华为云用户手册
-
不规则空间集合的聚合查询 查询语句及Filter UDF 根据polygon过滤数据 IN_POLYGON(pointList) UDF输入参数: 参数 类型 说明 pointList String 将多个点输入为一个字符串,每个点以longitude latitude表示。经纬度间用空格分隔,每对经纬度用逗号分隔,字符串首尾经纬度一致。 UDF输出参数: 参数 类型 说明 inOrNot Boolean 判断数据是否在指定的polygon_list之内。 使用示例: select longitude, latitude from geosot where IN_POLYGON('116.321011 40.123503, 116.137676 39.947911, 116.560993 39.935276, 116.321011 40.123503'); 根据polygon列表过滤数据。 IN_POLYGON_LIST(polygonList, opType) UDF输入参数: 参数 类型 说明 polygonList String 将多个polygon输入为一个字符串,每个polygon以POLYGON ((longitude1 latitude1, longitude2 latitude2, …))表示。注意“POLYGON”后有空格,经纬度间用空格分隔,每对经纬度用逗号分隔,一个polygon的首尾经纬度一致。IN_POLYGON_LIST必须输入2个以上polygon。 一个polygon示例: POLYGON ((116.137676 40.163503, 116.137676 39.935276, 116.560993 39.935276, 116.137676 40.163503)) opType String 对多个polygon进行并交差操作。 目前支持的操作类型: OR:A U B U C (假设输入了三个POLYGON,A、B、C) AND:A ∩ B ∩ C UDF输出参数: 参数 类型 说明 inOrNot Boolean 判断数据是否在指定的polygon_list之内。 使用示例: select longitude, latitude from geosot where IN_POLYGON_LIST('POLYGON ((120.176433 30.327431,120.171283 30.322245,120.181411 30.314540, 120.190509 30.321653,120.185188 30.329358,120.176433 30.327431)), POLYGON ((120.191603 30.328946,120.184179 30.327465,120.181819 30.321464, 120.190359 30.315388,120.199242 30.324464,120.191603 30.328946))', 'OR'); 根据polyline列表过滤数据。 IN_POLYLINE_LIST(polylineList, bufferInMeter) UDF输入参数: 参数 类型 说明 polylineList String 将多个polyline输入为一个字符串,每个polyline以LINESTRING (longitude1 latitude1, longitude2 latitude2, …)表示。注意“LINESTRING”后有空格,经纬度间用空格分隔,每组经纬度用逗号分隔。 对多个polyline区域内的数据会输出并集结果。 一个polyline示例: LINESTRING (116.137676 40.163503, 116.137676 39.935276, 116.260993 39.935276) bufferInMeter Float polyline的buffer距离,单位为米。末端使用直角创建缓冲区。 UDF输出参数: 参数 类型 说明 inOrNot Boolean 判断数据是否在指定的polyline_list之内。 使用示例: select longitude, latitude from geosot where IN_POLYLINE_LIST('LINESTRING (120.184179 30.327465, 120.191603 30.328946, 120.199242 30.324464, 120.190359 30.315388)', 65); 根据GeoId区间列表过滤数据。 IN_POLYGON_RANGE_LIST(polygonRangeList, opType) UDF输入参数: 参数 类型 说明 polygonRangeList String 将多个rangeList输入为一个字符串,每个rangeList以RANGELIST (startGeoId1 endGeoId1, startGeoId2 endGeoId2, …)表示。注意“RANGELIST”后有空格,首尾GeoId间用空格分隔,每组GeoId range用逗号分隔。 一个rangeList示例: RANGELIST (855279368848 855279368850, 855280799610 855280799612, 855282156300 855282157400) opType String 对多个rangeList进行并交差操作。 目前支持的操作类型: OR:A U B U C (假设输入了三个RANGELIST,A、B、C) AND:A ∩ B ∩ C UDF输出参数: 参数 类型 说明 inOrNot Boolean 判断数据是否在指定的polyRange_list之内。 使用示例: select mygeosot, longitude, latitude from geosot where IN_POLYGON_RANGE_LIST('RANGELIST (526549722865860608 526549722865860618, 532555655580483584 532555655580483594)', 'OR'); polygon连接查询 IN_POLYGON_JOIN(GEO_HASH_INDEX_COLUMN, POLYGON_COLUMN) 两张表做join查询,一张表为空间数据表(有经纬度列和GeoHashIndex列),另一张表为维度表,保存polygon数据。 查询使用IN_POLYGON_JOIN UDF,参数GEO_HASH_INDEX_COLUMN和polygon表的POLYGON_COLUMN。Polygon_column列是一系列的点(经纬度列)。Polygon表的每一行的第一个点和最后一个点必须是相同的。Polygon表的每一行的所有点连接起来形成一个封闭的几何对象。 UDF输入参数: 参数 类型 说明 GEO_HASH_INDEX_COLUMN Long 空间数据表的GeoHashIndex列。 POLYGON_COLUMN String Polygon表的polygon列,数据为polygon的字符串表示。例如,一个polygon是POLYGON ((longitude1 latitude1, longitude2 latitude2, …)) 使用示例: CREATE TABLE polygonTable( polygon string, poiType string, poiId String) STORED AS carbondata; insert into polygonTable select 'POLYGON ((120.176433 30.327431,120.171283 30.322245, 120.181411 30.314540,120.190509 30.321653,120.185188 30.329358,120.176433 30.327431))','abc','1'; insert into polygonTable select 'POLYGON ((120.191603 30.328946,120.184179 30.327465, 120.181819 30.321464,120.190359 30.315388,120.199242 30.324464,120.191603 30.328946))','abc','2'; select t1.longitude,t1.latitude from geosot t1 inner join (select polygon,poiId from polygonTable where poitype='abc') t2 on in_polygon_join(t1.mygeosot,t2.polygon) group by t1.longitude,t1.latitude; range_list连接查询 IN_POLYGON_JOIN_RANGE_LIST(GEO_HASH_INDEX_COLUMN, POLYGON_COLUMN) 同IN_POLYGON_JOIN,使用IN_POLYGON_JOIN_RANGE_LIST UDF关联空间数据表和polygon维度表,关联基于Polygon_RangeList。直接使用range list可以避免polygon到range list的转换。 UDF输入参数: 参数 类型 说明 GEO_HASH_INDEX_COLUMN Long 空间数据表的GeoHashIndex列。 POLYGON_COLUMN String Polygon表的rangelist列,数据为rangeList的字符串。例如,一个rangelist是RANGELIST (startGeoId1 endGeoId1, startGeoId2 endGeoId2, …) 使用示例: CREATE TABLE polygonTable( polygon string, poiType string, poiId String) STORED AS carbondata; insert into polygonTable select 'RANGELIST (526546455897309184 526546455897309284, 526549831217315840 526549831217315850, 532555655580483534 532555655580483584)','xyz','2'; select t1.* from geosot t1 inner join (select polygon,poiId from polygonTable where poitype='xyz') t2 on in_polygon_join_range_list(t1.mygeosot,t2.polygon); 空间索引工具类UDF GeoID转栅格行列号。 GeoIdToGridXy(geoId) UDF输入参数: 参数 类型 说明 geoId Long 根据GeoId计算栅格行列号。 UDF输出参数: 参数 类型 说明 gridArray Array[Int] 返回该geoid所包含的栅格行列号,以数组的方式返回,第一位为行,第二位为列。 使用示例: select longitude, latitude, mygeohash, GeoIdToGridXy(mygeohash) as GridXY from geoTable; 经纬度转GeoID。 LatLngToGeoId(latitude, longitude oriLatitude, gridSize) UDF输入参数: 参数 类型 说明 longitude Long 经度,注:转换后的整数类型。 latitude Long 纬度,注:转换后的整数类型。 oriLatitude Double 原点纬度,计算GeoId需要参数。 gridSize Int 栅格大小,计算GeoId需要参数。 UDF输出参数: 参数 类型 说明 geoId Long 通过编码获得一个表示经纬度的数。 使用示例: select longitude, latitude, mygeohash, LatLngToGeoId(latitude, longitude, 39.832277, 50) as geoId from geoTable; GeoID转经纬度。 GeoIdToLatLng(geoId, oriLatitude, gridSize) UDF输入参数: 参数 类型 说明 geoId Long 根据GeoId计算经纬度。 oriLatitude Double 原点纬度,计算经纬度需要参数。 gridSize Int 栅格大小,计算经纬度需要参数。 由于GeoId由栅格坐标生成,坐标为栅格中心点,则计算出的经纬度是栅格中心点经纬度,与生成该GeoId的经纬度可能有[0度~半个栅格度数]的误差。 UDF输出参数: 参数 类型 说明 latitudeAndLongitude Array[Double] 返回该geoid所表示的栅格的中心点的经纬度坐标,以数组的方式返回,第一位为latitude,第二位为longitude。 使用示例: select longitude, latitude, mygeohash, GeoIdToLatLng(mygeohash, 39.832277, 50) as LatitudeAndLongitude from geoTable; 计算金字塔模型向上汇聚一层的GeoID。 ToUpperLayerGeoId(geoId) UDF输入参数: 参数 类型 说明 geoId Long 根据输入GeoId计算金字塔模型上一层GeoId。 UDF输出参数: 参数 类型 说明 geoId Long 金字塔模型上一层GeoId。 使用示例: select longitude, latitude, mygeohash, ToUpperLayerGeoId(mygeohash) as upperLayerGeoId from geoTable; 输入polygon获得GeoID范围列表。 ToRangeList(polygon, oriLatitude, gridSize) UDF输入参数: 参数 类型 说明 polygon String 输入polygon字符串,用一组经纬度表示。 经纬度间用空格分隔,每对经纬度间用逗号分隔,首尾经纬度一致。 oriLatitude Double 原点纬度,计算GeoId需要参数。 gridSize Int 栅格大小,计算GeoId需要参数。 UDF输出参数: 参数 类型 说明 geoIdList Buffer[Array[Long]] 将polygon转换为一串geoid的范围列表。 使用示例: select ToRangeList('116.321011 40.123503, 116.137676 39.947911, 116.560993 39.935276, 116.321011 40.123503', 39.832277, 50) as rangeList from geoTable; 计算金字塔模型向上汇聚一层的longitude。 ToUpperLongitude (longitude, gridSize, oriLat) UDF输入参数: 参数 类型 说明 longitude Long 输入longitude,用一个长整型表示。 gridSize Int 栅格大小,计算longitude需要参数。 oriLatitude Double 原点纬度,计算longitude需要参数。 UDF输出参数: 参数 类型 说明 longitude Long 返回上一层的longitude。 使用示例: select ToUpperLongitude (-23575161504L, 50, 39.832277) as upperLongitude from geoTable; 计算金字塔模型向上汇聚一层的Latitude。 ToUpperLatitude(Latitude, gridSize, oriLat) UDF输入参数: 参数 类型 说明 latitude Long 输入latitude,用一个长整型表示。 gridSize Int 栅格大小,计算latitude需要参数。 oriLatitude Double 原点纬度,计算latitude需要参数。 UDF输出参数: 参数 类型 说明 Latitude Long 返回上一层的latitude。 使用示例: select ToUpperLatitude (-23575161504L, 50, 39.832277) as upperLatitude from geoTable; 经纬度转GeoSOT LatLngToGridCode(latitude, longitude, level) UDF输入参数: 参数 类型 说明 latitude Double 输入latitude。 longitude Double 输入longitude。 level Int 输入level,值区间[0-32]。 UDF输出参数: 参数 类型 说明 geoId Long 通过GeoSOT编码获得一个表示经纬度的数。 使用示例: select LatLngToGridCode(39.930753, 116.302895, 21) as geoId;
-
导入数据 GeoHash默认实现类扩展自定义索引抽象类。如果没有配置handler属性为自定义的实现类,则使用默认的实现类。用户可以通过扩展默认实现类来挂载geohash的自定义实现类。自定义索引抽象类方法包括: Init方法,用来提取、验证和存储handler属性。在失败时发生异常,并显示错误信息。 Generate方法,用来生成索引。它为每行数据生成一个索引数据。 Query方法,用来对给定输入生成索引值范围列表。 导入命令同普通Carbon表: LOAD DATA inpath '/tmp/geosotdata.csv' INTO TABLE geosot OPTIONS ('DELIMITER'= ','); LOAD DATA inpath '/tmp/geosotdata2.csv' INTO TABLE geosot OPTIONS ('DELIMITER'= ','); geosotdata.csv和geosotdata2.csv表请参考准备数据。
-
快速示例 create table IF NOT EXISTS carbonTable ( COLUMN1 BIGINT, LONGITUDE BIGINT, LATITUDE BIGINT, COLUMN2 BIGINT, COLUMN3 BIGINT ) STORED AS carbondata TBLPROPERTIES ('SPATIAL_INDEX.mygeohash.type'='geohash','SPATIAL_INDEX.mygeohash.sourcecolumns'='longitude, latitude','SPATIAL_INDEX.mygeohash.originLatitude'='39.850713','SPATIAL_INDEX.mygeohash.gridSize'='50','SPATIAL_INDEX.mygeohash.minLongitude'='115.828503','SPATIAL_INDEX.mygeohash.maxLongitude'='720.000000','SPATIAL_INDEX.mygeohash.minLatitude'='39.850713','SPATIAL_INDEX.mygeohash.maxLatitude'='720.000000','SPATIAL_INDEX'='mygeohash','SPATIAL_INDEX.mygeohash.conversionRatio'='1000000','SORT_COLUMNS'='column1,column2,column3,latitude,longitude');
-
空间索引介绍 空间数据包括多维点、线、矩形、立方体、多边形和其他几何对象。空间数据对象占据空间的某一区域,称为空间范围,通过其位置和边界描述。空间数据可以是点数据,也可以是区域数据。 点数据:一个点具有一个空间范围,仅通过其位置描述。它不占用空间,没有相关的边界。点数据由二维空间中的点的集合组成。点可以存储为一对经纬度。 区域数据:一个区域有空间范围,有位置和边界。位置可以看作是一个定点在区域内的位置,例如它的质心。在二维中,边界可以可视化为一条线(有限区域,闭环)。区域数据包含一系列区域。 目前仅限于支持点数据,存储点数据。 经纬度可以编码为唯一的GeoID。Geohash是Gustavo Niemeyer发明的公共域地理编码系统,它将地理位置编码为一串由字母和数字组成的短字符串。它是一种分层的空间数据结构,把空间细分为网格形状的桶,是被称为Z阶曲线和通常称为空间填充曲线的许多应用之一。 点在多维中的Z值是简单地通过交织其坐标值的二进制表示来计算的,如下图所示。使用Geohash创建GeoID时,数据按照GeoID排序,而不是按照经纬度排序,数据按照空间就近性排序存储。
-
建表 GeoHash编码: create table IF NOT EXISTS carbonTable ( ... `LONGITUDE` BIGINT, `LATITUDE` BIGINT, ... ) STORED AS carbondata TBLPROPERTIES ('SPATIAL_INDEX.mygeohash.type'='geohash','SPATIAL_INDEX.mygeohash.sourcecolumns'='longitude, latitude','SPATIAL_INDEX.mygeohash.originLatitude'='xx.xxxxxx','SPATIAL_INDEX.mygeohash.gridSize'='xx','SPATIAL_INDEX.mygeohash.minLongitude'='xxx.xxxxxx','SPATIAL_INDEX.mygeohash.maxLongitude'='xxx.xxxxxx','SPATIAL_INDEX.mygeohash.minLatitude'='xx.xxxxxx','SPATIAL_INDEX.mygeohash.maxLatitude'='xxx.xxxxxx','SPATIAL_INDEX'='mygeohash','SPATIAL_INDEX.mygeohash.conversionRatio'='1000000','SORT_COLUMNS'='column1,column2,column3,latitude,longitude'); SPATIAL_INDEX:自定义索引处理器。此处理程序允许用户从表结构列集合中创建新的列。新创建的列名与处理程序名相同。处理程序的type和sourcecolumns属性是必须的属性。目前,type属性只支持“geohash”。Carbon提供一个简单的默认实现类。用户可以通过扩展默认实现类来挂载geohash的自定义实现类。该默认处理程序还需提供以下的表属性: SPATIAL_INDEX.xxx.originLatitude:Double类型,坐标原点纬度 SPATIAL_INDEX.xxx.gridSize:Int类型,栅格长度(米) SPATIAL_INDEX.xxx.minLongitude:Double类型,最小经度 SPATIAL_INDEX.xxx.maxLongitude:Double类型,最大经度 SPATIAL_INDEX.xxx.minLatitude:Double类型,最小纬度 SPATIAL_INDEX.xxx.maxLatitude:Double类型,最大纬度 SPATIAL_INDEX.xxx.conversionRatio:Int类型,将经纬度小数值转换为整型值 用户可以按照上述格式为处理程序添加自己的表属性,并在自定义实现类中访问它们。originLatitude,gridSize及conversionRatio是必选参数,其余属性在Carbon中都是可选的。可以使用“SPATIAL_INDEX.xxx.class”属性指定它们的实现类。 默认实现类可以为每一行的sourcecolumns生成handler列值,并且支持基于sourcecolumns的过滤条件查询。生成的handler列对用户不可见。除SORT_COLUMNS表属性外,任何DDL命令和属性都不允许包含handler列。 生成的handler列默认被视为排序列。如果SORT_COLUMNS不包含任何sourcecolumns,则将handler列追加到现有的SORT_COLUMNS最后。如果在SORT_COLUMNS中已经指定了该handler列,则它在SORT_COLUMNS的顺序将保持不变。 如果SORT_COLUMNS包含任意的sourcecolumns,但是没有包含handler列,则handler列将自动插入到SORT_COLUMNS中的sourcecolumns之前。 如果SORT_COLUMNS需要包含任意的sourcecolumns,那么需要保证handler列出现在sourcecolumns之前,这样handler列才能在排序中生效。
-
准备数据 准备数据文件1:geosotdata.csv timevalue,longitude,latitude 1575428400000,116.285807,40.084087 1575428400000,116.372142,40.129503 1575428400000,116.187332,39.979316 1575428400000,116.337069,39.951887 1575428400000,116.359102,40.154684 1575428400000,116.736367,39.970323 1575428400000,116.720179,40.009893 1575428400000,116.346961,40.13355 1575428400000,116.302895,39.930753 1575428400000,116.288955,39.999101 1575428400000,116.17609,40.129953 1575428400000,116.725575,39.981115 1575428400000,116.266922,40.179415 1575428400000,116.353706,40.156483 1575428400000,116.362699,39.942444 1575428400000,116.325378,39.963129 准备数据文件2:geosotdata2.csv timevalue,longitude,latitude 1575428400000,120.17708,30.326882 1575428400000,120.180685,30.326327 1575428400000,120.184976,30.327105 1575428400000,120.189311,30.327549 1575428400000,120.19446,30.329698 1575428400000,120.186965,30.329133 1575428400000,120.177481,30.328911 1575428400000,120.169713,30.325614 1575428400000,120.164563,30.322243 1575428400000,120.171558,30.319613 1575428400000,120.176365,30.320687 1575428400000,120.179669,30.323688 1575428400000,120.181001,30.320761 1575428400000,120.187094,30.32354 1575428400000,120.193574,30.323651 1575428400000,120.186192,30.320132 1575428400000,120.190055,30.317464 1575428400000,120.195376,30.318094 1575428400000,120.160786,30.317094 1575428400000,120.168211,30.318057 1575428400000,120.173618,30.316612 1575428400000,120.181001,30.317316 1575428400000,120.185162,30.315908 1575428400000,120.192415,30.315871 1575428400000,120.161902,30.325614 1575428400000,120.164306,30.328096 1575428400000,120.197093,30.325985 1575428400000,120.19602,30.321651 1575428400000,120.198638,30.32354 1575428400000,120.165421,30.314834
-
示例 添加(Add)或更新(Update): SET enable.unsafe.sort=true 显示(Display)属性值: SET enable.unsafe.sort 显示段ID列表,段状态和其他所需详细信息的示例,然后指定要读取的段列表: SHOW SEGMENTS FOR TABLE carbontable1; SET carbon.input.segments.db.carbontable1 = 1, 3, 9; 多线程模式查询指定段示例如下: CarbonSession.threadSet ("carbon.input.segments.default.carbon_table_MulTI_THread", "1,3"); 在多线程环境中使用CarbonSession.threadSet查询段示例如下(以Scala代码为例): def main(args: Array[String]) { Future { CarbonSession.threadSet("carbon.input.segments.default.carbon_table_MulTI_THread", "1") spark.sql("select count(empno) from carbon_table_MulTI_THread").show() } } 重置(Reset): RESET
-
命令格式 Add或Update参数值: SET parameter_name=parameter_value 此命令用于添加或更新“parameter_name”的值。 Display参数值: SET parameter_name 此命令用于显示指定的“parameter_name”的值。 Display会话参数: SET 此命令显示所有支持的会话参数。 Display会话参数以及使用细节: SET -v 此命令显示所有支持的会话参数及其使用细节。 Reset参数值: RESET 此命令清除所有会话参数。
-
示例 添加carbon配置参数 carbon.clean.file.force.allowed = true create table carbon01(a int,b string,c string) stored as carbondata; insert into table carbon01 select 1,'a','aa'; insert into table carbon01 select 2,'b','bb'; delete from table carbon01 where segment.id in (0); show segments for table carbon01; CLEAN FILES FOR TABLE carbon01 options('force'='true'); show segments for table carbon01; 上述命令将从物理上删除所有DELETE SEGMENT命令删除的segment和合并后的旧的segment。
-
示例 create table productdb.productSalesTable(id int,price int,productName string,city string) stored as carbondata; CREATE INDEX productNameIndexTable on table productdb.productSalesTable (productName,city) as 'carbondata' ; SHOW INDEXES ON productdb.productSalesTable;
-
示例 create table productdb.productSalesTable(id int,price int,productName string,city string) stored as carbondata; CREATE INDEX productNameIndexTable on table productdb.productSalesTable (productName,city) as 'carbondata' ; 上述示例将创建名为“productdb.productNameIndexTable”的二级表并加载所提供列的索引信息。
-
参数描述 表1 CREATE SECONDARY INDEX参数 参数 描述 index_name 索引表的名称。表名称应由字母数字字符和下划线(_)特殊字符组成。 db_name 数据库的名称。数据库名称应由字母数字字符和下划线(_)特殊字符组成。 table_name 数据库中的表名称。表名称应由字母数字字符和下划线(_)特殊字符组成。 col_name 表中的列名称。支持多列。列名称应由字母数字字符和下划线(_)特殊字符组成。 table_blocksize 数据文件的block大小。更多详细信息,请参考•Block大小。
-
示例 create table carbon01(a int,b string,c string) stored as carbondata; insert into table carbon01 select 1,'a','aa'; insert into table carbon01 select 2,'b','bb'; insert into table carbon01 select 3,'c','cc'; SHOW SEGMENTS FOR TABLE carbon01 LIMIT 2;
-
系统响应 +-----+----------+--------------------------+------------------+------------+------------+-------------+--------------+--+ | ID | Status | Load Start Time | Load Time Taken | Partition | Data Size | Index Size | File Format | +-----+----------+--------------------------+------------------+------------+------------+-------------+--------------+--+ | 3 | Success | 2020-09-28 22:53:26.336 | 3.726S | {} | 6.47KB | 3.30KB | columnar_v3 | | 2 | Success | 2020-09-28 22:53:01.702 | 6.688S | {} | 6.47KB | 3.30KB | columnar_v3 | +-----+----------+--------------------------+------------------+------------+------------+-------------+--------------+--+
-
注意事项 表必须已经存在。 用户应属于数据加载组以执行数据加载操作。默认情况下,数据加载组被命名为“ficommon”。 CarbonData表不支持Overwrite。 源表和目标表的数据类型应该相同,否则源表中的数据将被视为Bad Records。 INSERT INTO命令不支持部分成功(partial success),如果存在Bad Records,该命令会失败。 在从源表插入数据到目标表的过程中,无法在源表中加载或更新数据。 如果要在INSERT操作期间启用数据加载或更新,请将以下参数配置为“true”。 “carbon.insert.persist.enable”=“true” 默认上述参数配置为“false”。 启用该参数将降低INSERT操作的性能。
-
示例 data.csv源文件数据如下所示: ID,date,country,name,phonetype,serialname,salary 4,2014-01-21 00:00:00,xxx,aaa4,phone2435,ASD66902,15003 5,2014-01-22 00:00:00,xxx,aaa5,phone2441,ASD90633,15004 6,2014-03-07 00:00:00,xxx,aaa6,phone294,ASD59961,15005 CREATE TABLE carbontable(ID int, date Timestamp, country String, name String, phonetype String, serialname String,salary int) STORED AS carbondata; LOAD DATA inpath 'hdfs://hacluster/tmp/data.csv' INTO table carbontable options('DELIMITER'=',');
-
注意事项 以下是可以在加载数据时使用的配置选项: DELIMITER:可以在加载命令中提供分隔符和引号字符。默认值为,。 OPTIONS('DELIMITER'=',' , 'QUOTECHAR'='"') 可使用'DELIMITER'='\t'来表示用制表符tab对 CS V数据进行分隔。 OPTIONS('DELIMITER'='\t') CarbonData也支持\001和\017作为分隔符。 对于CSV数据,分隔符为单引号(')时,单引号必须在双引号(" ")内。例如:'DELIMITER'= "'"。 QUOTECHAR:可以在加载命令中提供分隔符和引号字符。默认值为"。 OPTIONS('DELIMITER'=',' , 'QUOTECHAR'='"') COMMENTCHAR:可以在加载命令中提供注释字符。在加载操作期间,如果在行的开头遇到注释字符,那么该行将被视为注释,并且不会被加载。默认值为#。 OPTIONS('COMMENTCHAR'='#') FILEHEADER:如果源文件中没有表头,可在LOAD DATA命令中提供表头。 OPTIONS('FILEHEADER'='column1,column2') ESCAPECHAR:如果用户想在CSV上对Escape字符进行严格验证,可以提供Escape字符。默认值为\。 OPTIONS('ESCAPECHAR'='\') 如果在CSV数据中输入ESCAPECHAR,该ESCAPECHAR必须在双引号(" ")内。例如:"a\b"。 Bad Records处理: 为了使数据处理应用程序为用户增值,不可避免地需要对数据进行某种程度的集成。在大多数情况下,数据质量问题源于生成源数据的上游(主要)系统。 有两种完全不同的方式处理Bad Data: 按照原始数据加载所有数据,之后进行除错处理。 在进入数据源的过程中,可以清理或擦除Bad Data,或者在发现Bad Data时让数据加载失败。 有多个选项可用于在CarbonData数据加载过程中清除源数据。对于CarbonData数据中的Bad Records管理,请参见表2。 表2 Bad Records Logger 配置项 默认值 描述 BAD_RECORDS_ LOG GER_ENABLE false 如果设置为true,则将创建Bad Records日志文件,其中包含Bad Records的详细信息。 BAD_RECORDS_ACTION FAIL 以下为Bad Records的四种操作类型: FORCE:通过将Bad Records存储为NULL来自动校正数据。 REDIRECT:无法加载Bad Records,并将其写入BAD_RECORD_PATH下的CSV文件中,默认不开启该类型,如需使用该类型,需要设置参数carbon.enable.badrecord.action.redirect为true。 IGNORE:既不加载Bad Records也不将其写入CSV文件。 FAIL:如果发现存在Bad Records,数据加载将会失败。 说明: 在加载数据时,如果所有记录都是Bad Records,则参数BAD_RECORDS_ACTION将不起作用,加载数据操作将会失败。 IS_EMPTY_DATA_BAD_RECORD false 如果设置为“false”,则空(""或''或,,)数据将不被视为Bad Records,如果设置为“true”,则空数据将被视为Bad Records。 BAD_RECORD_PATH - 指定存储Bad Records的HDFS路径。默认值为Null。 如果启用了Bad Records日志记录或者Bad Records操作重定向,则该路径必须由用户进行配置。 示例: LOAD DATA INPATH 'filepath.csv' INTO TABLE tablename OPTIONS('BAD_RECORDS_LOGGER_ENABLE'='true', 'BAD_RECORD_PATH'='hdfs://hacluster/tmp/carbon', 'BAD_RECORDS_ACTION'='REDIRECT', 'IS_EMPTY_DATA_BAD_RECORD'='false'); 使用“REDIRECT”选项,CarbonData会将所有的Bad Records添加到单独的CSV文件中,但是该文件内容不能用于后续的数据加载,因为其内容可能无法与源记录完全匹配。用户必须清理原始源记录以便于进一步的数据提取。该选项的目的只是让用户知道哪些记录被视为Bad Records。 MAXCOLUMNS:该可选参数指定了在一行中,由CSV解析器解析的最大列数。 OPTIONS('MAXCOLUMNS'='400') 表3 MAXCOLUMNS 可选参数名称 默认值 最大值 MAXCOLUMNS 2000 20000 表4 MAXCOLUMNS可选参数的行为图 MAXCOLUMNS值 在文件Header选项中的列数 考虑的最终值 在加载项中未指定 5 2000 在加载项中未指定 6000 6000 40 7 文件header列数与MAXCOLUMNS值,两者中的最大值 22000 40 20000 60 在加载项中未指定 CSV文件第一行的列数与MAXCOLUMNS值,两者中的最大值 对于设置MAXCOLUMNS Option的最大值,要求executor具有足够的内存,否则,数据加载会由于内存不足的错误而失败。
-
示例 create database productdb; use productdb; CREATE TABLE productSalesTable(a int,b string,c string) stored as carbondata; create index productNameIndexTable on table productSalesTable(c) as 'carbondata'; insert into table productSalesTable select 1,'a','aaa'; create database productdb2; 使用hdfs命令将productdb数据库下的productSalesTable和productNameIndexTable复制到productdb2。 refresh table productdb2.productSalesTable ; refresh table productdb2.productNameIndexTable ; explain select * from productdb2.productSalesTable where c = 'aaa'; //可以发现该查询命令没有使用索引表 REGISTER INDEX TABLE productNameIndexTable ON productdb2.productSalesTable; explain select * from productdb2.productSalesTable where c = 'aaa'; //可以发现该查询命令使用了索引表
-
注意事项 仅在没有数据丢失的情况下支持将Decimal数据类型从较低精度更改为较高精度 例如: 无效场景:将Decimal数据精度从(10,2)更改为(10,5)无效,因为在这种情况下,只有scale增加,但总位数保持不变。 有效场景:将Decimal数据精度从(10,2)更改为(12,3)有效,因为总位数增加2,但是scale仅增加1,这不会导致任何数据丢失。 将Decimal数据类型从较低精度更改为较高精度,其允许的最大精度(precision, scale)范围为(38,38),并且只适用于不会导致数据丢失的有效提升精度的场景。
-
示例 假设表包含4个列,分别命名为a1,b1,c1和d1。 删除单个列: ALTER TABLE carbon DROP COLUMNS (b1); ALTER TABLE test_db.carbon DROP COLUMNS (b1); 删除多个列: ALTER TABLE carbon DROP COLUMNS (b1,c1); ALTER TABLE test_db.carbon DROP COLUMNS (b1,c1);
-
参数描述 表1 ADD COLUMNS参数描述 参数 描述 db_name 数据库名。如果未指定,则选择当前数据库。 table_name 表名。 col_name data_type 带数据类型且用逗号分隔的列的名称。列名称包含字母,数字和下划线(_)。 说明: 创建CarbonData表时,不要将列名命名为tupleId,PositionId和PositionReference,因为将在UPDATE,DELETE和二级索引命令内部使用这些名称。
-
示例 ALTER TABLE carbon ADD COLUMNS (a1 INT, b1 STRING); ALTER TABLE carbon ADD COLUMNS (a1 INT, b1 STRING) TBLPROPERTIES('COLUMNPROPERTIES.b1.shared_column'='sharedFolder.b1'); ALTER TABLE carbon ADD COLUMNS (a1 INT, b1 STRING) TBLPROPERTIES('DEFAULT.VALUE.a1'='10');
-
命令语法 ALTER TABLE [db_name.]table_name ADD COLUMNS (col_name data_type,...) TBLPROPERTIES(''COLUMNPROPERTIES.columnName.shared_column'='sharedFolder.sharedColumnName,...', 'DEFAULT.VALUE.COLUMN_NAME'='default_value');
-
参数描述 表1 ALTER TABLE COMPACTION参数描述 Parameter Description db_name 数据库名。如果未指定,则选择当前数据库。 table_name 表名。 MINOR Minor合并,详见合并Segments。 MAJOR Major合并,详见合并Segments。 SEGMENT_INDEX 这会将一个segment内的所有Carbon索引文件(.carbonindex)合并为一个Carbon索引合并文件(.carbonindexmerge)。 这增强了首次查询性能。详见表1。 CUSTOM Custom合并,详见合并Segments。
-
示例 ALTER TABLE ProductDatabase COMPACT 'MINOR'; ALTER TABLE ProductDatabase COMPACT 'MAJOR'; ALTER TABLE ProductDatabase COMPACT 'SEGMENT_INDEX'; ALTER TABLE ProductDatabase COMPACT 'CUSTOM' WHERE SEGMENT.ID IN (0, 1);
-
系统响应 由于为后台运行,ALTER TABLE COMPACTION命令不会显示压缩响应。 如果想要查看MINOR合并和MAJOR合并的响应结果,用户可以检查日志或运行SHOW SEGMENTS命令查看。 示例: +------+------------+--------------------------+------------------+------------+------------+-------------+--------------+--+ | ID | Status | Load Start Time | Load Time Taken | Partition | Data Size | Index Size | File Format | +------+------------+--------------------------+------------------+------------+------------+-------------+--------------+--+ | 3 | Success | 2020-09-28 22:53:26.336 | 3.726S | {} | 6.47KB | 3.30KB | columnar_v3 | | 2 | Success | 2020-09-28 22:53:01.702 | 6.688S | {} | 6.47KB | 3.30KB | columnar_v3 | | 1 | Compacted | 2020-09-28 22:51:15.242 | 5.82S | {} | 6.50KB | 3.43KB | columnar_v3 | | 0.1 | Success | 2020-10-30 20:49:24.561 | 16.66S | {} | 12.87KB | 6.91KB | columnar_v3 | | 0 | Compacted | 2020-09-28 22:51:02.6 | 6.819S | {} | 6.50KB | 3.43KB | columnar_v3 | +------+------------+--------------------------+------------------+------------+------------+-------------+--------------+--+ 其中, Compacted表示该数据已被合并。 0.1表示segment0与segment1合并之后的结果。 数据合并前后的其他操作没有差别。 被合并的segments(例如segment0和segment1)即成为无用的segments,会占用空间,因此建议合并之后使用CLEAN FILES命令进行彻底删除,再进行其他操作。CLEAN FILES命令的使用方法可参考CLEAN FILES。
-
使用场景 通过指定列创建表 CREATE TABLE命令与Hive DDL相同。CarbonData的额外配置将作为表格属性给出。 CREATE TABLE [IF NOT EXISTS] [db_name.]table_name [(col_name data_type , ...)] STORED AS carbondata [TBLPROPERTIES (property_name=property_value, ...)];
-
示例 CREATE TABLE IF NOT EXISTS productdb.productSalesTable ( productNumber Int, productName String, storeCity String, storeProvince String, productCategory String, productBatch String, saleQuantity Int, revenue Int) STORED AS carbondata TBLPROPERTIES ( 'table_blocksize'='128', 'SORT_COLUMNS'='productBatch, productName')
-
注意事项 以下是表格属性的使用。 Block大小 单个表的数据文件block大小可以通过TBLPROPERTIES进行定义,系统会选择数据文件实际大小和设置的blocksize大小中的较大值,作为该数据文件在HDFS上存储的实际blocksize大小。单位为MB,默认值为1024MB,范围为1MB~2048MB。如果设置值不在[1, 2048]之间,系统将会报错。 一旦block大小达到配置值,写入程序将启动新的CarbonData数据的block。数据以页面大小(32000个记录)的倍数写入,因此边界在字节级别上不严格。 如果新页面跨越配置block的边界,则不会将其写入当前block,而是写入新的block。 TBLPROPERTIES('table_blocksize'='128') 当在CarbonData表中配置了较小的blocksize,而加载的数据生成的数据文件比较大时,在HDFS上显示的blocksize会与设置值不同。这是因为,对于每一个本地block文件的首次写入,即使待写入数据的大小大于blocksize的配置值,也直接将待写入数据写入此block。所以,HDFS上blocksize的实际值为待写入数据大小与blocksize配置值中的较大值。 当CarbonData表中的数据文件block.num小于任务并行度(parellelism)时,CarbonData数据文件的block会被切为新的block,使得blocks.num大于parellelism,这样所有core均可被使用。这种优化称为block distribution。 SORT_SCOPE:指定表创建时的排序范围。如下为四种排序范围。 GLOBAL_SORT:它提高了查询性能,特别是点查询。TBLPROPERTIES('SORT_SCOPE'='GLOBAL_SORT') LOCAL_SORT:数据会本地排序(任务级别排序)。 NO_SORT:默认排序。它将以不排序的方式加载数据,这将显著提升加载性能。 SORT_COLUMNS 此表属性指定排序列的顺序。 TBLPROPERTIES('SORT_COLUMNS'='column1, column3') 如果未指定此属性,则默认情况下,没有列会被排序。 如果指定了此属性,但具有空参数,则表将被加载而不进行排序。例如,('SORT_COLUMNS'='')。 SORT_COLUMNS将接受string,date,timestamp,short,int,long, byte和boolean数据类型。
-
参数描述 表1 CREATE TABLE参数描述 参数 描述 db_name Database名称,由字母、数字和下划线(_)组成。 col_name data_type 以逗号分隔的带数据类型的列表。列名由字母、数字和下划线(_)组成。 说明: 在CarbonData表创建过程中,不允许使用tupleId,PositionId和PositionReference为列命名,因为具有这些名称的列由二级索引命令在内部使用。 table_name Database中的表名,由字母、数字和下划线(_)组成。 STORED AS 参数carbondata,定义和创建CarbonData table。 TBLPROPERTIES CarbonData table属性列表。
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- ...
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章