华为云用户手册

  • 参数解释 “job.properties”文件中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 nameNode HDFS NameNode集群地址 resourceManager Yarn ResourceManager地址 queueName 流程任务处理时使用的MapReduce队列名 dataLoadRoot 流程任务所在目录名 oozie.coord.application.path Coordinator流程任务在HDFS上的存放路径 start 定时流程任务启动时间 end 定时流程任务终止时间 workflowAppUri Workflow流程任务在HDFS上的存放路径 可以根据业务需要,以“key=values”的格式自定义参数及值。
  • 样例代码 nameNode=hdfs://hacluster resourceManager=10.1.130.10:26004 queueName=QueueA dataLoadRoot=examples oozie.coord.application.path=${nameNode}/user/oozie_cli/${dataLoadRoot}/apps/dataLoad start=2013-04-02T00:00Z end=2014-04-02T00:00Z workflowAppUri=${nameNode}/user/oozie_cli/${dataLoadRoot}/apps/dataLoad
  • 操作步骤 编译JDBC样例程序: 在IDEA界面左下方单击“Terminal”进入终端,执行命令mvn clean package进行编译。 当输出“BUILD SUC CES S”,表示编译成功,如下图所示。编译成功后将会在样例工程的target下生成含有“-with-dependencies”字段的jar包。 运行JDBC样例程序: 使用Windows命令行形式运行JDBC样例工程: 在Windows上创建一个目录作为运行目录,如“D:\jdbc_example”,将1中生成的“target”目录下包名中含有“-with-dependencies”字段的Jar包放到该路径下,并在该目录下创建子目录“src/main/resources”,将已获取的“hive-jdbc-example\src\main\resources”目录下的所有文件复制到“resources”下。 执行以下命令运行Jar包: cd /d d:\jdbc_example java -jar hive-jdbc-example-1.0-SNAPSHOT-jar-with-dependencies.jar 以上Jar包名称仅供参考,具体名称以实际生成为主。 在命令行终端查看样例代码中的HQL所查询出的结果,运行成功结果会有如下信息: Create table success! _c0 0 Delete table success! 使用IntelliJ IDEA形式运行JDBC样例工程: 在IntelliJ IDEA的jdbc-examples工程的“JDBCExample”类上单击右键,在弹出菜单中选择“Run JDBCExample.main()”,如下图所示: 在IntelliJ IDEA输出窗口查看样例代码中的HQL所查询出的结果,会有如下信息: Create table success! _c0 0 Delete table success!
  • 操作场景 在程序代码完成开发后,您可以上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 使用Python开发的Spark应用程序无需打包成jar,只需将样例工程复制到编译机器上即可。 用户需保证worker和driver的Python版本一致,否则将报错:"Python in worker has different version %s than that in driver %s."。 用户需保证Maven已配置华为镜像站中SDK的Maven镜像仓库,具体可参考配置华为开源镜像仓
  • 操作步骤 将从IntelliJ IDEA打包出来的jar包放入指定文件夹(例如“D:\source”)。 在样例代码目录“src/storm-examples/storm-examples”下创建“lib”目录,将IntelliJ IDEA中导出的jar包复制到“lib”目录下,并解压。 若业务需要访问外部组件,其所依赖的配置文件请参考相关开发指引,获取到配置文件后将配置文件放在1中指定的目录下。 若业务需要访问外部组件,其所依赖的jar包请参考相关开发指引,获取到jar包后将jar包放在1中指定的目录下。 在IntelliJ IDEA样例工程的“tools”目录下找到打包工具:“storm-jartool.cmd”。 双击打包工具,输入要打包的jar包所在目录(“D:\source”)并回车,再输入打出包存放的目录(“D:\target”),在“D:\target”中,会生成“source.jar”文件。
  • Hive JDBC驱动的加载 客户端程序以JDBC的形式连接Impalad时,需要首先加载Hive的JDBC驱动类org.apache.hive.jdbc.HiveDriver。 所以在客户端程序开始前,必须先使用当前类加载器加载该驱动类。 如果classpath下没有相应的jar包,则客户端程序抛出Class Not Found异常并退出。 如下: Class.forName("org.apache.hive.jdbc.HiveDriver").newInstance();
  • 多线程安全登录方式 如果有多线程进行login的操作,当应用程序第一次登录成功后,所有线程再次登录时应该使用relogin的方式。 login的代码样例: private Boolean login(Configuration conf){ boolean flag = false; UserGroupInformation.setConfiguration(conf); try { UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB)); System.out.println("UserGroupInformation.isLoginKeytabBased(): " +UserGroupInformation.isLoginKeytabBased()); flag = true; } catch (IOException e) { e.printStackTrace(); } return flag; } relogin的代码样例: public Boolean relogin(){ boolean flag = false; try { UserGroupInformation.getLoginUser().reloginFromKeytab(); System.out.println("UserGroupInformation.isLoginKeytabBased(): " +UserGroupInformation.isLoginKeytabBased()); flag = true; } catch (IOException e) { e.printStackTrace(); } return flag; }
  • 获取数据库连接 使用JDK的驱动管理类java.sql.DriverManager来获取一个Impalad的数据库连接。 Impalad的数据库URL为url="jdbc:hive2://xxx.xxx.xxx.xxx:21050;auth=noSasl;principal=impala/hadoop.hadoop.com@HADOOP.COM;user.principal=impala/hadoop.hadoop.com;user.keytab=conf/impala.keytab"; 以上已经经过安全认证,所以用户名和密码为null或者空。 // 建立连接 connection = DriverManager.getConnection(url, "", "");
  • 执行Impala SQL 执行Impala SQL,注意Impala SQL不能以";"结尾。 正确示例: String sql = "SELECT COUNT(*) FROM employees_info"; Connection connection = DriverManager.getConnection(url, "", ""); PreparedStatement statement = connection.prepareStatement(sql); resultSet = statement.executeQuery(); 错误示例: String sql = "SELECT COUNT(*) FROM employees_info;"; Connection connection = DriverManager.getConnection(url, "", ""); PreparedStatement statement = connection.prepareStatement(sql); resultSet = statement.executeQuery();
  • Impala SQL语法规则之判空 判断字段是否为“空”,即没有值,使用“is null”;判断不为空,即有值,使用“is not null”。 要注意的是,在Impala SQL中String类型的字段若是空字符串, 即长度为0,那么对它进行is null的判断结果是False。此时应该使用“col = '' ”来判断空字符串;使用“col != '' ”来判断非空字符串。 正确示例: select * from default.tbl_src where id is null; select * from default.tbl_src where id is not null; select * from default.tbl_src where name = ''; select * from default.tbl_src where name != ''; 错误示例: select * from default.tbl_src where id = null; select * from default.tbl_src where id != null; select * from default.tbl_src where name is null; select * from default.tbl_src where name is not null;注:表tbl_src的id字段为Int类型,name字段为String类型。
  • 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“PhoenixSample”类的testPut方法中。 /** * Put data */ public void testPut() { LOG .info("Entering testPut."); String URL = "jdbc:phoenix:" + conf.get("hbase.zookeeper.quorum"); // Insert String upsertSQL = "UPSERT INTO TEST VALUES(1,'John','100000', TO_DATE('1980-01-01','yyyy-MM-dd'))"; try (Connection conn = DriverManager.getConnection(url, props); Statement stat = conn.createStatement()){ // Execute Update SQL stat.executeUpdate(upsertSQL); conn.commit(); LOG.info("Put successfully."); } catch (Exception e) { LOG.error("Put failed.", e); } LOG.info("Exiting testPut."); }
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 运行Python样例代码无需通过Maven打包,只需要上传user.keytab、krb5.conf 文件到客户端所在服务器上。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。
  • 场景说明 假定用户有某个周末网民网购停留时间的日志文本,基于某些业务要求,要求开发Spark应用程序实现如下功能: 统计日志文件中本周末网购停留总时间超过2个小时的女性网民信息。 周末两天的日志文件第一列为姓名,第二列为性别,第三列为本次停留时间,单位为分钟,分隔符为“,”。 log1.txt:周六网民停留日志 LiuYang,female,20 YuanJing,male,10 GuoYijun,male,5 CaiXuyu,female,50 Liyuan,male,20 FangBo,female,50 LiuYang,female,20 YuanJing,male,10 GuoYijun,male,50 CaiXuyu,female,50 FangBo,female,60 log2.txt:周日网民停留日志 LiuYang,female,20 YuanJing,male,10 CaiXuyu,female,50 FangBo,female,50 GuoYijun,male,5 CaiXuyu,female,50 Liyuan,male,20 CaiXuyu,female,50 FangBo,female,50 LiuYang,female,20 YuanJing,male,10 FangBo,female,50 GuoYijun,male,50 CaiXuyu,female,50 FangBo,female,60
  • 开发思路 ClickHouse作为一款独立的DBMS系统,使用SQL语言就可以进行常见的操作。开发程序示例中,全部通过clickhouse-jdbc API接口来进行描述,开发流程主要分为以下几部分: 设置属性:设置连接ClickHouse服务实例的参数属性。 建立连接:建立和ClickHouse服务实例的连接。 创建库:创建ClickHouse数据库。 创建表:创建ClickHouse数据库下的表。 插入数据:插入数据到ClickHouse表中。 查询数据:查询ClickHouse表数据。 删除表:删除已创建的ClickHouse表。
  • 接口类型简介 由于HBase本身是由java语言开发出来的,且java语言具有简洁通用易懂的特性,推荐用户使用java语言进行HBase应用程序开发。 HBase采用的接口与Apache HBase保持一致。 HBase通过接口调用,可提供的功能如表1所示。 表1 HBase接口提供的功能 功能 说明 CRUD数据读写功能 增查改删 高级特性 过滤器、二级索引,协处理器 管理功能 表管理、集群管理
  • HBase简介 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。 具有很好的伸缩能力。 能够同时处理结构化和非结构化的数据。 不需要完全拥有传统关系型数据库所具备的ACID特性。ACID特性指原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation,又称独立性)、持久性(Durability)。 HBase中的表具有如下特点: 大:一个表可以有上亿行,上百万列。 面向列:面向列(族)的存储和权限控制,列(族)独立检索。 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
  • HBase应用开发常用概念 过滤器 过滤器用于帮助用户提高HBase处理表中数据的效率。用户不仅可以使用HBase中预定义好的过滤器,而且可以实现自定义的过滤器。 协处理器 允许用户执行region级的操作,并且可以使用与RDBMS中触发器类似的功能。 Client 客户端直接面向用户,可通过Java API、HBase Shell或者Web UI访问服务端,对HBase的表进行读写操作。本文中的HBase客户端特指HBase client的安装包,可参考HBase对外接口介绍。 父主题: HBase应用开发概述
  • 操作步骤 安全模式下,请先进行安全认证。 初始化客户端环境变量。 进入客户端安装目录“/opt/Storm_client”执行以下命令,导入环境变量信息。 source bigdata_env 使用在“准备开发用户”章节创建的开发用户进行安全登录。 执行kinit命令进行“人机”用户的安全登录。 kinit用户名 例如: kinit developuser 然后按照提示输入密码,无异常提示返回,则完成了用户的kerberos认证。 提交拓扑(以wordcount为例,其它拓扑请参照相关开发指引),进入Storm客户端“Storm/storm-1.2.1/bin”目录,将刚打出的source.jar提交(如果在Windows上进行的打包,则需要将Windows上的source.jar上传到Linux服务器,假定上传到“/opt/jartarget”目录),执行命令:storm jar /opt/jartarget/source.jar com.huawei.storm.example.wordcount.WordCountTopology。 执行storm list命令,查看已经提交的应用程序,如果发现名称为word-count的应用程序,则说明任务提交成功。 如果业务设置为本地模式,且使用命令行方式提交时,请确保提交环境为普通模式环境,当前不支持安全环境下使用命令提交本地模式的业务。
  • 回答 Spark任务在运行过程中,driver会创建一个spark-开头的本地临时目录,用于存放业务jar包,配置文件等,同时在本地创建一个blockmgr-开头的本地临时目录,用于存放block data。此两个目录会在Spark应用运行结束时自动删除。 此两个目录的存放路径优先通过SPARK_LOCAL_DIRS环境变量指定,若不存在该环境变量,则设置为spark.local.dir的值,若此配置还不存在,则使用java.io.tmpdir的值。客户端默认配置中spark.local.dir被设置为/tmp,因此默认使用系统/tmp目录。 但存在一些特殊情况,如driver进程未正常退出,比如被kill -9命令结束进程,或者Java虚拟机直接崩溃等场景,导致driver的退出流程未正常执行,则可能导致该部分目录无法被正常清理,残留在系统中。 当前只有yarn-client模式和local模式的driver进程会产生上述问题,在yarn-cluster模式中,已将container内进程的临时目录设置为container临时目录,当container退出时,由container自动清理该目录,因此yarn-cluster模式不存在此问题。
  • 访问开源 ZooKeeper 使用“testConnectApacheZk”连接开源ZooKeeper的代码,只需要将以下代码中的“xxx.xxx.xxx.xxx”修改为需要连接的开源的ZooKeeper的IP,端口号按照实际情况修改。如果仅需运行访问第三方Zookeeper的样例,需注释掉main函数中的“testConnectHive”方法。 digestZK = new org.apache.zookeeper.ZooKeeper("xxx.xxx.xxx.xxx:端口号", 60000, null); ZooKeeper连接使用完后需要关闭连接,否则可能导致连接泄露。可根据业务实际情况进行处理,代码如下: //使用try-with-resources方式,try语句执行完后会自动关闭ZooKeeper连接。 try (org.apache.zookeeper.ZooKeeper digestZk = new org.apache.zookeeper.ZooKeeper("xxx.xxx.xxx.xxx:端口号", 600000, null)) { ... }
  • 场景说明 在安全集群环境下,各个组件需要在通信之前进行相互认证,以确保通信的安全性。 用户在开发Oozie应用程序时,某些场景下需要Oozie与Hadoop、Hive等之间进行通信。那么Oozie应用程序中需要写入安全认证代码,确保Oozie程序能够正常运行。 安全认证有两种方式: 命令行认证: 提交Oozie应用程序运行前,在Oozie客户端执行如下命令获得认证。 kinit 组件业务用户 代码认证(Kerberos安全认证): 通过获取客户端的principal和keytab文件在应用程序中进行认证,用于Kerberos安全认证的keytab文件和principal文件您可以联系管理员创建并获取,具体使用方法在样例代码中会有详细说明。 目前样例代码统一调用LoginUtil类进行安全认证,支持Oracle JAVA平台和IBM JAVA平台。 代码示例中请根据实际情况,修改“USERNAME”为实际用户名,例如“developuser”。 private static void login(String keytabFilePath, String krb5FilePath, String user) throws IOException { Configuration conf = new Configuration(); conf.set(KERBEROS_PRINCIPAL, user); conf.set(KEYTAB_FILE, keytabFilePath); conf.set(HADOOP_SECURITY_AUTHENTICATION, "kerberos"); conf.set(HADOOP_SECURITY_AUTHORIZATION, "true"); /* * if need to connect zk, please provide jaas info about zk. of course, * you can do it as below: * System.setProperty("java.security.auth.login.config", confDirPath + * "jaas.conf"); but the demo can help you more : Note: if this process * will connect more than one zk cluster, the demo may be not proper. you * can contact us for more help */ LoginUtil.setJaasConf(ZOOKEEPER_DEFAULT_LOGIN_CONTEXT_NAME, user, keytabFilePath); LoginUtil.setZookeeperServerPrincipal(ZOOKEEPER_DEFAULT_SERVER_PRINCIPAL); LoginUtil.login(user, keytabFilePath, krb5FilePath, conf); }
  • 操作步骤 将从IntelliJ IDEA打包出来的jar包放入指定文件夹(例如“D:\source”)。 在样例代码目录“src/storm-examples/storm-examples”下创建“lib”目录,将IntelliJ IDEA中导出的jar包复制到“lib”目录下,并解压。 若业务需要访问外部组件,其所依赖的配置文件请参考相关开发指引,获取到配置文件后将配置文件放在1中指定的目录下。 若业务需要访问外部组件,其所依赖的jar包请参考相关开发指引,获取到jar包后将jar包放在1中指定的目录下。 在IntelliJ IDEA样例工程的“tools”目录下找到打包工具:“storm-jartool.cmd”。 双击打包工具,输入要打包的jar包所在目录(“D:\source”)并回车,再输入打出包存放的目录(“D:\target”),在“D:\target”中,会生成“source.jar”文件。
  • 回答 由于checkpoint中包含了spark应用的对象序列化信息、task执行状态信息、配置信息等,因此,当存在以下问题时,从checkpoint恢复spark应用将会失败。 业务代码变更且变更类未明确指定SerialVersionUID。 spark内部类变更,且变更类未明确指定SerialVersionUID。 另外,由于checkpoint保存了部分配置项,因此可能导致业务修改了部分配置项后,从checkpoint恢复时,配置项依然保持为旧值的情况。当前只有以下部分配置会在从checkpoint恢复时重新加载。 "spark.yarn.app.id", "spark.yarn.app.attemptId", "spark.driver.host", "spark.driver.bindAddress", "spark.driver.port", "spark.master", "spark.yarn.jars", "spark.yarn.keytab", "spark.yarn.principal", "spark.yarn.credentials.file", "spark.yarn.credentials.renewalTime", "spark.yarn.credentials.updateTime", "spark.ui.filters", "spark.mesos.driver.frameworkId", "spark.yarn.jars"
  • 基本概念 ResourceManager(RM) RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。 ApplicationMaster(AM) 用户提交的每个应用程序均包含一个AM,主要功能包括: 与RM调度器协商以获取资源(用Container表示)。 将得到的资源进一步分配给内部任务。 与NM通信以启动/停止任务。 监控所有任务的运行状态,并在任务运行失败时重新为任务申请资源以重启任务。 NodeManager(NM) NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它会接收并处理来自AM的Container启动/停止等各种请求。 Container Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。
  • 简介 Yarn是一个分布式的资源管理系统,用于提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有更好的扩展性、可用性、可靠性、向后兼容性和更高的资源利用率,以及能支持除了MapReduce计算框架外的更多的计算框架。
  • ClickHouse简介 ClickHouse是面向联机分析处理的列式数据库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。 ClickHouse的设计优点: 数据压缩比高 多核并行计算 向量化计算引擎 支持嵌套数据结构 支持稀疏索引 支持数据Insert和Update ClickHouse的应用场景: 实时数仓场景 使用流式计算引擎(如Flink)把实时数据写入ClickHouse,借助ClickHouse的优异查询性能,在亚秒级内响应多维度、多模式的实时查询分析请求。 离线查询场景 把规模庞大的业务数据导入到ClickHouse,构造数亿至数百亿记录规模、数百以上的维度的大宽表,随时进行个性化统计和持续探索式查询分析,辅助商业决策,具有非常好的查询体验。
  • 代码样例 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。 下面代码片段仅为演示,具体代码参见SparkHivetoHbasePythonExample: # -*- coding:utf-8 -*- from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession spark = SparkSession\ .builder\ .appName("SparkHivetoHbase") \ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.SparkHivetoHbase') # 创建类实例并调用方法 spark._jvm.SparkHivetoHbase().hivetohbase(spark._jsc) # 停止SparkSession spark.stop()
  • 代码样例 下面代码片段在com.huawei.bigdata.hbase.examples包的“TestMain”类的init方法中。 private static void init() throws IOException { // Default load from conf directory conf = HBaseConfiguration.create(); //In Windows environment String userdir = TestMain.class.getClassLoader().getResource("conf").getPath() + File.separator;[1] //In Linux environment //String userdir = System.getProperty("user.dir") + File.separator + "conf" + File.separator; conf.addResource(new Path(userdir + "core-site.xml"), false); conf.addResource(new Path(userdir + "hdfs-site.xml"), false); conf.addResource(new Path(userdir + "hbase-site.xml"), false); } [1]userdir获取的是编译后资源路径下conf目录的路径。初始化配置用到的core-site.xml、hdfs-site.xml、hbase-site.xml文件,需要放置到"src/main/resources/conf"的目录下。
  • 样例代码 -- 查看薪水支付币种为美元的雇员联系方式. SELECT a.name, b.tel_phone, b.email FROM employees_info a JOIN employees_contact b ON(a.id = b.id) WHERE usd_flag='D'; -- 查询入职时间为2014年的雇员编号、姓名等字段,并将查询结果加载进表employees_info_extended中的入职时间为2014的分区中. INSERT OVERWRITE TABLE employees_info_extended PARTITION (entrytime = '2014') SELECT a.id, a.name, a.usd_flag, a.salary, a.deductions, a.address, b.tel_phone, b.email FROM employees_info a JOIN employees_contact b ON (a.id = b.id) WHERE a.entrytime = '2014'; -- 使用Impala中已有的函数COUNT(),统计表employees_info中有多少条记录. SELECT COUNT(*) FROM employees_info; -- 查询使用以“cn”结尾的邮箱的员工信息. SELECT a.name, b.tel_phone FROM employees_info a JOIN employees_contact b ON (a.id = b.id) WHERE b.email like '%cn';
  • Kafka应用开发流程介绍 Kafka客户端角色包括Producer和Consumer两个角色,其应用开发流程是相同的。 开发流程中各个阶段的说明如图1和表1所示。 图1 Kafka客户端程序开发流程 表1 Kafka客户端开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具。同时完成JDK、Maven等初始配置。 准备本地应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接 MRS 集群,配置文件通常包括集群组件信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接Kafka集群配置文件 配置并导入样例工程 Kafka提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。 导入并配置Kafka样例工程 配置安全认证 如果您使用的是开启了Kerberos认证的MRS集群,需要进行安全认证。 配置Kafka应用安全认证 根据业务场景开发程序 提供了Producer和Consumer相关API的使用样例,包含了API和多线程的使用场景,帮助用户快速熟悉Kafka接口。 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 开发Kafka应用 编译与运行程序 指导用户将开发好的程序编译并提交运行并查看结果。 调测Kafka应用 父主题: Kafka开发指南(安全模式)
共100000条