华为云用户手册

  • 对有更新操作的数据流进行聚合计算时要注意数据准确性问题 在针对更新数据进行聚合需要选择合适的解决方案,否则聚合结果会是错误的。 例如: Create table t1( id int, partid int, value int ); select partid,sum(value) from t1 group by partid; 第一批数据:[1,1,10],[2,1,11],[3,2,8] 聚合结果:[1,21],[2,8] 第二批数据:[2,1,12] //对ID=2的记录进行更新。 错误结果:[1,33],[2,8] //若是无法识别是对ID=2的数据进行了更新。 聚合结果:[1,22],[2,8] //识别为更新操作可以得到正确结果。 对于如何识别是更新数据有三种方式: 通过状态后端解决 通过状态后端存储所有原始数据,新来的数据根据状态来判断是否是更新操作,进而通过Flink聚合回撤机制实现聚合结果数据的更新。 优点:可以解决聚合准确性问题,而且对用户友好,对数据没有要求。 缺点:大数据量情况下状态后端存储的数据比较多。 通过CDC格式数据解决 CDC格式数据是指更新操作记录中会同时包含更新前数据和更新后数据。通过更新前的内容来回撤掉之前的聚合结果,通过更新后的数据更新最新的计算结果。 优点:不需要有大的状态后端存储,整体计算资源压力要小于基于状态后端的方案。 缺点:需要依赖于数据格式,常见的方式通过CDC采集工具,将数据采集到Kafka,然后Flink读Kafka数据进行计算。 通过changelog数据解决 changelog与CDC格式的数据类似,只不过存储的方式不同,CDC格式数据会将更新前和更新后的数据在一行记录,而changelog数据会将更新数据拆分成两行,一行是对更新前数据的删除操作,一行是更新后的数据插入操作记录。Flink在计算的时候会将基于更新数据的聚合结果删除,在将基于更新后数据的计算结果插入。changelog可以基于Hudi表实现,基于CDC格式的数据可以转为changelog数据存储到Hudi的MOR表的log文件中,也可以基于状态后端生成Hudi的changelog数据。 优点:可以基于湖存储实现更新数据聚合一致性保证。 缺点: Hudi的MOR表中仅在log文件中存在changelog数据,如果Flink作业计算延迟导致上游数据积压,而Hudi又清理了log文件,就会导致changelog丢失。针对这种情况需要保留版本数多一点,且给Flink作业合理的资源配置避免数据积压周期超过了清理周期。 基于状态后端生成changelog也是依赖于状态后端的,状态后端通常是会配置TTL时间的,不会永久保留。这种场景下更新操作是任意更新,没有一定时间周期限制。例如更新近一个月的数据,TTL设置大于一个月即可;若更新全部数据,就需要设置TTL为永久,不适用于大表。 目前changelog的MOR表,仅支持Flink引擎进行compaction处理,不支持Spark引擎。
  • 多流Join场景事实流表个数不超过三个 当Join表过多时,状态后端压力太大会导致端到端时延增加。 【示例】实时Join维表数3个: CREATE TABLE table1(id int, param1 string) with(...); CREATE TABLE table2(id int, param2 string) with(...); CREATE TABLE table3(id int, param3 string) with(...); CREATE TABLE orders ( order_id STRING, price DECIMAL(32,2), currency STRING, order_time TIMESTAMP(3), WATERMARK FOR order_time AS order_time ) WITH (/* ... */); select o.*, t1.param1, t2.param2, t3.param3 from orders AS o JOIN table1 AS t1 ON o.order_id = t1.id JOIN table2 AS t2 ON o.order_id = t2.id JOIN table3 AS t3 ON o.order_id = t3.id;
  • 关联嵌套层级不超过三层 嵌套层级越多,回撤流的的数据量越大。 【示例】关联嵌套3层: SELECT * FROM table1 WHERE column1 IN ( SELECT column1 FROM table2 WHERE column2 IN ( SELECT column2 FROM table3 WHERE column3 = 'value' ) )
  • 维表lookup join场景维度表个数不超过五个 Hudi维度表都在TM heap中,当维表过多时heap中保存的维表数据过多,TM会不断GC,导致作业性能下降。 【示例】lookup join维表数5个: CREATE TABLE table1(id int, param1 string) with(...); CREATE TABLE table2(id int, param2 string) with(...); CREATE TABLE table3(id int, param3 string) with(...); CREATE TABLE table4(id int, param4 string) with(...); CREATE TABLE table5(id int, param5 string) with(...); CREATE TABLE orders ( order_id STRING, price DECIMAL(32,2), currency STRING, order_time TIMESTAMP(3), WATERMARK FOR order_time AS order_time ) WITH (/* ... */); select o.*, t1.param1, t2.param2, t3.param3, t4.param4, t5.param5 from orders AS o JOIN table1 FOR SYSTEM_TIME AS OF o.proc_time AS t1 ON o.order_id = t1.id JOIN table2 FOR SYSTEM_TIME AS OF o.proc_time AS t2 ON o.order_id = t2.id JOIN table3 FOR SYSTEM_TIME AS OF o.proc_time AS t3 ON o.order_id = t3.id JOIN table4 FOR SYSTEM_TIME AS OF o.proc_time AS t4 ON o.order_id = t4.id JOIN table5 FOR SYSTEM_TIME AS OF o.proc_time AS t5 ON o.order_id = t5.id;
  • Hudi表初始化 初始化导入存量数据通常有Spark作业来完成,由于初始化数据量通常较大,因此推荐使用API方式给充足资源来完成。 对于批量初始化后需要接Flink或Spark流作业实时写入的场景,一般建议通过对上有消息进行过滤,从一个指定的时间范围开始消费来控制数据的重复接入量(例如Spark初始化完成后,Flink消费Kafka时过滤掉2小时之前的数据),如果无法对kafka消息进行过滤,则可以考虑先实时接入生成offset,再truncate table ,再历史导入,再开启实时。 初始化操作流程应遵循下面的步骤: 如果批量初始化前表里已经存在数据且没有truncate table,则会导致批量数据写成非常大的log文件,对后续compaction形成很大压力需要更多资源才能完成 Hudi表在Hive元数据中,应该会存在1张内部表(手动创建),2张外部表(写入数据后自动创建)。 2张外部表,表名_ro(用户只读合并后的parquet文件,即读优化视图表),_rt(读实时写入的最新版本数据,即实时视图表)。 父主题: Bucket调优示例
  • Table实例的创建 public abstract class TableOperationImpl { private static Configuration conf = null; private static Connection connection = null; private static Table table = null; private static TableName tableName = TableName.valueOf("sample_table"); public TableOperationImpl() { init(); } public void init() { conf = ConfigurationSample.getConfiguration(); try { connection = ConnectionFactory.createConnection(conf); table = conn.getTable(tableName); } catch (IOException e) { e.printStackTrace(); } } public void close() { if (table != null) { try { table.close(); } catch (IOException e) { System.out.println("Can not close table."); } finally { table = null; } } if (connection != null) { try { connection.close(); } catch (IOException e) { System.out.println("Can not close connection."); } finally { connection = null; } } } public void operate() { init(); process(); close(); } }
  • Configuration实例的创建 该类应该通过调用HBaseConfiguration的create()方法来实例化。否则,将无法正确加载HBase中的相关配置项。 正确示例: //该部分,应该是在类成员变量的声明区域声明 private Configuration hbaseConfig = null; //建议在类的构造函数中,或者初始化方法中实例化该类 hbaseConfig = HBaseConfiguration.create(); 错误示例: hbaseConfig = new Configuration();
  • 资源释放 关于ResultScanner和Table实例,在用完之后,需要调用它们的Close方法,将资源释放掉。Close方法,要放在finally块中,来确保一定会被调用到。 正确示例: ResultScanner scanner = null; try { scanner = demoTable.getScanner(s); //Do Something here. } finally { scanner.close(); } 错误示例: 在代码中未调用scanner.close()方法释放相关资源。 scanner.close()方法未放置在finally块中。 ResultScanner scanner = null; scanner = demoTable.getScanner(s); //Do Something here. scanner.close();
  • 共享Configuration实例 HBase客户端代码通过创建一个与ZooKeeper之间的HConnection,来获取与一个HBase集群进行交互的权限。一个ZooKeeper的HConnection连接,对应着一个Configuration实例,已经创建的HConnection实例,会被缓存起来。也就是说,如果客户端需要与HBase集群进行交互的时候,会传递一个Configuration实例到缓存中去,HBase Client部分通过已缓存的HConnection实例,来判断属于这个Configuration实例的HConnection实例是否存在,如果不存在,会创建一个新的HConnection,如果存在,则会直接返回相应的实例。 因此,如果频繁的创建Configuration实例,会导致创建很多不必要的HConnection实例,很容易达到ZooKeeper的连接数上限。 建议在整个客户端代码范围内,都共用同一个Configuration对象实例。
  • 配置文件介绍 登录HDFS时会使用到如表1所示的配置文件。这些文件均已导入到“hdfs-example-security”工程的“conf”目录。 表1 配置文件 文件名称 作用 core-site.xml 配置HDFS详细参数。 hdfs-site.xml 配置HDFS详细参数。 user.keytab 对于Kerberos安全认证提供HDFS用户信息。 krb5.conf Kerberos server配置信息。 不同集群的“user.keytab”、“krb5.conf”不能共用。 “conf”目录下的“log4j.properties”文件客户根据自己的需要进行配置。
  • 代码样例 如下是代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples的HdfsExample类。 在Linux客户端运行应用和在Windows环境下运行应用的初始化代码相同,代码样例如下所示。 // 完成初始化和认证 confLoad(); authentication(); // 创建一个用例 HdfsExample hdfs_examples = new HdfsExample("/user/hdfs-examples", "test.txt"); /** * * 如果程序运行在Linux上,则需要core-site.xml、hdfs-site.xml的路径修改 * 为在Linux下客户端文件的绝对路径 * * */ private static void confLoad() throws IOException { conf = new Configuration(); // conf file conf.addResource(new Path(PATH_TO_HDFS_SITE_XML)); conf.addResource(new Path(PATH_TO_CORE_SITE_XML)); // conf.addResource(new Path(PATH_TO_SMALL_SITE_XML)); } /** *安全认证 * */ private static void authentication() throws IOException { // security mode if ("kerberos".equalsIgnoreCase(conf.get("hadoop.security.authentication"))) { System.setProperty("java.security.krb5.conf", PATH_TO_KRB5_CONF); LoginUtil.login(PRNCIPAL_NAME, PATH_TO_KEYTAB, PATH_TO_KRB5_CONF, conf); } } /** *创建用例 */ public HdfsExample(String path, String fileName) throws IOException { this.DEST_PATH = path; this.FILE_NAME = fileName; instanceBuild(); } private void instanceBuild() throws IOException { fSystem = FileSystem.get(conf); }
  • Spark SQL常用接口 Spark SQL中重要的类有: SQLContext:是Spark SQL功能和DataFrame的主入口。 DataFrame:是一个以命名列方式组织的分布式数据集 DataFrameReader:从外部存储系统加载DataFrame的接口。 DataFrameStatFunctions:实现DataFrame的统计功能。 UserDefinedFunction:用户自定义的函数。 常见的Actions方法有: 表6 Spark SQL方法介绍 方法 说明 Row[] collect() 返回一个数组,包含DataFrame的所有列。 long count() 返回DataFrame的行数。 DataFrame describe(java.lang.String... cols) 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 Row first() 返回第一行。 Row[] head(int n) 返回前n行。 void show() 用表格形式显示DataFrame的前20行。 Row[] take(int n) 返回DataFrame中的前n行。 表7 基本的DataFrame Functions介绍 方法 说明 void explain(boolean extended) 打印出SQL语句的逻辑计划和物理计划。 void printSchema() 打印schema信息到控制台。 registerTempTable 将DataFrame注册为一张临时表,其周期和SQLContext绑定在一起。 DataFrame toDF(java.lang.String... colNames) 返回一个列重命名的DataFrame。 DataFrame sort(java.lang.String sortCol,java.lang.String... sortCols) 根据不同的列,按照升序或者降序排序。 GroupedData rollup(Column... cols) 对当前的DataFrame特定列进行多维度的回滚操作。
  • Spark Streaming常用接口 Spark Streaming中常见的类有: pyspark.streaming.StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 pyspark.streaming.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dsteam.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表3 Spark Streaming常用接口介绍 方法 说明 socketTextStream(hostname, port, storageLevel) 从TCP源主机:端口创建一个输入流。 start() 启动Spark Streaming计算。 awaitTermination(timeout) 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext, stopGraceFully) 终止Spark Streaming计算,stopSparkContext用于判断是否需要终止相关的SparkContext,StopGracefully用于判断是否需要等待所有接受到的数据处理完成。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义State和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(other,numPartitions) 实现不同的Spark Streaming之间做合并操作。
  • SparkSQL常用接口 Spark SQL中在Python中重要的类有: pyspark.sql.SQLContext:是Spark SQL功能和DataFrame的主入口。 pyspark.sql.DataFrame:是一个以命名列方式组织的分布式数据集。 pyspark.sql.HiveContext:获取存储在Hive中数据的主入口。 pyspark.sql.DataFrameStatFunctions:统计功能中一些函数。 pyspark.sql.functions:DataFrame中内嵌的函数。 pyspark.sql.Window:sql中提供窗口功能。 表4 Spark SQL常用的Action 方法 说明 collect() 返回一个数组,包含DataFrame的所有列。 count() 返回DataFrame中的行数。 describe() 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first() 返回第一行。 head(n) 返回前n行。 show() 用表格形式显示DataFrame。 take(num) 返回DataFrame中的前num行。 表5 基本的DataFrame Functions 方法 说明 explain() 打印出SQL语句的逻辑计划和物理计划。 printSchema() 打印schema信息到控制台。 registerTempTable(name) 将DataFrame注册为一张临时表,命名为name,其周期和SQLContext绑定在一起。 toDF() 返回一个列重命名的DataFrame。
  • 运行任务 进入Spark客户端目录,调用bin/spark-submit脚本运行代码,运行命令分别如下(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java或Scala样例代码 bin/spark-submit --class com.huawei.bigdata.spark.examples.SparkHivetoHbase --master yarn --deploy-mode client /opt/female/SparkHivetoHbase-1.0.jar 运行Python样例程序 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。将所提供 Java代码使用maven打包成jar,并放在相同目录下,运行python程序时要使用--jars把jar包加载到classpath中。 bin/spark-submit --master yarn --deploy-mode client --jars /opt/female/SparkHivetoHbasePythonExample/SparkHivetoHbase-1.0.jar /opt/female/SparkHivetoHbasePythonExample/SparkHivetoHbasePythonExample.py
  • 数据规划 在开始开发应用前,需要创建Hive表,命名为person,并插入数据。同时,创建HBase table2表,用于将分析后的数据写入。 将原日志文件放置到HDFS系统中。 在本地新建一个空白的log1.txt文件,并在文件内写入如下内容: 1,100 在HDFS中新建一个目录/tmp/input,并将log1.txt文件上传至此目录。 在Linux系统HDFS客户端使用命令hadoop fs -mkdir /tmp/input(hdfs dfs命令有同样的作用),创建对应目录。 在Linux系统HDFS客户端使用命令hadoop fs -put log1.txt /tmp/input,上传数据文件。 将导入的数据放置在Hive表里。 首先,确保JD BCS erver已启动。然后使用Beeline工具,创建Hive表,并插入数据。 执行如下命令,创建命名为person的Hive表。 create table person ( name STRING, account INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' ESCAPED BY '\\' STORED AS TEXTFILE; 执行如下命令插入数据。 load data inpath '/tmp/input/log1.txt' into table person; 创建HBase表。 确保JDB CS erver已启动,然后使用Spark-beeline工具,创建HBase表,并插入数据。 执行如下命令,创建命名为table2的HBase表。 create table table2 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table2", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,执行如下命令。 put 'table2', '1', 'cf:cid', '1000'
  • 场景说明 假定Hive的person表存储用户当天消费的金额信息,HBase的table2表存储用户历史消费的金额信息。 现person表有记录name=1,account=100,表示用户1在当天消费金额为100元。 table2表有记录key=1,cf:cid=1000,表示用户1的历史消息记录金额为1000元。 基于某些业务要求,要求开发Spark应用程序实现如下功能: 根据用户名累计用户的历史消费金额,即用户总消费金额=100(用户当天的消费金额) + 1000(用户历史消费金额)。 上例所示,运行结果table2表用户key=1的总消费金融为cf:cid=1100元。
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。 运行样例程序前,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”)。
  • Spark SQL常用接口 Spark SQL中重要的类有: SQLContext:是Spark SQL功能和DataFrame的主入口。 DataFrame:是一个以命名列方式组织的分布式数据集 DataFrameReader:从外部存储系统加载DataFrame的接口。 DataFrameStatFunctions:实现DataFrame的统计功能。 UserDefinedFunction:用户自定义的函数。 常见的Actions方法有: 表6 Spark SQL方法介绍 方法 说明 Row[] collect() 返回一个数组,包含DataFrame的所有列。 long count() 返回DataFrame的行数。 DataFrame describe(java.lang.String... cols) 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 Row first() 返回第一行。 Row[] head(int n) 返回前n行。 void show() 用表格形式显示DataFrame的前20行。 Row[] take(int n) 返回DataFrame中的前n行。 表7 基本的DataFrame Functions介绍 方法 说明 void explain(boolean extended) 打印出SQL语句的逻辑计划和物理计划。 void printSchema() 打印schema信息到控制台。 registerTempTable 将DataFrame注册为一张临时表,其周期和SQLContext绑定在一起。 DataFrame toDF(java.lang.String... colNames) 返回一个列重命名的DataFrame。 DataFrame sort(java.lang.String sortCol,java.lang.String... sortCols) 根据不同的列,按照升序或者降序排序。 GroupedData rollup(Column... cols) 对当前的DataFrame特定列进行多维度的回滚操作。
  • 场景说明 假定Hive的person表存储用户当天消费的金额信息,HBase的table2表存储用户历史消费的金额信息。 现person表有记录name=1,account=100,表示用户1在当天消费金额为100元。 table2表有记录key=1,cf:cid=1000,表示用户1的历史消息记录金额为1000元。 基于某些业务要求,要求开发Spark应用程序实现如下功能: 根据用户名累计用户的历史消费金额,即用户总消费金额=100(用户当天的消费金额) + 1000(用户历史消费金额)。 上例所示,运行结果table2表用户key=1的总消费金融为cf:cid=1100元。
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 运行样例程序前,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”)。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。
  • 运行任务 进入Spark客户端目录,调用bin/spark-submit脚本运行代码,运行命令分别如下(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java或Scala样例代码 bin/spark-submit --class com.huawei.bigdata.spark.examples.SparkHivetoHbase --master yarn --deploy-mode client /opt/female/SparkHivetoHbase-1.0.jar 运行Python样例程序 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。将所提供 Java代码使用maven打包成jar,并放在相同目录下,运行python程序时要使用--jars把jar包加载到classpath中。 由于Python样例代码中未给出认证信息,请在执行应用程序时通过配置项“--keytab”和“--principal”指定认证信息。 bin/spark-submit --master yarn --deploy-mode client --keytab /opt/FIclient/user.keytab --principal sparkuser --jars /opt/female/SparkHivetoHbasePythonExample/SparkHivetoHbase-1.0.jar /opt/female/SparkHivetoHbasePythonExample/SparkHivetoHbasePythonExample.py
  • SparkSQL常用接口 Spark SQL中在Python中重要的类有: pyspark.sql.SQLContext:是Spark SQL功能和DataFrame的主入口。 pyspark.sql.DataFrame:是一个以命名列方式组织的分布式数据集。 pyspark.sql.HiveContext:获取存储在Hive中数据的主入口。 pyspark.sql.DataFrameStatFunctions:统计功能中一些函数。 pyspark.sql.functions:DataFrame中内嵌的函数。 pyspark.sql.Window:sql中提供窗口功能。 表4 Spark SQL常用的Action 方法 说明 collect() 返回一个数组,包含DataFrame的所有列。 count() 返回DataFrame中的行数。 describe() 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first() 返回第一行。 head(n) 返回前n行。 show() 用表格形式显示DataFrame。 take(num) 返回DataFrame中的前num行。 表5 基本的DataFrame Functions 方法 说明 explain() 打印出SQL语句的逻辑计划和物理计划。 printSchema() 打印schema信息到控制台。 registerTempTable(name) 将DataFrame注册为一张临时表,命名为name,其周期和SQLContext绑定在一起。 toDF() 返回一个列重命名的DataFrame。
  • Spark Streaming常用接口 Spark Streaming中常见的类有: pyspark.streaming.StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 pyspark.streaming.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dsteam.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表3 Spark Streaming常用接口介绍 方法 说明 socketTextStream(hostname, port, storageLevel) 从TCP源主机:端口创建一个输入流。 start() 启动Spark Streaming计算。 awaitTermination(timeout) 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext, stopGraceFully) 终止Spark Streaming计算,stopSparkContext用于判断是否需要终止相关的SparkContext,StopGracefully用于判断是否需要等待所有接受到的数据处理完成。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义State和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(other,numPartitions) 实现不同的Spark Streaming之间做合并操作。
  • 数据规划 使用Spark-Beeline工具创建Spark和HBase表table1、table2,并通过HBase插入数据。 确保JDBCServer已启动。然后在Spark2x客户端,使用Spark-Beeline工具执行如下操作。 使用Spark-beeline工具创建Spark表table1。 create table table1 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table1", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table1', '1', 'cf:cid', '100' 使用Spark-Beeline工具创建Spark表table2。 create table table2 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table2", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table2', '1', 'cf:cid', '1000'
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 运行样例程序前,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”)。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。
  • 运行任务 进入Spark客户端目录,调用bin/spark-submit脚本运行代码,运行命令分别如下(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java或Scala样例代码 bin/spark-submit --conf spark.yarn.user.classpath.first=true --class com.huawei.bigdata.spark.examples.SparkHbasetoHbase --master yarn --deploy-mode client /opt/female/SparkHbasetoHbase-1.0.jar 运行Python样例程序 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。将所提供 Java代码使用maven打包成jar,并放在相同目录下,运行python程序时要使用--jars把jar包加载到classpath中。 由于Python样例代码中未给出认证信息,请在执行应用程序时通过配置项“--keytab”和“--principal”指定认证信息。 bin/spark-submit --master yarn --deploy-mode client --keytab /opt/FIclient/user.keytab --principal sparkuser --conf spark.yarn.user.classpath.first=true --jars /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbase-1.0.jar,/opt/female/protobuf-java-2.5.0.jar /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbasePythonExample.py
  • 场景说明 假定HBase的table1表存储用户当天消费的金额信息,table2表存储用户历史消费的金额信息。 现table1表有记录key=1,cf:cid=100,表示用户1在当天消费金额为100元。 table2表有记录key=1,cf:cid=1000,表示用户1的历史消息记录金额为1000元。 基于某些业务要求,要求开发Spark应用程序实现如下功能: 根据用户名累计用户的历史消费金额,即用户总消费金额=100(用户当天的消费金额) + 1000(用户历史消费金额)。 上例所示,运行结果table2表用户key=1的总消费金融为cf:cid=1100元。
  • 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 准备开发用户 参考准备 MRS 应用开发用户进行操作,准备用于应用开发的集群用户并授予相应权限。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。
  • 运行任务 进入Spark客户端目录,调用bin/spark-submit脚本运行代码,运行命令分别如下(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java或Scala样例代码 bin/spark-submit --conf spark.yarn.user.classpath.first=true --class com.huawei.bigdata.spark.examples.SparkHbasetoHbase --master yarn --deploy-mode client /opt/female/SparkHbasetoHbase-1.0.jar 运行Python样例程序 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。将所提供 Java代码使用maven打包成jar,并放在相同目录下,运行python程序时要使用--jars把jar包加载到classpath中。 bin/spark-submit --master yarn --deploy-mode client --conf spark.yarn.user.classpath.first=true --jars /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbase-1.0.jar,/opt/female/protobuf-java-2.5.0.jar /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbasePythonExample.py
共100000条