华为云用户手册
-
配置流水线站内 消息通知 通过服务动态的方式推送通知。流水线执行成功、执行失败、被删除以及配置被更新时,可以配置给创建人、执行人、收藏人发送服务动态。 访问CodeArts Pipeline首页。 在流水线列表页搜索目标流水线,单击操作列,选择“编辑”。 进入流水线“任务编排”页面,切换至“通知订阅”页面。 单击“系统消息”下“站内消息通知”,根据需要开启/关闭通知。 在流水线首页右上角单击,会弹出“通知”侧滑框,即可查看通知消息。 图1 配置服务动态通知 配置完成后,保存流水线。
-
配置流水线邮件消息通知 通过邮件通知的方式推送通知。流水线执行成功、执行失败、被删除以及配置被更新时,可以配置给创建人、执行人、收藏人发送邮件。 访问CodeArts Pipeline首页。 在流水线列表页搜索目标流水线,单击操作列,选择“编辑”。 进入流水线“任务编排”页面,切换至“通知订阅”页面。 单击“系统消息”下“邮件通知”,根据需要开启/关闭通知。 图2 配置邮件通知 配置完成后,保存流水线。
-
配置流水线企业微信通知 将流水线信息推送到企业微信。 访问CodeArts Pipeline首页。 在流水线列表页搜索目标流水线,单击操作列,选择“编辑”。 进入流水线“任务编排”页面,切换至“通知订阅”页面。 单击“第三方通知”下“企业微信”,根据需要填写通知信息,填写完成后即可激活通知。 图3 配置企业微信通知 表1 配置企业微信通知 操作项 说明 URL 填写企业微信机器人通知URL。 事件类型 选择要通知的事件,可选择已完成、失败、暂停、挂起、忽略五种事件类型。 通知内容 选择要通知的内容,可选择流水线名称、流水线执行描述、执行人、触发信息、项目名称、执行时间、运行状态七种通知内容。 @user_id 填写要接受通知的企业微信的user_id,多个user_id之间以逗号分隔。 配置完成后,保存流水线。
-
监控指标中存在已拒绝的连接数是什么原因? 当监控指标中出现“已拒绝的连接数”时,请确认客户端连接数是否已经超过实例的最大连接数限制。 Redis 4.0及以上版本的实例,仅在主备、集群和读写分离实例的数据节点中支持查看“已拒绝的连接数”。 查看最大连接数:单击实例名称,进入实例详情页面,选择“配置参数”页签,查看maxclients参数的值(读写分离实例暂不支持该参数,可通过D CS 实例规格查询实例最大连接数)。 查看实际连接数:单击实例名称,进入实例详情页面,选择“性能监控”页签,找到“活跃的客户端数量”监控项查看。 如果客户端连接数已到达连接上限,可以根据需要调整maxclients参数,如果maxclients参数已经是最大可配连接数,仍不满足需求,则需要考虑增加实例分片。 父主题: 监控告警
-
迁移实例数据 登录分布式缓存服务管理控制台。 在管理控制台左上角单击,选择源Redis所在的区域。 单击左侧菜单栏的“数据迁移”。页面显示迁移任务列表页面。 单击右上角的“创建在线迁移任务”。 设置迁移任务名称和描述。 配置在线迁移任务虚拟机资源的VPC、子网和安全组。 迁移任务需要与源Redis和目标Redis实例网络互通,请选择与Redis实例相同的VPC。 迁移任务创建后,会占用一个租户侧IP,即控制台上迁移任务对应的“迁移机IP”,如果目标Redis配置了IP白名单,需要放通迁移机IP。 迁移任务所选安全组的“出方向规则”需放通源端Redis和目标端Redis的IP和端口(安全组默认情况下为全部放通,则无需单独放通),以便迁移任务的虚拟机资源能访问源Redis和目标Redis。 在线迁移任务创建完成后,单击在线迁移任务右侧“操作”列的“配置”,配置在线迁移的源Redis、目标Redis等信息。 迁移方法请选择“全量迁移+增量迁移”,仅当选择“全量迁移+增量迁移”的迁移方法时,支持通过控制台交换源端与目标端实例的IP地址。如果选择“全量迁移”,需要手动切换业务连接Redis的IP地址。 表1 在线迁移方法说明 迁移类型 描述 全量迁移 该模式为Redis的一次性迁移,适用于可中断业务的迁移场景。全量迁移过程中,如果源Redis有数据更新,这部分更新数据不会被迁移到目标Redis。 全量迁移+增量迁移 该模式为Redis的持续性迁移,适用于对业务中断敏感的迁移场景。增量迁移阶段通过解析日志等技术, 持续保持源Redis和目标端Redis的数据一致。 增量迁移,迁移任务会在迁移开始后,一直保持迁移中状态,不会自动停止。需要您在合适时间,在“操作”列单击“停止”,手动停止迁移。停止后,源端数据不会丢失,只是目标端不再写入数据。增量迁移在传输链路网络稳定情况下是秒级时延,具体的时延情况依赖于网络链路的传输质量。 当迁移方法选择“全量迁移+增量迁移”时,支持选择是否启用“带宽限制”。 启用带宽限制功能,当数据同步速度达到带宽限制时,将限制同步速度的继续增长。 选择是否“自动重连”。如开启自动重连模式,迁移过程中在遇到网络等异常情况时,会无限自动重连。 自动重连模式在无法进行增量同步时,会触发全量同步,增加带宽占用,请谨慎选择。 “源Redis实例”和“目标Redis实例”,请分别选择需要升级的Redis 3.0实例和新建的高版本Redis实例。 如果源Redis和目标Redis为密码访问模式,请分别在“源Redis实例密码”和“目标Redis实例密码”处输入实例密码后,单击密码右侧的“测试连接”,检查实例密码是否正确、网络是否连通。如果源Redis和目标Redis为免密访问模式,无需输入密码,直接单击“测试连接”。 在“源DB”和“目标DB”中,可以选择是否需要指定具体迁移的DB。例如源端输入5,目标端输入6时,表示迁移源Redis DB5中的数据到目标Redis的DB6。当源端不指定DB,目标端指定DB时,表示默认迁移源端的全部数据到目标端指定的DB;当目标端不指定DB时,表示默认迁移到与源端对应的DB。本次操作“源DB”和“目标DB”置空即可。 单击“下一步”。 确认迁移信息,然后单击“提交”,开始创建迁移任务。 可返回迁移任务列表中,观察对应的迁移任务的状态,迁移成功后,任务状态显示“成功”。 如果是增量迁移,会一直保持迁移中的状态。 如需手动停止迁移,请选中需要停止的迁移任务,单击“停止”。 数据迁移后,目标端与源端重复的Key会被覆盖。 如果出现迁移失败,可以单击迁移任务名称,进入迁移任务详情页面,查看“迁移日志”。
-
前提条件 创建与Redis 3.0相同VPC和子网,相同实例类型、相同访问密码、且规格不小于原实例规格的高版本Redis实例。例如,用户需要将Redis 3.0 16GB主备实例升级到Redis 5.0版本,则需要提前创建一个不小于16GB的Redis 5.0主备实例。 创建Redis实例的操作,请参考创建DCS Redis缓存实例。 手动备份Redis 3.0源实例数据。备份数据的操作,请参考如何导出Redis实例数据?。
-
迁移后验证 数据迁移前如果目标Redis中数据为空,迁移完成后,可以通过以下方式确认数据的完整性: 连接源Redis和目标Redis。连接Redis的方法请参考Redis-cli客户端连接Redis。 输入info keyspace,查看keys参数和expires参数的值。 对比源Redis和目标Redis的keys参数分别减去expires参数的差值。如果差值一致,则表示数据完整,迁移正常。 注意:如果是全量迁移,迁移过程中源Redis更新的数据不会迁移到目标实例。
-
约束与限制 DCS Redis 3.0实例支持绑定弹性IP公网访问,Redis 4.0及以上版本的实例不支持直接绑定弹性IP,公网访问方式需通过ELB实现,开启Redis 4.0及以上版本实例公网访问的方式请参考开启Redis公网访问并获取公网访问地址,如果用户业务依赖公网访问,升级前请先进行评估。 通过数据迁移的方式升级Redis版本,对客户业务可能有以下影响: 数据同步完成后,需要交换源Redis与目标Redis实例的IP地址,交换IP地址时会有一分钟内只读和30秒左右的中断。 如果升级后实例与原实例密码不一致,数据同步完成后,需要切换访问Redis的密码,切换时需要停止业务。因此,建议升级前后实例密码保持一致。 建议在业务低峰期进行实例升级操作。
-
方案概述 Redis开源社区自2019年5月19日发布Redis 3.0最后一个小版本后,一直未对Redis 3.0进行更新。华为云DCS也于2021年3月发布了停售DCS Redis 3.0的公告。 鉴于Redis 3.0版本较老,开源社区已不再对其进行更新,DCS提供的Redis 4.0/5.0/6.0/7.0高版本兼容Redis 3.0,建议客户尽快将DCS Redis 3.0升级到高版本。 DCS暂不支持直接升级实例版本,只能通过数据迁移将低版本实例中的数据迁移到高版本,从而实现Redis版本升级。本章节介绍如何通过数据迁移+交换实例IP的方式升级Redis 3.0实例到高版本。
-
不同实例类型的副本和分片数 单机实例:单机实例只有1个节点,1个Redis进程,当Redis进程故障后,DCS为实例重新拉起一个新的Redis进程。 主备/读写分离实例:分片数为1,包含一个主节点,一个或多个备节点。当主节点出现故障时,会进行主备倒换,恢复业务。 集群实例:集群实例由多个分片组成,每个分片默认是一个双副本的主备实例。例如一个3分片,2副本的集群实例,则每个分片都有2个节点(1个主节点,1个备节点)。 实例类型 分片数 副本数 负载均衡 占用IP数 单机 单分片 单副本,不支持多副本 - 1个 主备 单分片 默认双副本,支持配置为2-10副本 企业版主备实例仅支持2副本 不支持 占用IP个数=副本数 读写分离 单分片 默认双副本,支持2-6副本 支持 1个 Proxy集群 多分片 双副本,不支持其他副本数 支持 1个 Cluster集群 多分片 默认双副本,支持配置为1-5副本 不支持 占用IP个数=副本数*分片数
-
Duplicate模型 数据既没有主键,也没有聚合需求时,可以使用Duplicate数据模型建表。Duplicate模型数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的DUPLICATE KEY,只是用来指明底层数据按照指定的列进行排序。 建Duplicate模型表语句如下: CREATE TABLE IF NOT EXISTS example_db.example_tbl ( `timestamp` DATETIME NOT NULL COMMENT "日志时间", `type` INT NOT NULL COMMENT "日志类型", `error_code` INT COMMENT "错误码", `error_msg` VARCHAR(1024) COMMENT "错误详细信息", `op_id` BIGINT COMMENT "负责人id", `op_time` DATETIME COMMENT "处理时间" ) DUPLICATE KEY(`timestamp`, `type`, `error_code`) DISTRIBUTED BY HASH(`type`) BUCKETS 1 PROPERTIES ( "replication_allocation" = "tag.location.default: 1" );
-
基本概念 在Doris中,数据以表(Table)的形式进行逻辑上的描述。 一张表包括行(Row)和列(Column),Row即用户的一行数据,Column用于描述一行数据中不同的字段。Column可以分为Key和Value两大类,从业务角度看,Key和Value可以分别对应维度列和指标列。 Doris的数据模型主要分为以下三类: Aggregate Unique Duplicate 更多Doris数据模型介绍请参见Doris数据模型。在MySQL客户端连接Doris后创建表具体操作请参见快速使用Doris。
-
Aggregate模型 建Aggregate模型表语句示例如下: CREATE TABLE IF NOT EXISTS example_db.example_tbl ( `user_id` LARGEINT NOT NULL COMMENT "用户id", `date` DATE NOT NULL COMMENT "数据灌入日期时间", `city` VARCHAR(20) COMMENT "用户所在城市", `age` SMALLINT COMMENT "用户年龄", `gender` TINYINT COMMENT "用户性别", `last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01 00:00:00" COMMENT "用户最后一次访问时间", `cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费", `max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间", `min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时间" ) AGGREGATE KEY(`user_id`, `date`, `city`, `age`, `gender`) DISTRIBUTED BY HASH(`user_id`) BUCKETS 1 PROPERTIES ( "replication_allocation" = "tag.location.default: 1" ); 当导入数据时,对于Key列相同的行会聚合成一行,而Value列会按照设置的AggregationType进行聚合。 AggregationType目前有以下四种聚合方式: SUM:求和,多行的Value进行累加。 REPLACE:替代,下一批数据中的Value会替换之前导入过的行中的Value。 MAX:保留最大值。 MIN:保留最小值。 表中的列按照是否设置了AggregationType,分为Key (维度列) 和Value(指标列)。例如,没有设置AggregationType的,如user_id、date、age等称为Key,而设置了AggregationType的称为Value。
-
Unique模型 读时合并 这类表没有聚合需求,只需保证主键(user_id和username)的唯一性。且Unique模型的读时合并实现完全可以用Aggregate模型中的REPLACE方式替代。建表示例如下: CREATE TABLE IF NOT EXISTS example_db.example_tbl ( `user_id` LARGEINT NOT NULL COMMENT "用户id", `username` VARCHAR(50) NOT NULL COMMENT "用户昵称", `city` VARCHAR(20) COMMENT "用户所在城市", `age` SMALLINT COMMENT "用户年龄", `gender` TINYINT COMMENT "用户性别", `phone` LARGEINT COMMENT "用户电话", `address` VARCHAR(500) COMMENT "用户地址", `register_time` DATETIME COMMENT "用户注册时间" ) UNIQUE KEY(`user_id`, `username`) DISTRIBUTED BY HASH(`user_id`) BUCKETS 1 PROPERTIES ( "replication_allocation" = "tag.location.default: 1" );
-
数据模型的选择建议 因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要。 Aggregate模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,适合有固定模式的报表类查询场景,但是该模型不适用于count(*)查询。同时因为固定了Value列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语义正确性。 Unique模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用ROLLUP等预聚合带来的查询优势。 对于聚合查询有较高性能需求的用户,推荐使用写时合并实现。 Unique模型仅支持整行更新,如果用户既需要唯一主键约束,又需要更新部分列(例如将多张源表导入到一张Doris表的场景),则可以考虑使用Aggregate模型,同时将非主键列的聚合类型设置为REPLACE_IF_NOT_NULL。 Duplicate适合任意维度的Ad-hoc查询。虽然无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有Key列)。
-
多流Join场景支持配置表级别的TTL时间 本章节适用于 MRS 3.3.0及以后版本。 在Flink双流Join场景下,如果Join的左表和右表其中一个表数据变化快,需要较短时间的过期时间,而另一个表数据变化较慢,需要较长时间的过期时间。目前Flink只有表级别的TTL(Time To Live:生存时间),为了保证Join的准确性,需要将表级别的TTL设置为较长时间的过期时间,此时状态后端中保存了大量的已经过期的数据,给状态后端造成了较大的压力。为了减少状态后端的压力,可以单独为左表和右表设置不同的过期时间。不支持where子句。 可通过使用Hint方式单独为左表和右表设置不同的过期时间,如左表(state.ttl.left)设置TTL为60秒,右表(state.ttl.right)设置TTL为120秒: Hint方式格式: /*+ OPTIONS('state.ttl.left'='60S', 'state.ttl.right'='120S') */ 在SQL语句中配置示例: 示例1: CREATE TABLE user_info (`user_id` VARCHAR, `user_name` VARCHAR) WITH ( 'connector' = 'kafka', 'topic' = 'user_info_001', 'properties.bootstrap.servers' = 'Kafka的Broker实例业务IP:Kafka端口号', 'properties.group.id' = 'testGroup', 'scan.startup.mode' = 'latest-offset', 'value.format' = 'csv' ); CREATE table print( `user_id` VARCHAR, `user_name` VARCHAR, `score` INT ) WITH ('connector' = 'print'); CREATE TABLE user_score (user_id VARCHAR, score INT) WITH ( 'connector' = 'kafka', 'topic' = 'user_score_001', 'properties.bootstrap.servers' = 'Kafka的Broker实例业务IP:Kafka端口号', 'properties.group.id' = 'testGroup', 'scan.startup.mode' = 'latest-offset', 'value.format' = 'csv' ); INSERT INTO print SELECT t.user_id, t.user_name, d.score FROM user_info as t JOIN -- 为左表和右表设置不同的TTL时间 /*+ OPTIONS('state.ttl.left'='60S', 'state.ttl.right'='120S') */ user_score as d ON t.user_id = d.user_id; 示例2 INSERT INTO print SELECT t1.user_id, t1.user_name, t3.score FROM t1 JOIN -- 为左表和右表设置不同的TTL时间 /*+ OPTIONS('state.ttl.left' = '60S', 'state.ttl.right' = '120S') */ ( select UPPER(t2.user_id) as user_id, t2.score from t2 ) as t3 ON t1.user_id = t3.user_id; 父主题: Flink企业级能力增强
-
基于标签的数据块摆放策略样例 例如某MRS集群有六个DataNode:dn-1,dn-2,dn-3,dn-4,dn-5以及dn-6,对应的IP为10.1.120.[1-6]。有六个目录需要配置标签表达式,Block默认备份数为3。 下面给出3种DataNode标签信息在“host2labels”文件中的表示方式,其作用是一样的。 主机名正则表达式 /dn-[1456]/ = label-1,label-2 /dn-[26]/ = label-1,label-3 /dn-[3456]/ = label-1,label-4 /dn-5/ = label-5 IP地址范围表示方式 10.1.120.[1-6] = label-1 10.1.120.1 = label-2 10.1.120.2 = label-3 10.1.120.[3-6] = label-4 10.1.120.[4-6] = label-2 10.1.120.5 = label-5 10.1.120.6 = label-3 普通的主机名表达式 /dn-1/ = label-1, label-2 /dn-2/ = label-1, label-3 /dn-3/ = label-1, label-4 /dn-4/ = label-1, label-2, label-4 /dn-5/ = label-1, label-2, label-4, label-5 /dn-6/ = label-1, label-2, label-3, label-4 目录的标签表达式设置结果如下: /dir1 = label-1 /dir2 = label-1 && label-3 /dir3 = label-2 || label-4[replica=2] /dir4 = (label-2 || label-3) && label-4 /dir5 = !label-1 /sdir2.txt = label-1 && label-3[replica=3,fallback=NONE] /dir6 = label-4[replica=2],label-2 标签表达式设置方式请参考hdfs nodelabel -setLabelExpression命令。 文件的数据块存放结果如下: “/dir1”目录下文件的数据块可存放在dn-1,dn-2,dn-3,dn-4,dn-5和dn-6六个节点中的任意一个。 “/dir2”目录下文件的数据块可存放在dn-2和dn-6节点上。Block默认备份数为3,表达式只匹配了两个DataNode节点,第三个副本会在集群上剩余的节点中选择一个DataNode节点存放。 “/dir3”目录下文件的数据块可存放在dn-1,dn-3,dn-4,dn-5和dn-6中的任意三个节点上。 “/dir4”目录下文件的数据块可存放在dn-4,dn-5和dn-6。 “/dir5”目录下文件的数据块没有匹配到任何一个DataNode,会从整个集群中任意选择三个节点存放(和默认选块策略行为一致)。 “/sdir2.txt”文件的数据块,两个副本存放在dn-2和dn-6节点上,虽然还缺失一个备份节点,但由于使用了fallback=NONE参数,所以只存放两个备份。 “/dir6”目录下文件的数据块在具备label-4的节点中选择2个节点(dn-3 -- dn-6),然后在label-2中选择一个节点,如果用户指定“/dir6”下文件副本数大于3,则多出来的副本均在label-2。
-
参数说明 表1 MemArtsCC参数说明 参数 参数说明 默认值 access_token_enable Access token认证的开关。 开启后,SDK通过worker读取缓存需要经过token校验。SDK首次向worker发送读请求时,worker会做一次Kerberos认证,生成一个密钥,保存在本地和ZooKeeper,然后用这个密钥生成一个token,返回给SDK,SDK向worker发送读请求时,会将该token传入,和密钥进行校验,校验通过才允许读取缓存。 安全集群为true,普通集群为false cache_cap_max_available_rate 每块盘的最大可用容量比率。 设置范围为0.01~1.0,间隔为0.01。本参数决定使用MemArtsCC磁盘最大容量百分比,默认值是30%,比如3TB的磁盘,MemArtsCC最大可使用的缓存空间为900GB,缓存超过900GB,MemArtsCC动态淘汰缓存。 0.3 cache_reserved_space 每块盘需要动态预留的空间。 cache_reserved_space决定磁盘预留空间,默认值为512MB,建议设置为磁盘容量的10%以上。比如3TB的磁盘,cache_reserved_space设置为300GB,cache_cap_max_available_rate设置为30%,如果磁盘空间小于300GB,尽管MemArtsCC的缓存没有达到最大可使用容量900GB,MemArtsCC也会动态淘汰缓存。 512MB auto_isolate_broken_disk 自动隔离故障磁盘开关。 true broken_disk_list 故障磁盘列表。 -
-
约束与限制 如果当前组件使用了Ranger进行权限控制,须基于Ranger配置相关策略进行权限管理,具体操作可参考添加Spark2x的Ranger访问权限策略。 Spark2x开启或关闭Ranger鉴权后,需要重启Spark2x服务,并重新下载客户端,或刷新客户端配置文件spark/conf/spark-defaults.conf: 开启Ranger鉴权:spark.ranger.plugin.authorization.enable=true 关闭Ranger鉴权:spark.ranger.plugin.authorization.enable=false
-
操作场景 该任务指导MRS集群管理员在Manager创建并设置SparkSQL的角色。SparkSQL角色可设置Spark管理员权限以及数据表的数据操作权限。 用户使用Hive并创建数据库需要加入hive组,不需要角色授权。用户在Hive和HDFS中对自己创建的数据库或表拥有完整权限,可直接创建表、查询数据、删除数据、插入数据、更新数据以及授权他人访问表与对应HDFS目录与文件。默认创建的数据库或表保存在HDFS目录“/user/hive/warehouse”。
-
批量构建全局二级索引数据 只有处于INACTIVE状态的索引才能进行批量构建,如需重建索引数据,请先修改索引状态。 数据表中存在大量数据时,构建耗时较长,建议将nohup命令放在后台执行,避免操作被意外中断。 在HBase客户端执行以下命令可批量构建已有数据的索引数据: hbase org.apache.hadoop.hbase.hindex.global.mapreduce.GlobalTableIndexer -Dtablename.to.index='table' -Dindexnames.to.build='idx1' 相关参数介绍如下: tablename.to.index:表示需修改索引状态的数据表的名称。 indexnames.to.build:指定的需要批量生成数据的索引名,可以同时指定多个,用#号分隔。 hbase.gsi.cleandata.enabled(可选):表示构建索引数据前是否需要清空索引表,默认值为“false”。 hbase.gsi.cleandata.timeout(可选):表示构建索引数据前等待清空索引表超时时间,默认值为“1800”,单位为:秒。
-
操作步骤 使用安装客户端的用户登录客户端所在节点,具体操作请参见使用客户端运行Loader作业。 执行以下命令,进入“backup.properties”文件所在目录。例如,Loader客户端安装目录为 “/opt/client/Loader/”。 cd /opt/client/Loader/loader-tools-1.99.3/loader-backup/conf 执行以下命令,修改“backup.properties”文件的配置参数,参数具体说明如表1所示。 vi backup.properties server.url = 10.0.0.1:21351,10.0.0.2:12000 authentication.type = kerberos authentication.user = authentication.password= job.jobId = 1 use.keytab = true client.principal = loader/hadoop client.keytab = /opt/client/conf/loader.keytab 表1 配置参数说明 配置参数 说明 示例 server.url Loader服务的浮动IP地址和端口(21351)。 为了兼容性,此处支持配置多个IP地址和端口,并以“,”进行分隔。其中第一个必须是Loader服务的浮动IP地址和端口(21351),其余的可根据业务需求配置。 10.0.0.1:21351,10.0.0.2:12000 authentication.type 登录认证的方式。 “kerberos”,表示使用安全模式,进行Kerberos认证。Kerberos认证提供两种认证方式:密码和keytab文件。 “simple”,表示使用普通模式,不进行Kerberos认证。 kerberos authentication.user 普通模式或者使用密码认证方式时,登录使用的用户。 keytab登录方式,则不需要设置该参数。 bar authentication.password 使用密码认证方式时,登录使用的用户密码。 普通模式或者keytab登录方式,则不需要设置该参数。 用户需要对密码加密,加密方法: 进入“encrypt_tool”所在目录。例如,Loader客户端安装目录为“/opt/hadoopclient/Loader”,则执行如下命令。 cd /opt/hadoopclient/Loader/loader-tools-1.99.3 执行以下命令,对非加密密码进行加密。命令中如果携带认证密码信息可能存在安全风险,在执行命令前建议关闭系统的history命令记录功能,避免信息泄露。 ./encrypt_tool 未加密的密码 得到加密后的密文,作为“authentication.password”的取值。 说明: 非加密密码中含有特殊字符时需要转义。例如,$符号属于特殊字符,可使用单引号进行转义;非加密密码中含有单引号时可用双引号进行转义,非加密密码中含有双引号应使用反斜杠\进行转义。可参考Shell的转义字符规则。 - job.jobId 需要执行数据备份的作业ID。 作业ID可通过登录Loader webUI在已创建的作业查看。 1 use.keytab 是否使用keytab方式登录。 true,表示使用keytab文件登录 false,表示使用密码登录。 true client.principal 使用keytab认证方式时,访问Loader服务的用户规则。 普通模式或者密码登录方式,则不需要设置该参数。 loader/hadoop client.keytab 使用keytab认证方式登录时,使用的keytab文件所在目录。 普通模式或者密码登录方式,则不需要设置该参数。 /opt/client/conf/loader.keytab 执行以下命令,进入备份脚本“run.sh”所在目录。例如,Loader客户端安装目录为“/opt/hadoopclient/Loader”。 cd /opt/hadoopclient/Loader/loader-tools-1.99.3/loader-backup 执行以下命令,运行备份脚本“run.sh”,进行Loader作业数据备份。系统将数据备份到作业的输出路径同一层目录。 ./run.sh 备份数据的输入目录 例如,备份数据的输入目录为“/user/hbase/”,作业的输出路径为/opt/client/sftp/sftp1,其中sftp1只起到一个占位符的作用。执行如下命令,数据将备份到/opt/client/sftp/hbase目录。 ./run.sh /user/hbase/
-
Concatenation Operator : || || 操作符用于将相同类型的数组或数值串联起来。 SELECT ARRAY[1] || ARRAY[2]; _col0 -------- [1, 2] (1 row) SELECT ARRAY[1] || 2; _col0 -------- [1, 2] (1 row) SELECT 2 || ARRAY[1]; _col0 -------- [2, 1] (1 row)
-
操作步骤 以客户端安装用户,登录安装客户端的节点。 执行以下命令切换到客户端目录。 cd 客户端安装目录 执行以下命令配置环境变量。 source bigdata_env 如果当前集群已启用Kerberos认证,执行以下命令认证当前用户 kinit 组件业务用户 如果当前集群未启用Kerberos认证,则执行以下命令设置Hadoop用户名: export HADOOP_USER_NAME=hbase 进入Spark客户端目录,执行如下命令,同步数据到HBase目标表中。 cd Spark/spark/bin 例如,执行以下命令同步test.orc_table表的所有数据到HBase的test:orc_table表中,使用id+uuid组合作为rowkey列,输出路径指定为“/tmp/orc_table”: spark-submit --master yarn --deploy-mode cluster --jars 客户端安装目录/HBase/hbase/lib/protobuf-java-2.5.0.jar,客户端安装目录/HBase/hbase/conf/* --conf spark.yarn.user.classpath.first=true --class com.huawei.hadoop.hbase.tools.bulkload.SparkBulkLoadTool 客户端安装目录/HBase/hbase/lib/hbase-it-bulk-load-*.jar -sql "select * from test.orc_table" -tb "test:orc_table" -rc "id,uuid" -op "/tmp/orc_table"
-
前提条件 集群安装了Spark及Hive服务。 执行数据导入的用户需要同时具有Spark(对应源表的SELECT权限)、HBase权限(对应HBase NameSpace的RWXA权限)和HDFS权限(对应HFile输出目录的读写权限)。 如果集群已启用Kerberos认证(安全模式),需修改Spark“客户端安装目录/Spark/spark/conf/spark-defaults.conf”配置文件中的“spark.yarn.security.credentials.hbase.enabled”参数值为“true”。
-
约束与限制 使用Spark BulkLoad同步数据类型数据到HBase表中时,存在以下限制: 数据类型转换的对应关系请参见表1。默认模式下,日期类型会被先转换为String类型,再存储到HBase中; 数字类型、字符串类型、布尔类型均会直接转为byte数组存储到HBase中,解析数据时,请将byte数组直接转换为对应类型,同时需要注意判断空值。 不建议将含有Struct、Map和Seq三种复杂类型的表数据直接同步到HBase表中,这些类型无法直接转换为byte数组,会先被转为String,再存储到HBase中,可能会导致无法还原数据。 该章节内容仅适用于MRS 3.5.0及之后版本。 表1 数据类型转换对应关系 Hive/Spark表 默认模式 HBase表 解析方式 TINYINT Byte byte[]取第一个值 SMALLINT Short Bytes.toShort(byte[]) INT/INTEGER Integer Bytes.toInt(byte[]) BIGINT Long Bytes.toLong(byte[], int, int) FLOAT Float Bytes.toFloat(byte[]) DOUBLE Double Bytes.toDouble(byte[]) DECIMAL/NUMERIC BigDecimal Bytes.toBigDecimal(byte[]) TIMESTAMP String Bytes.toString(byte[]) DATE String Bytes.toString(byte[]) STRING String Bytes.toString(byte[]) VARCHAR String Bytes.toString(byte[]) CHAR String Bytes.toString(byte[]) BOOLEAN Boolean Bytes.toBoolean(byte[]) BINARY byte[] 无需解析 ARRAY String Bytes.toString(byte[]) MAP String Bytes.toString(byte[]) STRUCT String Bytes.toString(byte[])
-
前提条件 数据源与HetuEngine集群节点网络互通。 集群已启用Kerberos认证(安全模式)创建HetuEngine管理员用户,集群未启用Kerberos认证(普通模式)创建HetuEngine业务用户,并为其赋予HDFS管理员权限,即创建用户时需同时加入“hadoop”和“hadoopmanager”用户组,创建用户可参考创建HetuEngine权限角色。 已创建HetuEngine计算实例,可参考创建HetuEngine计算实例。 已获取Oracle数据库所在的IP地址,端口号,数据库实例名称或是数据库pdb名称,用户名及密码。
-
操作步骤 以Hive客户端安装用户登录安装客户端的节点。 执行以下命令,切换到客户端安装目录,配置环境变量并认证用户。 切换至客户端安装目录: cd 客户端安装目录 加载环境变量: source bigdata_env 认证用户,未开启Kerberos认证的集群请跳过该步骤: kinit Hive业务用户 执行以下命令登录Hive客户端。 beeline 创建表时指定inputFormat和outputFormat: CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name [(col_name data_type [COMMENT col_comment], ...)] [ROW FORMAT row_format] STORED AS inputformat 'org.apache.hadoop.hive.contrib.fileformat.SpecifiedDelimiterInputFormat' outputformat 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'; 查询之前指定分隔符配置项: set hive.textinput.record.delimiter='!@!'; Hive会以“!@!”为行分隔符查询数据。
-
操作场景 通常情况下,Hive以文本文件存储的表会以回车作为其行分隔符,即在查询过程中,以回车符作为一行表数据的结束符。但某些数据文件并不是以回车分隔的规则文本格式,而是以某些特殊符号分隔其规则文本。 MRS Hive支持指定不同的字符或字符组合作为Hive文本数据的行分隔符,即在创建表的时候,指定inputformat为SpecifiedDelimiterInputFormat,然后在每次查询前,都设置如下参数来指定分隔符,就可以以指定的分隔符查询表数据: set hive.textinput.record.delimiter='';
-
回答 在splitWAL的过程中,参数“hbase.splitlog.manager.timeout”控制splitWAL的超时时间,如果该时间内splitWAL无法完成,则会再次提交相同的任务,在一定时间内多次提交了相同的任务,当其中某次任务执行完毕时会删除这个temp文件,所以在后来的任务执行时无法找到这个文件,故出现FileNotFoudException。需做如下调整: 当前“hbase.splitlog.manager.timeout”的默认时间为“600000ms”,集群规格为每个regionserver上有2000~3000个region,在集群正常情况下(HBase无异常,HDFS无大量的读写操作等),建议此参数根据集群的规格进行调整,如果实际规格(实际平均每个regionserver上region的个数)大于默认规格(默认平均每个regionserver上region的个数,即2000),则调整方案为(实际规格 / 默认规格)* 默认时间。 在服务端的“hbase-site.xml”文件中配置splitlog参数,如表1所示。 表1 splitlog参数说明 参数 描述 默认值 hbase.splitlog.manager.timeout 分布式日志分裂管理程序接收worker回应的超时时间 600000
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- ...
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333