing.py sed -i 's#\r##g' processing.py 下载safety-checker模型包。 safety-checker的官网下载地址:https://huggingface.co/CompVis/stable-diffusion-safety-checker/tree/main 在宿主机当前目录下创建CompVis/stable-diffusion-safety-checker目录,然后下载所有文件,如下图所示。 图1 下载文件 然后将CompVis目录整个复制到/home/ma-user/stable-diffusion-webui目录下。 docker cp CompVis sdwebui:/home/ma-user/stable-diffusion-webui/ # 修改文件夹权限 docker exec -it --user root sdwebui bash chown -R ma-user:ma-group stable-diffusion-webui/CompVis
  • 附录2:Dockerfile 基于Dockerfile可以方便的构建完整可运行的 自定义镜像 ,在宿主机创建一个空的目录,然后vi Dockerfile将上面内容复制进去,然后参考4在创建目录中下载华为插件代码包后,执行如下docker构建命令。 docker build -t sdxl-diffusers:0.0.1 . Dockerfile文件内容如下。 FROM swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_7.0.0-py_3.9-hce_2.0.2312-aarch64-snt9b-20240312154948-219655b RUN wget https://llm-mindspore.obs.cn-southwest-2.myhuaweicloud.com/ascend-poc/stable-diffusion-xl-model.tar.gz && \ tar -zxvf stable-diffusion-xl-model.tar.gz && \ rm -rf stable-diffusion-xl-model.tar.gz RUN wget https://llm-mindspore.obs.cn-southwest-2.myhuaweicloud.com/ascend-poc/controlnet_canny.zip && \ unzip controlnet_canny.zip &&\ rm -rf controlnet_canny.zip RUN mkdir /home/ma-user/temp COPY --chown=ma-user:ma-group ascendcloud-aigc-6.3.902-20240205145924.tar.gz /home/ma-user/temp/ RUN cd /home/ma-user/temp &&\ tar -zxvf ascendcloud-aigc-6.3.902-20240205145924.tar.gz &&\ cp ascendcloud-aigc-extensions-diffusers.tar.gz /home/ma-user &&\ cd /home/ma-user && tar -zxvf ascendcloud-aigc-extensions-diffusers.tar.gz &&\ rm -rf /home/ma-user/temp && rm -rf ascendcloud-aigc-extensions-diffusers.tar.gz RUN pip install diffusers bottle invisible_watermark transformers accelerate safetensors CMD source /usr/local/Ascend/ascend-toolkit/set_env.sh && python /home/ma-user/infer_server.py
  • Step2 安装依赖和模型包 安装Diffusers相关依赖。 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple diffusers bottle invisible_watermark transformers accelerate safetensors 获取SDXL模型包并解压到/home/ma-user目录下。提供2种模型包下载方式。 模型包直接下载(如果不能访问HuggingFace官网,推荐此方式) 下载到容器/home/ma-user目录下后,解压。 cd /home/ma-user/ wget https://llm-mindspore.obs.cn-southwest-2.myhuaweicloud.com/ascend-poc/stable-diffusion-xl-model.tar.gz tar -zxvf stable-diffusion-xl-model.tar.gz rm -rf stable-diffusion-xl-model.tar.gz 也可以从HuggingFace官网下载到本地后,通过docker cp命令复制到容器中/home/ma-user目录下,如下图所示。 在线下载地址: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/tree/main 由于本实例采用的都是FP16的模型,相应模型建议都只下载FP16的,节约下载和传送时间。 图1 下载SDXL模型包并解压 获取controlnet模型包并解压到/home/ma-user目录下。提供2种模型包下载方式。 模型包直接下载(如果不能访问HuggingFace官网,推荐此方式) 下载到容器/home/ma-user目录下后,解压。 cd /home/ma-user/ wget https://llm-mindspore.obs.cn-southwest-2.myhuaweicloud.com/ascend-poc/controlnet_canny.zip unzip controlnet_canny.zip 也可以从HuggingFace官网下载到本地后,通过docker cp命令复制到容器中/home/ma-user目录下。 在线下载地址:https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0/tree/main 图2 下载controlnet模型包并解压 安装插件代码包。 将获取到的插件代码包ascendcloud-aigc-6.3.902-*.tar.gz文件上传到容器的/home/ma-user/temp目录下。获取路径:Support网站。 解压插件代码包ascendcloud-aigc-6.3.902-*到/home/ma-user/temp目录下。 cd /home/ma-user/temp tar -zxvf ascendcloud-aigc-6.3.902-20240205145924.tar.gz #解压 将获取到的ascendcloud-aigc-extensions-diffusers.tar.gz包复制到/home/ma-user下后解压。 docker cp ascendcloud-aigc-extensions-diffusers.tar.gz sdxl-diffusers:/home/ma-user/ tar -zxvf ascendcloud-aigc-extensions-diffusers.tar.gz
  • Step4 运行并验证带controlnet的模型 首先下载一个默认输入文件。 https://huggingface.co/lllyasviel/sd-controlnet-canny/blob/main/images/bird_canny.png 文件下载后重命名为canny_input_bird.png,然后复制到容器/home/ma-user目录下,在宿主机上的执行命令如下。 mv bird_canny.png canny_input_bird.png chmod 777 canny_input_bird.png docker cp canny_input_bird.png sdxl-diffusers:/home/ma-user/ 在/home/ma-user目录下已经存在infer_server_with_controlnet.py脚本文件,运行带controlnet的sdxl,运行命令如下。 python infer_server_with_controlnet.py 在宿主机上另外打开一个终端,使用curl命令发送请求。完整的请求参数请参考表1。 curl -kv -X POST localhost:8443/ -H "Content-Type: application/json" -d '{"prompt":"ultrarealistic shot of a furry blue bird"}' 服务端打印如下信息,表示发送请求成功。 带controlnet时,可以读取本地图片得到输入参数。 from diffusers.utils import load_image from io import BytesIO import base64 def image_to_base64(img_path): image = load_image(img_path) buffered = BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue())
  • 附录1:请求参数表 使用curl命令发送请求的请求参数表如下。 表1 请求参数列表 参数 说明 prompt 正向文本,必选 negative_prompt 负向文本,非必选 height 图像高度,非必选 width 图像宽度,非必选 num_inference_steps 对图片进行噪声优化的次数,非必选 denoising_end 二阶段去噪,非必选 refiner_switch refiner模型开关,是否开启refiner,非必选 seed 添加噪音的随机数种子,非必选 image_path 带controlnet时需要,此时image_path需要赋值null,传入图片的base64编码值,非必选 image_base64 带controlnet时需要,和image_path二选一,传入图片的base64编码值,非必选
  • Step3 运行并验证SDXL模型 首先在容器中运行命令。 source /usr/local/Ascend/ascend-toolkit/set_env.sh 在/home/ma-user目录下已经存在infer_server.py脚本文件,启动infer_server.py命令如下。 python infer_server.py 图3 启动脚本 在宿主机上另外打开一个终端,使用curl命令发送请求。完整的请求参数请参考表1。 curl -kv -X POST localhost:8443/ -H "Content-Type: application/json" -d '{"prompt":"ultrarealistic shot of a furry blue bird"}' 服务端打印如下信息,表示发送请求成功。 图4 发送请求 客户端返回图像的base64编码。 图5 图像的base64编码 将客户端返回的base64编码转换为图片。 from PIL import Image from io import BytesIO import base64 def base64_to_image(base64_str): image = base64.b64decode(base64_str, altchars=None, validate=False) image = BytesIO(image) image = Image.open(image) image.save(“./out_put_image.png”)
  • Step1 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 检查环境。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 获取基础镜像。建议使用官方提供的镜像部署推理服务。 镜像地址{image_url}为: 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_7.0.0-py_3.9-hce_2.0.2312-aarch64-snt9b-20240312154948-219655b docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。 docker run -itd \ --name sdxl-diffusers \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -p 8443:8443 \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ --shm-size 60g \ --device=/dev/davinci_manager \ --device=/dev/hisi_hdc \ --device=/dev/devmm_svm \ --device=/dev/davinci3 \ --network=bridge \ ${image_name} bash 参数说明: --name ${conta iner_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如sdxl-diffusers。 --device=/dev/davinci3:挂载主机的/dev/davinci3到容器的/dev/davinci3。可以使用npu-smi info查看空闲卡号,修改davinci后数字可以更改挂载卡。 ${image_name} 代表 ${image_name}。 进入容器。需要将${container_name}替换为实际的容器名称,例如:sdxl-diffusers。 docker exec -it ${container_name} bash
  • 常见问题 如果训练时遇到报错ImportError: /usr/lib64/libc.so.6: version `GLIBC_2.34' not found,是由于编译Python的glibc环境版本过旧导致,建议重新安装python。 重新安装python命令如下。 # 输入如下命令,待conda界面准备完成后输入y,等待自动下载安装 conda create --name py310 python=3.10 参数说明: --name:该参数为新环境名字,可以自定义一个,此处以py310举例。 python=新环境Python版本 # 完成后输入如下命令激活新环境 conda activate py310 激活新conda环境后控制台显示(py310)即为切换成功,如下图所示。 图5 激活新conda环境
  • Step3 训练Wav2Lip模型 准备预训练模型。下载需要使用的预训练模型。 人脸检测预训练模型,下载链接。 专家唇形同步鉴别器,下载链接 ,此链接是官方提供的预训练模型。训练Wav2Lip模型时需要使用专家唇形同步鉴别器,用户可以用自己的数据训练,也可以直接使用官方提供的预训练模型。 处理初始视频数据集。 将下载好的人脸检测预训练模型上传到/home/ma-user/Wav2Lip/face_detection/detection/sfd/s3fd.pth目录。 下载LRS2数据集。数据集文件夹结构如下: ├── LRS2_partly | ├── main | │ ├── five-digit numbered video IDs ending with (.mp4) | │ ├── 00001.mp4 | │ ├── 00002.mp4 对数据集进行预处理。具体命令如下。 python preprocess.py --data_root ./LRS2_partly --preprocessed_root lrs2_preprocessed/ data_root参数为原始视频根目录,preprocessed_root参数为处理后生成的数据集目录。 处理后数据目录如下所示。 preprocessed_root (lrs2_preprocessed) ├── main | ├── Folders with five-digit numbered video IDs(00001) | │ ├── *.jpg | │ ├── audio.wav | ├── 00001 | │ ├── *.jpg | │ ├── audio.wav 将LRS2文件列表中的.txt文件(train、val)放入该filelists文件夹中。 图3 filelists文件夹 train.txt和val.txt内容参考如下,为处理后视频数据的目录名字。 图4 train.txt和val.txt内容 训练专家唇形同步鉴别器。 如果使用LRS2数据集,可选择跳过此步骤。如果使用自己的数据集,训练命令参考如下。 python color_syncnet_train.py --data_root ./lrs2_preprocessed/main/ --checkpoint_dir ./savedmodel/syncnet_model/ --checkpoint_path ./checkpoints/lipsync_expert.pth 参数说明: --data_root :处理后的视频数据目录,与train.txt内容拼接后得到单个数据目录,例如:lrs2_preprocessed/main/00001。 --checkpoint_dir :此目录用于保存模型。 -checkpoint_path :(可选)可基于此目录的lipsync_expert模型继续进行训练,如果重新训练则不需要此参数。 默认每10000 step保存一次模型。 训练Wav2Lip模型。 训练Wav2Lip模型时需要使用专家唇形同步鉴别器。可以使用上一步3中的训练结果,也可以直接下载官方提供的预训练权重来使用。 具体训练命令如下。 python wav2lip_train.py --data_root ./lrs2_preprocessed/main/ --checkpoint_dir ./savedmodel --syncnet_checkpoint_path ./checkpoints/lipsync_expert.pth --checkpoint_path ./checkpoints/wav2lip.pth 参数说明: --data_root :处理后的视频数据目录,与train.txt内容拼接后得到单个数据目录,例如:lrs2_preprocessed/main/00001。 --checkpoint_dir :此目录用于保存模型。 --syncnet_checkpoint_path :专家鉴别器的目录。 --checkpoint_path :(可选)可基于此目录的Wav2Lip模型继续进行训练,如果重新训练则不需要此参数。 默认每3000 step保存一次模型。 专家鉴别器的评估损失应降至约 0.25,Wav2Lip评估同步损失应降至约 0.2,以获得良好的结果。
  • Step1 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 检查环境。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 获取基础镜像。建议使用官方提供的镜像部署推理服务。 镜像地址{image_url}为: 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_7.0.0-py_3.9-hce_2.0.2312-aarch64-snt9b-20240312154948-219655b docker pull ${image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_7.0.0-py_3.9-hce_2.0.2312-aarch64-snt9b-20240312154948-219655b" // 启动一个容器去运行镜像 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /etc/ascend_install.info:/etc/ascend_install.info \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --shm-size 32g \ --net=bridge \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_name} bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 ${image_name} 代表 ${image_name}。 通过容器名称进入容器中。 docker exec -it ${container_name} bash
  • Step2 安装依赖和软件包 Python版本要求3.10,如果不满足的话,建议更新容器的conda环境的Python版本。 # 输入如下命令,待conda界面准备完成后输入y,等待自动下载安装 conda create --name py310 python=3.10 参数说明: --name:该参数为新环境名字,可以自定义一个,此处以py310举例。 python=新环境Python版本 # 完成后输入如下命令激活新环境 conda activate py310 激活新conda环境后控制台显示(py310)即为切换成功,如下图所示。 图1 激活新conda环境 从github拉取Wav2Lip代码。 cd /home/ma-user git clone https://github.com/Rudrabha/Wav2Lip.git 如果出现报错SSL certificate problem: self signed certificate in certificate chain 图2 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip.git 安装Wav2Lip Ascend软件包。 将获取到的Wav2Lip Ascend软件包ascendcloud-aigc-*.tar.gz文件上传到容器的/home/ma-user/Wav2Lip目录下。获取路径:Support网站。 解压ascendcloud-aigc-*.tar.gz文件,解压后将里面文件与对应Wave2Lip文件进行替换。 cd /home/ma-user/Wav2Lip tar -zxvf ascendcloud-aigc-6.3.902-*.tar.gz tar -zxvf ascendcloud-aigc-poc-Wav2Lip_Ascend.tar.gz mv Wav2Lip_code/* ./ rm -rf ascendcloud-aigc-* Wav2Lip_code/ ascendcloud-aigc-6.3.902-*.tar.gz后面的*表示时间戳,请按照实际替换。 要替换的文件目录结构如下所示: |---Wav2Lip_code/ --- color_syncnet_train.py #训练expert discriminator唇形同步鉴别器 --- inference.py #推理代码,可以与任意音频或视频进行口型同步 --- preprocess.py #对初始视频数据进行推理 --- read.txt #关于包版本兼容问题的一些处理方案 --- requirements.txt #建议的依赖包版本 --- wav2lip_train.py #训练 Wav2Lip 模型 安装Python依赖包,文件为requirements.txt文件。 pip install -r requirements.txt 由于librosa、numba、llvmlite包的版本兼容问题,会出现报错ModuleNotFoundError: No module named 'numba.decorators'。 此时进入Python包librosa安装位置,打开文件site-packages/librosa/util/decorators.py,修改文件如下: import warnings from decorator import decorator import six #注释此行 #from numba.decorators import jit as optional_jit #修改此行如下 #__all__ = ['moved', 'deprecated', 'optional_jit'] __all__ = ['moved', 'deprecated']
  • Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step2 启动镜像 获取基础镜像。建议使用官方提供的镜像。镜像地址{image_url}参考表2。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像地址" // 启动一个容器去运行镜像 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /etc/ascend_install.info:/etc/ascend_install.info \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --shm-size 32g \ --net=bridge \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_name} bash 参数说明: work_dir:工作目录,目录下存放着训练所需代码、数据等文件。 container_work_dir:容器工作目录,一般同work_dir。 container_name:自定义容器名。 image_name:容器镜像的名称。 进入容器。需要将${container_name}替换为实际的容器名称。 docker exec -it ${container_name} bash
  • Step3 获取SD1.5插件代码包并安装依赖 将下载的SD1.5插件代码包ascendcloud-aigc-xxx-xxx.tar.gz文件,上传到容器的/home/ma-user/目录下,解压并安装相关依赖。插件代码包获取路径参见表2。 mkdir -p /home/ma-user/stable_diffusers_1.5 #创建stable_diffusers_1.5目录 cd /home/ma-user/stable_diffusers_1.5 #进入stable_diffusers_1.5目录 tar -zxvf ascendcloud-aigc-*.tar.gz tar -zxvf ascendcloud-aigc-poc-stable_diffusers_1.5.tar.gz rm -rf ascendcloud-aigc-xxx-xxx pip install -r requirements.txt #安装依赖 启动前配置。有两种方式修改配置文件: 方式一:可以参考解压出来的default_config.yaml或者deepspeed_default_config.yaml文件,再通过在启动脚本命令中增加--config_file=xxx.yaml参数来指定其为配置文件。 方式二:通过命令accelerate config进行配置,如下图所示。 图1 通过命令accelerate config进行配置 (可选)文件替换。 因增加nfa和使用npu_geglu算子(用于训练和推理加速),将diffusers源码包中的attention.py和attention_processor.py替换成代码包中对应的文件。 图2 文件替换 可以使用find命令来查找diffusers源码包位置。 find / -name attention.py find / -name attention_processor.py 图3 查找diffusers源码包位置 找到具体位置后可以cp替换,替换前可对diffusers原始文件做备份,如果没有备份则可以通过删除diffusers包重新安装的方式获取原始文件。 执行bash stable_diffusers_train.sh。 bash stable_diffusers_train.sh
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 ascendcloud-aigc-6.3.904-xxx.tar.gz 文件名中的xxx表示具体的时间戳,以包的实际时间为准。 获取路径:Support-E网站。 说明: 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc1-py_3.9-hce_2.0.2312-aarch64-snt9b-20240516142953-ca51f42 SWR上拉取
  • Step4 下载模型和数据集 数据集下载地址:https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions。 启动脚本前的两个声明为本次训练的模型和数据集,第一次执行程序时若本地没有模型和数据集,会自动下载。但由于lambdalabs/pokemon-blip-captions数据集下载现在需要登录HuggingFace账号,请先下载数据集到本地,再挂载到对应目录。 export MODEL_NAME="runwayml/stable-diffusion-v1-5" export DATASET_NAME="lambdalabs/pokemon-blip-captions"
  • Step5 启动训练服务 train_text_to_image_0304.py是训练的核心代码,通过stable_diffusers_train.sh来启动。 sh stable_diffusers_train.sh 如果启动前配置采用的是•可以参考解压出来的default_config...方式指定配置文件,就是在此stable_diffusers_train.sh脚本中增加--config_file=xxx.yaml参数。 刚开始会报一些Warning,可忽略。正常启动如下图所示,出现Steps: 1%字样。 图4 启动服务 如果启动过程中报SSL相关错误,如下图所示。 图5 启动过程中报SSL相关错误 请修改相应路径下的/home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/requests/sessions.py文件,将self.verify的值由True改成False,如下图所示。 图6 修改self.verify参数值
  • Step5 服务调用 在浏览器中输入http://ip:8443访问界面,页面如下图。 图3 访问界面 双击访问页面,并搜索“Ascend”,单击“AscendNode”,如下图。 图4 搜索Ascend 会得到一个新的关于NPU的checkpoint,如下图。 图5 NPU的checkpoint 根据上面checkpoint的箭头,对新的NPU的checkpoint进行规划,如下图。 图6 规划checkpoint 在ckpt_name中选择要使用的权重文件,device_id为要使用的NPU卡号,单击“Queue Prompt”加入推理队列进行推理,如下图。 图7 加入推理队列 成功之后结果如下图。 图8 推理成功 首次加载或切换模型进行推理时,需要加载模型并进行相关的初始化工作,首次推理时间较长,请耐心等待。
  • Step4 下载并安装软件 从github下载ComfyUI代码并安装依赖。 cd /home/ma-user git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI git reset --hard 831511a1eecbe271e302f2f2053f285f00614180 pip install -r requirements.txt 如果出现报错SSL certificate problem: self signed certificate in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/comfyanonymous/ComfyUI.git 此处根据ComfyUI官网描述进行配置。 下载SD模型并安装。部署好ComfyUI环境和依赖后,还需要将模型放到对应位置。 下载模型,模型下载地址:sd1.5模型地址 ,sdxl下载地址。根据自己的需要下载对应的模型,如下图,并将模型上传到容器内自定义挂载的工作目录。 图2 模型列表 将模型复制到/home/ma-user/ComfyUI/models/checkpoints目录下。 将获取到的ComfyUI插件ascendcloud-aigc-6.3.904-*.tar.gz文件上传到容器的/home/ma-user/ComfyUI/custom_nodes目录下,并解压。获取路径参见表2。 cd /home/ma-user/ComfyUI/custom_nodes/ tar -zxvf ascendcloud-aigc-6.3.904-*.tar.gz tar -zxvf ascendcloud-aigc-extensions-comfyui.tar.gz rm -rf ascendcloud-aigc-6.3.904-* ascendcloud-aigc-6.3.904-*.tar.gz后面的*表示时间戳,请按照实际替换。 使用容器IP启动服务。 cd /home/ma-user/ComfyUI python main.py --port 8443 --listen ${docker_ip} --force-fp16 ${docker_ip}替换为容器实际的IP地址。可以在宿主机上通过docker inspect容器ID |grep IPAddress命令查询。
  • Step1 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 ascendcloud-aigc-6.3.904-*.tar.gz 说明: 包名中的*表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E网站。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc1-py_3.9-hce_2.0.2312-aarch64-snt9b-20240516142953-ca51f42 从SWR拉取。
  • Step3 启动容器镜像 启动容器镜像。启动前请先按照参数说明修改${}中的参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" // 启动一个容器去运行镜像 docker run -itd \ --device=/dev/davinci1 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /etc/ascend_install.info:/etc/ascend_install.info \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --shm-size 32g \ --net=bridge \ -p 8443:8443 \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_name} bash 参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 ${image_name}:容器镜像的名称。 通过容器名称进入容器中。 docker exec -it ${container_name} bash
  • Step5 下载并适配代码 在容器中解压代码包。 unzip AscendCloud-AIGC-6.3.906-*.zip rm -rf AscendCloud-AIGC-6.3.906-* 执行wav2lip推理插件的安装脚本。 cd multimodal_algorithm/Wav2Lip/inference/f361e9527b917a435928a10931fee9ac7be109cd source install.sh 从官网下载Wav2lip权重文件和Wav2Lip+GAN权重文件,并放在容器的checkpoints目录下。上一步执行完source install.sh命令后,会自动生成checkpoints目录。 从官网下载模型s3fd-619a316812.pth,并重命名为s3fd.pth,放在容器路径face_detection/detection/sfd下。上一步执行完source install.sh命令后,会自动生成face_detection/detection/sfd目录。
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.906-xxx.zip软件包中的AscendCloud-AIGC-6.3.906-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240606190017-b881580 从SWR拉取。
  • Step1 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step4 启动容器镜像 启动容器镜像。启动前请先按照参数说明修改${}中的参数。 docker run -itd --net=host \ --device=/dev/davinci0 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ --shm-size=1024g \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /var/log/npu/:/usr/slog \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 ${image_id}:镜像ID,通过docker images查看刚拉取的镜像ID。 通过容器名称进入容器中。默认使用ma-user用户,后续所有操作步骤都在ma-user用户下执行。 docker exec -it ${container_name} bash
  • 模型转换报错如何查看日志和定位? 通过如下的配置项打开对应的模型转换日志,可以看到更底层的报错。如配置以下的环境变量之后,再重新转换模型,导出对应的日志和dump图进行分析: 报错日志中搜到“not support onnx data type”,表示MindSpore暂不支持该算子。 报错日志中搜到“Convert graph to om failed”,表示CANN模块进行图编译存在保存,需要结合CANN的报错日志和dump图进行具体分析。 配置方式参考如下: 打开DEBUG日志。 设置MindSpore日志环境变量。 export G LOG _v=0 # 0-DEBUG、1-INFO、2-WARNING、3-ERROR 设置CANN日志环境变量。 # 0:表示DEBUG。1:表示INFO。2:表示WARNING。3:表示ERROR。4: 表示NONE。 export ASCEND_GLOBAL_LOG_LEVEL=1 # 表示日志打印 export ASCEND_SLOG_PRINT_TO_STDOUT=1 DUMP模型转换中间图。 设置DUMP中间图环境变量。 # 1:表示dump图全量内容。2:表示不dump权重数据的基础图。3:表示只dump节点关系的精简图。 export DUMP_GE_GRAPH=2 # 1:表示dump图所有图。2:表示dump除子图外的所有图。3:表示只dump最后一张图。 export DUMP_GRAPH_LEVEL=2 父主题: 常见问题
  • 自动高性能算子生成工具AKG AKG(Auto Kernel Generator)对深度神经网络中的算子进行优化,并提供特定模式下的算子自动融合功能。提升在昇腾硬件后端上运行网络的性能。 AKG由三个基本的优化模块组成:规范化、自动调度和后端优化。 规范化: 为了解决polyhedral表达能力的局限性(只能处理静态的线性程序),需要首先对计算公式IR进行规范化。规范化模块中的优化主要包括自动运算符inline、自动循环融合和公共子表达式优化等。 自动调度: 自动调度模块基于polyhedral技术,主要包括自动向量化、自动切分、thread/block映射、依赖分析和数据搬移等。 后端优化: 后端优化模块的优化主要包括TensorCore使能、双缓冲区、内存展开和同步指令插入等。
  • 性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输入进行推理,并统计推理时间。执行的示例命令行如下。 #shell benchmark --modelFile=resnet50.mindir --device=Ascend 为了简化用户使用,ModelArts提供了Tailor工具便于用户进行Benchmark性能测试,具体使用方式参考Tailor指导文档。 在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在昇腾场景上,算子需要指定具体的shape信息,并且在模型转换的编译阶段完成对应shape的编译任务,从而能够在推理时支持多种shape的输入。 绝大多数情况下,昇腾芯片推理性能相比于CPU会好很多,但是也可能会遇到和CPU推理性能并无太大差别甚至出现劣化的情况。造成这种情况的原因可能有如下几种: 模型中存在大量的类似于Pad或者Strided_Slice等算子,其在CPU和Ascend上的实现方法存在差异(硬件结构不同),后者在运算此类算子时涉及到数组的重排,性能较差; 模型的部分算子在昇腾上不支持,或者存在Transpose操作,会导致模型切分为多个子图,整体的推理耗时随着子图数量的增多而增长; 模型没有真正的调用昇腾后端,而是自动切换到了CPU上执行,这种情况可以通过输出日志来进行判断。
共100000条