华为云用户手册
-
问题4:使用SmoothQuant进行W8A8进行模型量化时报错 使用SmoothQuant进行W8A8进行模型量化时报错:AttributeError: type object 'LlamaAttention' has no attribute '_init_rope' 解决方法:降低transformers版本到4.42 pip install transformers==4.42 --upgrade
-
问题9:使用benchmark-tools访问推理服务返回报错 使用benchmark-tools访问推理服务时,输入输出的token和大于max_model_len,服务端返回报错Response payload is not completed,见图2。 再次设置输入输出的token和小于max_model_len访问推理服务,服务端响应200,见图3。 客户端仍返回报错Response payload is not completed,见图4。 图2 服务端返回报错Response payload is not completed 图3 服务端响应200 图4 仍返回报错Response payload is not completed 解决方法: 安装brotlipy后返回正确报错 pip install brotlipy
-
问题3:使用llama3.1系列模型进行推理时报错 使用llama3.1系模型进行推理时报错:ValueError: 'rope_scaling' must be a dictionary with two fields, 'type' and 'factor', got {'factor': 8.0, 'low_freq_factor': 1.0, 'high_freq_factor': 4.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}
-
问题12:使用SmoothQuant做权重转换时,scale显示为nan或推理时精度异常 图7 权重转换scale显示为nan 涉及模型:qwen2-1.5b, qwen2-7b 解决方法:修改AscendCloud/AscendCloud-LLM/llm_tools/AutoSmoothQuant/autosmoothquant/utils/utils.py中的build_model_and_tokenizer函数,将torch_dtype类型从torch.float16改成torch.bfloat16 kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
-
问题13:使用SmoothQuant做权重转换时报错 图8 权重转换报错 涉及模型:qwen2-1.5b, qwen2-0.5b 解决方法:修改AscendCloud/AscendCloud-LLM/llm_tools/AutoSmoothQuant/autosmoothquant/examples/smoothquant_model.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False)
-
问题2:在推理预测过程中遇到ValueError:User-specified max_model_len is greater than the drived max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json
-
问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary with two fields, 'type' and 'factor' 解决方法: 该问题通过将transformers升级到4.44.0,修改对应transformers中的transformers/models/llama/modeling_llama.py,在class LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu()
-
问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument 'padding_side' 解决方法: 1、下载最新的tokenization_chatglm.py,替换原来权重里的tokenization_chatglm.py。 https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py 或者2、修改tokenization_chatglm.py,在266行增加padding_side: str = "left",如图1所示。 图1 tokenization_chatglm.py
-
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。 以llama2-13b为例,NPU卡显存为32GB时,至少需要2张卡运行推理业务,2张卡运行的情况下,推荐的最大序列max-model-len长度最大是16K,此处的单位K是1024,即16*1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16 1 16 3 llama-65b 8 16 4 16 4 llama2-7b 1 16 1 32 5 llama2-13b 2 16 1 16 6 llama2-70b 8 32 4 64 7 llama3-8b 1 32 1 128 8 llama3.1-8b 1 32 1 128 9 llama3-70b 8 32 4 64 10 llama3.1-70b 8 32 4 64 11 llama3.2-1b 1 128 1 128 12 llama3.2-3b 1 128 1 128 13 qwen-7b 1 8 1 32 14 qwen-14b 2 16 1 16 15 qwen-72b 8 8 4 16 16 qwen1.5-0.5b 1 128 1 256 17 qwen1.5-7b 1 8 1 32 18 qwen1.5-1.8b 1 64 1 128 19 qwen1.5-14b 2 16 1 16 20 qwen1.5-32b 4 32 2 64 21 qwen1.5-72b 8 8 4 16 22 qwen1.5-110b - - 8 128 23 qwen2-0.5b 1 128 1 256 24 qwen2-1.5b 1 64 1 128 25 qwen2-7b 1 8 1 32 26 qwen2-72b 8 32 4 64 27 qwen2.5-0.5b 1 32 1 32 28 qwen2.5-1.5b 1 32 1 32 29 qwen2.5-3b 1 32 1 32 30 qwen2.5-7b 1 32 1 32 31 qwen2.5-14b 2 32 1 32 32 qwen2.5-32b 4 32 2 64 33 qwen2.5-72b 8 32 4 32 34 chatglm2-6b 1 64 1 128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64 41 yi-34b 4 32 2 64 42 deepseek-llm-7b 1 16 1 32 43 deepseek-coder-33b-instruct 4 32 2 64 44 deepseek-llm-67b 8 32 4 64 45 mistral-7b 1 32 1 128 46 mixtral-8x7b 4 8 2 32 47 gemma-2b 1 64 1 128 48 gemma-7b 1 8 1 32 49 falcon-11b 1 8 1 64 50 llava-1.5-7b 1 16 1 32 51 llava-1.5-13b 1 8 1 16 52 llava-v1.6-7b 1 16 1 32 53 llava-v1.6-13b 1 8 1 16 54 llava-v1.6-34b 4 32 2 64 55 internvl2-8b 1 16` 1 32 56 internvl2-26b 2 8 1 8 57 internvl2-40b - - 2 32 58 internVL2-Llama3-76B - - 4 8 59 MiniCPM-v2.6 - - 1 8 60 llama-3.1-405B-AWQ - - 8 32 61 qwen2-57b-a14b - - 2 16 62 deepseek-v2-lite-16b 2 4 1 4 63 deepseek-v2-236b - - 8 4 64 qwen2-vl-2B 1 8 1 8 65 qwen2-vl-7B 1 8 1 32 66 qwen2-vl-72B - - 4 32 67 qwen-vl 1 64 1 64 68 qwen-vl-chat 1 64 1 64 69 MiniCPM-v2 2 16 1 16 “-”表示不支持。 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)
-
步骤五:训练生成权重转换成可以支持vLLM推理的格式 将训练完成后的权重文件(.bin文件或. safetensors文件),移动到下载好的开源权重目录下(即步骤4中,config文件所在目录)。 然后在llm_tools/spec_decode/EAGLE文件夹,执行 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 --base-path:为大模型权重地址,例如 ./llama2-7b-chat --draft-path:小模型权重地址,即步骤四中config文件所在目录,例如 ./eagle_llama2-7b-chat --base-weight-name:为大模型包含lm_head的权重文件名,可以在base-path目录下的 model.safetensors.index.json 文件获取,例如llama2-7b-chat的权重名为pytorch_model-00001-of-00002.bin 图3 权重文件名 --draft-weight-name 为小模型权重文件名,即刚才移动的.bin文件或者.safetensors文件。
-
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction \ --input_name input \ --output_name output \ --code_type utf-8 其中: input_file_path:预训练json文件地址。 out_file_name:输出的sharegpt格式文件地址。 prefix_name:预训练json文件的前缀字段名称,例如:您是一个xxx专家,您需要回答下面问题。prefix_name可设置为None,此时预训练数据集只有input和output两段输入。 input_name:预训练json文件的指令输入字段名称,例如:请问苹果是什么颜色。 output_name output:预训练json文件的output字段名称,例如:苹果是红色的。 code_type:预训练json文件编码,默认utf-8。 当转换为sharegpt格式时,prefix和input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。
-
步骤四:执行训练 安装完成后,执行: accelerate launch -m --mixed_precision=bf16 eagle.train.main \ --tmpdir [path of data] \ --cpdir [path of checkpoints] \ --configpath [path of config file] \ --basepath [path of base_model] --bs [batch size] tmpdir:即为步骤三中的outdir,训练data地址 cpdir:为训练生成权重的地址 configpath:为模型config文件的地址 basepath:为大模型权重地址 bs:为batch大小 其中,要获取模型config文件, 首先到https://github.com/SafeAILab/EAGLE/页找到对应eagle模型地址。 图1 EAGLE Weights 以llama2-chat-7B为例,单击进入后 ,如下图所示config文件,即为对应模型的eagle config文件。 图2 eagle config文件
-
per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在TensorRT-LLM/examples路径对应的模型文件夹下,例如:llama模型对应量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数。
-
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVI CES =0,1 NPU卡编号可以通过命令npu-smi info查询。 执行权重转换。 cd autosmoothquant/examples/ python smoothquant_model.py --model-path /home/ma-user/llama-2-7b/ --quantize-model --generate-scale --dataset-path /data/nfs/user/val.jsonl --scale-output scales/llama2-7b.pt --model-output quantized_model/llama2-7b --per-token --per-channel 参数说明: --model-path:原始模型权重路径。 --quantize-model:体现此参数表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,如果之前已生成过量化系数,则可指定该参数,跳过生成scale的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16 父主题: 推理模型量化
-
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python convert_awq_to_npu.py --model /home/ma-user/Qwen1.5-72B-Chat-AWQ 参数说明: model:模型路径。
-
使用MME精度测评工具 支持多模态模型精度测试。目前支持模型:llava, llava-next, minicpm,qwen-vl, internvl2, qwen2-vl. MME数据集获取 请用户自行获取MME评估集,将MME评估集放于llm_tools/llm_evaluation/mme_eval/data/eval/ 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation/mme_eval目录中,代码目录结构如下。 mme_eval ├──metric.py #MME精度测试脚本 ├──MME.sh #运行MME脚本 启动脚本: export MODEL_PATH=/data/nfs/model/InternVL2-8B/ export MME_PATH=/llm_tools/llm_evaluation/mme_eval/data/eval/MME export MODEL_TYPE=internvl2 export OUTPUT_NAME=internvl2-8B export ASCEND_RT_VISIBLE_DEVICES="0:1:2:3:4:5:6:7" bash MME.sh 参数说明: MODEL_PATH:模型权重路径,默认为空; MME_PATH:MME数据集路径,默认当前路径; MODEL_TYPE:模型类型; OUTPUT_NAME:输出结果文件名称, 默认llava; ASCEND_RT_VISIBLE_DEVICES:表示支持多个模型服务实例,同时支持模型并行,如 0,1:2,3 默认0卡; QUANTIZATION:为量化选项,不传入默认为None即不启用量化;支持w8a8、w8a16,需配套对应的权重使用。 GPU_MEMORY_UTILIZATION:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 脚本运行完成后,测试结果输出在终端。
-
约束限制 确保容器可以访问公网。 使用opencompass工具需用vllm接口启动在线服务。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1
-
使用Lm-eval精度测评工具 使用lm-eval工具暂不支持qwen-7b、qwen-14b、qwen-72b、chatglm2-6b、chatglm3-6b模型。 精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . pip install aiohttp==3.9.3 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path},dtype=auto,tensor_parallel_size=${tensor_parallel_size},gpu_memory_utilization=${gpu_memory_utilization},add_bos_token=True,max_model_len=${max_model_len},quantization=${quantization},distributed_executor_backend='ray' \ --tasks ${task} --batch_size ${batch_size} --log_samples --cache_requests true --trust_remote_code --output_path ${output_path} 参数说明: model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数; quantization是量化参数,使用非量化权重,去掉quantization参数;如果使用awq、smoothquant或者gptq加载的量化权重,根据量化方式选择对应参数,可选awq,smoothquant,gptq。 distributed_executor_backend是开启多进程服务方式,选择ray开启。 model:模型启动模式,可选vllm,openai或hf,hf代表huggingface。 tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令: lm_eval --model vllm --model_args pretrained="/data/nfs/benchmark/tokenizer/Llama-3.2-1B-Instruct/",dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096,distributed_executor_backend='ray' \ --tasks openllm --batch_size auto --log_samples --cache_requests true --trust_remote_code --output_path ./ 使用lm-eval,比如smoothquant量化,llama3.1-70b模型的权重,参考命令: lm_eval --model vllm --model_args pretrained="/data/nfs/benchmark/tokenizer_w8a8/llama3.1-70b/",dtype=auto,tensor_parallel_size=4,gpu_memory_utilization=0.7,add_bos_token=True,max_model_len=4096,quantization="smoothquant",distributed_executor_backend='ray' \ --tasks openllm --batch_size auto --log_samples --cache_requests true --trust_remote_code --output_path ./
-
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools 多模态模型脚本相对路径是llm_tools/llm_evaluation/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer \ --epochs 5 \ --parallel-num 1 4 8 16 32 \ --prompt-tokens 1024 2048 \ --output-tokens 128 256 \ --height ${height} \ --width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。
-
benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools |--- modal_benchmark |--- modal_benchmark_parallel.py # modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
-
单条请求性能测试 针对openai的/v1/completions以及/v1/chat/completions两个非流式接口,请求体中可以添加可选参数"return_latency",默认为false,如果指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: prefill_latency(首token时延):请求从到达服务开始到生成首token的耗时 model_prefill_latency(模型计算首token时延):服务从开始计算首token到生成首token的耗时 avg_decode_latency(平均增量token时延):服务计算增量token的平均耗时 time_in_queue(请求排队时间):请求从到达服务开始到开始被调度的耗时 request_latency(请求总时延):请求从到达服务开始到结束的耗时 以上指标单位均是ms,保留2位小数。
-
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools 语言模型脚本相对路径是tools/llm_evaluation/benchmark_tools/benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer --epochs 5 \ --parallel-num 1 4 8 16 32 --prompt-tokens 1024 2048 --output-tokens 128 256 --benchmark-csv benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5。 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --num-scheduler-steps: 服务启动时如果配置了--num-scheduler-steps和--multi-step-stream-outputs=false,则需配置此参数与服务启动时--num-scheduler-steps一致。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 --prefix-caching-num:构造的prompt的公共前缀的序列长度,prefix-caching-num值需小于prompt-tokens。 --use-spec-decode:是否使用投机推理进行输出统计,不输入默认为false。当使用投机推理时必须开启,否则会导致输出token数量统计不正确。注:由于投机推理的性能测试使用随机输入意义不大,建议开启--dataset-type、--dataset-path,并选择性开启--use-real-dataset-output-tokens使用真实数据集进行测试。 --dataset-type:当使用投机推理时开启,benchmark使用的数据类型,当前支持random、sharegpt、human-eval三种输入。random表示构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。不输入默认为random。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅当--dataset-type为sharegpt或者human-eval的时候生效。 --use-real-dataset-output-tokens:当使用投机推理时开启,设置输出长度是否使用数据集的真实长度,不输入默认为false。当使用该选项时,测试数据的输出长度为数据集的真实长度,--output-tokens的值会被忽略。 --num-speculative-tokens:仅当开启--use-spec-decode时生效,需和服务启动时配置的--num-speculative-tokens一致。默认为-1。当该值大于等于0时,会基于该值计算投机推理的接受率指标。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图)
-
动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 进入benchmark_tools目录下,切换一个conda环境。 cd benchmark_tools conda activate python-3.9.10 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 python benchmark_serving.py --backend openai --host ${docker_ip} --port 8080 --dataset custom_datasets.json --dataset-type custom \ --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 \ --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 服务启动时如果配置了--num-scheduler-steps和--multi-step-stream-outputs=false,则需配置此参数与服务启动时--num-scheduler-steps一致。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图2 动态benchmark测试结果(示意图)
-
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools |--- modal_benchmark |--- modal_benchmark_parallel.py # modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
-
步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数,用来确认对应卡数已经挂载 npu-smi info -t board -i 1 | egrep -i "software|firmware" #查看驱动和固件版本 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
-
步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx.zip到主机中,包获取路径请参见表2。 将权重文件上传到DevServer机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下。 df -h
-
步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx.zip,并执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 unzip AscendCloud-*.zip -d ./AscendCloud && cd ./AscendCloud && unzip AscendCloud-OPP-*.zip && unzip AscendCloud-OPP-*-torch-2.1.0*.zip -d ./AscendCloud-OPP && cd .. && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./AscendCloud/AscendCloud-LLM && cd ./AscendCloud/AscendCloud-LLM/llm_inference/ascend_vllm/ && sh build_image.sh --base-image=${base_image} --image-name=${image_name} 参数说明: ${base_image}为基础镜像地址。 ${image_name}为推理镜像名称,可自行指定。 运行完后,会生成推理所需镜像。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本./AscendCloud/AscendCloud-LLM/llm_inference/ascend_vllm/Dockfile中。内容如下: git clone https://gitee.com/ascend/vision.git vision_npu cd vision_npu git checkout v0.16.0-6.0.rc3 # 安装依赖库 pip3 install -r requirement.txt # 编包 python setup.py bdist_wheel # 安装 cd dist pip install torchvision_npu-0.16.*.whl
-
步骤五 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /etc/ascend_install.info:/etc/ascend_install.info \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。
-
模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.911中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包 ├── build.sh # 推理构建脚本 ├── vllm_install.patch # 社区昇腾适配的补丁包 ├── Dockerfile # 推理构建镜像dockerfile ├── build_image.sh # 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant_ascend # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval #精度评测 ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字
-
支持的模型列表和权重文件 本方案支持vLLM的v0.6.3版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ √ https://huggingface.co/huggyllama/llama-65b 4 llama2-7b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 5 llama2-13b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 7 llama3-8b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 8 llama3-70b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 9 yi-6b √ √ √ √ √ https://huggingface.co/01-ai/Yi-6B-Chat 10 yi-9b √ √ √ √ √ https://huggingface.co/01-ai/Yi-9B 11 yi-34b √ √ √ √ √ https://huggingface.co/01-ai/Yi-34B-Chat 12 deepseek-llm-7b √ x x x x https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat 13 deepseek-coder-33b-instruct √ x x x x https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct 14 deepseek-llm-67b √ x x x x https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat 15 qwen-7b √ √ √ √ x https://huggingface.co/Qwen/Qwen-7B-Chat 16 qwen-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen-14B-Chat 17 qwen-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen-72B-Chat 18 qwen1.5-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat 19 qwen1.5-7b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-7B-Chat 20 qwen1.5-1.8b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat 21 qwen1.5-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-14B-Chat 22 qwen1.5-32b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-32B/tree/main 23 qwen1.5-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-72B-Chat 24 qwen1.5-110b √ √ √ √ x https://huggingface.co/Qwen/Qwen1.5-110B-Chat 25 qwen2-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 26 qwen2-1.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 27 qwen2-7b √ √ x √ x https://huggingface.co/Qwen/Qwen2-7B-Instruct 28 qwen2-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen2-72B-Instruct 29 qwen2.5-0.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct 30 qwen2.5-1.5b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct 31 qwen2.5-3b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-3B-Instruct 32 qwen2.5-7b √ √ x √ x https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 33 qwen2.5-14b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-14B-Instruct 34 qwen2.5-32b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-32B-Instruct 35 qwen2.5-72b √ √ √ √ x https://huggingface.co/Qwen/Qwen2.5-72B-Instruct 36 baichuan2-7b √ x x √ x https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat 37 baichuan2-13b √ x x √ x https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 38 gemma-2b √ x x x x https://huggingface.co/google/gemma-2b 39 gemma-7b √ x x x x https://huggingface.co/google/gemma-7b 40 chatglm2-6b √ x x x x https://huggingface.co/THUDM/chatglm2-6b 41 chatglm3-6b √ x x x x https://huggingface.co/THUDM/chatglm3-6b 42 glm-4-9b √ x x x x https://huggingface.co/THUDM/glm-4-9b-chat 43 mistral-7b √ x x x x https://huggingface.co/mistralai/Mistral-7B-v0.1 44 mixtral-8x7b √ x x x x https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 45 falcon-11b √ x x x x https://huggingface.co/tiiuae/falcon-11B/tree/main 46 qwen2-57b-a14b √ x x x x https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct 47 llama3.1-8b √ √ √ √ x https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct 48 llama3.1-70b √ √ √ √ x https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct 49 llama-3.1-405B √ √ x x x https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4 50 llama-3.2-1B √ x x x x Llama-3.2-1B-Instruct · 模型库 (modelscope.cn) 51 llama-3.2-3B √ x x x x Llama-3.2-3B-Instruct · 模型库 (modelscope.cn) 52 llava-1.5-7b √ x x x x https://huggingface.co/llava-hf/llava-1.5-7b-hf/tree/main 53 llava-1.5-13b √ x x x x https://huggingface.co/llava-hf/llava-1.5-13b-hf/tree/main 54 llava-v1.6-7b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf/tree/main 55 llava-v1.6-13b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf/tree/main 56 llava-v1.6-34b √ x x x x https://huggingface.co/llava-hf/llava-v1.6-34b-hf/tree/main 57 internvl2-8B √ x x x x https://huggingface.co/OpenGVLab/InternVL2-8B/tree/main 58 internvl2-26B √ x x x x https://huggingface.co/OpenGVLab/InternVL2-26B/tree/main 59 internvl2-40B √ x x x x https://huggingface.co/OpenGVLab/InternVL2-40B/tree/main 60 internVL2-Llama3-76B √ x x x x https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/tree/main 61 MiniCPM-v2.6 √ x x x x https://huggingface.co/openbmb/MiniCPM-V-2_6/tree/main 62 deepseek-v2-236b x x √ x x https://huggingface.co/deepseek-ai/DeepSeek-V2 63 deepseek-v2-lite-16b √ x √ x x https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite 64 qwen2-vl-2B √ x x x x https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/tree/main 65 qwen2-vl-7B √ x x x x https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/tree/main 66 qwen2-vl-72B √ x x x x https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct/tree/main 67 qwen-vl √ x x x x https://huggingface.co/Qwen/Qwen-VL 68 qwen-vl-chat √ x x x x https://huggingface.co/Qwen/Qwen-VL-Chat 69 MiniCPM-v2 √ x x x x https://huggingface.co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) 各模型支持的卡数请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明章节。
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- ...
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章