华为云用户手册

  • EventLog Spark应用在运行过程中,实时将运行状态以JSON格式写入文件系统,用于HistoryServer服务读取并重现应用运行时状态。 表16 参数说明 参数 描述 默认值 spark.eventLog.enabled 是否记录Spark事件,用于应用程序在完成后重构webUI。 true spark.eventLog.dir 如果spark.eventLog.enabled为true,记录Spark事件的目录。在此目录下,Spark为每个应用程序创建文件,并将应用程序的事件记录到文件中。用户也可设置为统一的与HDFS目录相似的地址,这样History server就可以读取历史文件。 hdfs://hacluster/spark2xJobHistory2x spark.eventLog.compress spark.eventLog.enabled为true时,是否压缩记录的事件。 false
  • WebUI WebUI展示了Spark应用运行的过程和状态。 表13 参数说明 参数 描述 默认值 spark.ui.killEnabled 允许停止Web UI中的stage和相应的job。 说明: 出于安全考虑,将此配置项的默认值设置成false,以避免用户发生误操作。如果需要开启此功能,则可以在spark-defaults.conf配置文件中将此配置项的值设为true。请谨慎操作。 true spark.ui.port 应用程序dashboard的端口,显示内存和工作量数据。 JD BCS erver2x:4040 SparkResource2x:0 IndexServer2x:22901 spark.ui.retainedJobs 在垃圾回收之前Spark UI和状态API记住的job数。 1000 spark.ui.retainedStages 在垃圾回收之前Spark UI和状态API记住的stage数。 1000
  • Netty/NIO及Hash/Sort配置 Shuffle是大数据处理中最重要的一个性能点,网络是整个Shuffle过程的性能点。目前Spark支持两种Shuffle方式,一种是Hash,另外一种Sort。网络也有两种方式,Netty和NIO。 表8 参数说明 参数 描述 默认值 spark.shuffle.manager 处理数据的方式。有两种实现方式可用:sort和hash。sort shuffle对内存的使用率更高,是Spark 1.2及后续版本的默认选项。 SORT spark.shuffle.consolidateFiles (仅hash方式)若要合并在shuffle过程中创建的中间文件,需要将该值设置为“true”。文件创建的少可以提高文件系统处理性能,降低风险。使用ext4或者xfs文件系统时,建议设置为“true”。由于文件系统限制,在ext3上该设置可能会降低8核以上机器的处理性能。 false spark.shuffle.sort.bypassMergeThreshold 该参数只适用于spark.shuffle.manager设置为sort时。在不做map端聚合并且reduce任务的partition数小于或等于该值时,避免对数据进行归并排序,防止系统处理不必要的排序引起性能下降。 200 spark.shuffle.io.maxRetries (仅Netty方式)如果设为非零值,由于IO相关的异常导致的fetch失败会自动重试。该重试逻辑有助于大型shuffle在发生长GC暂停或者网络闪断时保持稳定。 12 spark.shuffle.io.numConnectionsPerPeer (仅Netty方式)为了减少大型集群的连接创建,主机间的连接会被重新使用。对于拥有较多硬盘和少数主机的集群,此操作可能会导致并发性不足以占用所有磁盘,所以用户可以考虑增加此值。 1 spark.shuffle.io.preferDirectBufs (仅Netty方式)使用off-heap缓冲区减少shuffle和高速缓存块转移期间的垃圾回收。对于off-heap内存被严格限制的环境,用户可以将其关闭以强制所有来自Netty的申请使用堆内内存。 true spark.shuffle.io.retryWait (仅Netty方式)等待fetch重试期间的时间(秒)。重试引起的最大延迟为maxRetries * retryWait,默认是15秒。 5
  • ExecutorLaucher配置 ExecutorLauncher只有在Yarn-Client模式下才会存在的角色,Yarn-Client模式下,ExecutorLauncher和Driver不在同一个进程中,需要对ExecutorLauncher的参数进行特殊的配置。 表11 参数说明 参数 描述 默认值 spark.yarn.am.extraJavaOptions 在Client模式下传递至YARN Application Master的一系列额外JVM选项。在Cluster模式下使用spark.driver.extraJavaOptions。 参考快速配置参数 spark.yarn.am.memory 针对Client模式下YARN Application Master使用的内存数量,与JVM内存设置字符串格式一致(例如:512m,2g)。在集群模式下,使用spark.driver.memory。 1G spark.yarn.am.memoryOverhead 和“spark.yarn.driver.memoryOverhead”一样,但只针对Client模式下的Application Master。 - spark.yarn.am.cores 针对Client模式下YARN Application Master使用的核数。在Cluster模式下,使用spark.driver.cores。 1
  • Driver配置 Spark Driver可以理解为Spark提交应用的客户端,所有的代码解析工作都在这个进程中完成,因此该进程的参数尤其重要。下面将以如下顺序介绍Spark中进程的参数设置: JavaOptions:Java命令中“-D”后面的参数,可以由System.getProperty获取。 ClassPath:包括Java类和Native的Lib加载路径。 Java Memory and Cores:Java进程的内存和CPU使用量。 Spark Configuration:Spark内部参数,与Java进程无关。 表10 参数说明 参数 描述 默认值 spark.driver.extraJavaOptions 传递至driver(驱动程序)的一系列额外JVM选项。例如,GC设置或其他日志记录。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 参考快速配置参数 spark.driver.extraClassPath 附加至driver的classpath的额外classpath条目。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 参考快速配置参数 spark.driver.userClassPathFirst (试验性)当在驱动程序中加载类时,是否授权用户添加的jar优先于Spark自身的jar。这种特性可用于减缓Spark依赖和用户依赖之间的冲突。目前该特性仍处于试验阶段,仅用于Cluster模式中。 false spark.driver.extraLibraryPath 设置一个特殊的library path在启动驱动程序JVM时使用。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 JDB CS erver2x: ${SPARK_INSTALL_HOME}/spark/native SparkResource2x: ${DATA_NODE_INSTALL_HOME}/hadoop/lib/native spark.driver.cores 驱动程序进程使用的核数。仅适用于Cluster模式。 1 spark.driver.memory 驱动程序进程使用的内存数量,即SparkContext初始化的进程(例如:512M, 2G)。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 4G spark.driver.maxResultSize 对每个Spark action操作(例如“collect”)的所有分区序列化结果的总量限制,至少1M,设置成0表示不限制。如果总量超过该限制,工作任务会中止。限制值设置过高可能会引起驱动程序的内存不足错误(取决于spark.driver.memory和JVM的对象内存开销)。设置合理的限制可以避免驱动程序出现内存不足的错误。 1G spark.driver.host Driver监测的主机名或IP地址,用于Driver与Executor进行通信。 (local hostname) spark.driver.port Driver监测的端口,用于Driver与Executor进行通信。 (random)
  • 普通Shuffle配置 表9 参数说明 参数 描述 默认值 spark.shuffle.spill 若设为“true”,通过将数据溢出至磁盘来限制reduce任务期间内存的使用量。 true spark.shuffle.spill.compress 是否压缩shuffle期间溢出的数据。使用spark.io.compression.codec指定的算法进行数据压缩。 true spark.shuffle.file.buffer 每个shuffle文件输出流的内存缓冲区大小(单位:KB)。这些缓冲区可以减少创建中间shuffle文件流过程中产生的磁盘寻道和系统调用次数。也可以通过配置项spark.shuffle.file.buffer.kb设置。 32KB spark.shuffle.compress 是否压缩map任务输出文件。建议压缩。使用spark.io.compression.codec进行压缩。 true spark.reducer.maxSizeInFlight 从每个reduce任务同时fetch的map任务输出最大值(单位:MB)。由于每个输出要求创建一个缓冲区进行接收,这代表了每个reduce任务固定的内存开销,所以除非拥有大量内存,否则保持低值。也可以通过配置项spark.reducer.maxMbInFlight设置。 48MB
  • 配置是否使用笛卡尔积功能 要启动使用笛卡尔积功能,需要在Spark的“spark-defaults.conf”配置文件中进行如下设置。 表2 笛卡尔积参数说明 参数 说明 默认值 spark.sql.crossJoin.enabled 是否允许隐性执行笛卡尔积。 “true”表示允许 “false”表示不允许,此时只允许query中显式包含CROSS JOIN语法。 true JDBC应用在服务端的“spark-defaults.conf”配置文件中设置该参数。 Spark客户端提交的任务在客户端配的“spark-defaults.conf”配置文件中设置该参数。
  • Python Spark Python Spark是Spark除了Scala、Java两种API之外的第三种编程语言。不同于Java和Scala都是在JVM平台上运行,Python Spark不仅会有JVM进程,还会有自身的Python进程。以下配置项只适用于Python Spark场景,而其他配置项也同样可以在Python Spark中生效。 表4 参数说明 参数 描述 默认值 spark.python.profile 在Python worker中开启profiling。通过sc.show_profiles()展示分析结果。或者在driver退出前展示分析结果。可以通过sc.dump_profiles(path) 将结果转储到磁盘中。如果一些分析结果已经手动展示,那么在Driver退出前,它们将不会再自动展示。 默认使用pyspark.profiler.BasicProfiler,可以在初始化SparkContext时传入指定的profiler来覆盖默认的profiler。 false spark.python.worker.memory 聚合过程中每个python worker进程所能使用的内存大小,其值格式同指定JVM内存一致,如512m,2g。如果进程在聚集期间所用的内存超过了该值,数据将会被写入磁盘。 512m spark.python.worker.reuse 是否重用python worker。如是,它将使用固定数量的Python workers,那么下一批提交的task将重用这些Python workers,而不是为每个task重新fork一个Python进程。 该功能在大型广播下非常有用,因为此时对下一批提交的task不需要将数据从JVM再一次传输至Python worker。 true
  • Dynamic Allocation 动态资源调度是On Yarn模式特有的特性,并且必须开启Yarn External Shuffle才能使用这个功能。在使用Spark作为一个常驻的服务时候,动态资源调度将大大的提高资源的利用率。例如JDBCServer服务,大多数时间该进程并不接受JDBC请求,因此将这段空闲时间的资源释放出来,将极大的节约集群的资源。 表5 参数说明 参数 描述 默认值 spark.dynamicAllocation.enabled 是否使用动态资源调度,用于根据规模调整注册于该应用的executor的数量。注意目前仅在YARN模式下有效。 启用动态资源调度必须将spark.shuffle.service.enabled设置为true。以下配置也与此相关:spark.dynamicAllocation.minExecutors、spark.dynamicAllocation.maxExecutors和spark.dynamicAllocation.initialExecutors。 JDBCServer2x: true SparkResource2x: false spark.dynamicAllocation.minExecutors 最小Executor个数。 0 spark.dynamicAllocation.initialExecutors 初始Executor个数。 spark.dynamicAllocation.minExecutors spark.dynamicAllocation.maxExecutors 最大executor个数。 2048 spark.dynamicAllocation.schedulerBacklogTimeout 调度第一次超时时间。单位为秒。 1s spark.dynamicAllocation.sustainedSchedulerBacklogTimeout 调度第二次及之后超时时间。 1s spark.dynamicAllocation.executorIdleTimeout 普通Executor空闲超时时间。单位为秒。 60 spark.dynamicAllocation.cachedExecutorIdleTimeout 含有cached blocks的Executor空闲超时时间。 JDBCServer2x:2147483647s IndexServer2x:2147483647s SparkResource2x:120
  • Spark Streaming Spark Streaming是在Spark批处理平台提供的流式数据的处理能力,以“mini-batch”的方式处理从外部输入的数据。 在Spark客户端的“spark-defaults.conf”文件中配置如下参数。 表6 参数说明 参数 描述 默认值 spark.streaming.receiver.writeAheadLog.enable 启用预写日志(WAL)功能。所有通过Receiver接收的输入数据将被保存至预写日志,预写日志可以保证Driver程序出错后数据可以恢复。 false spark.streaming.unpersist 由Spark Streaming产生和保存的RDDs自动从Spark的内存中强制移除。Spark Streaming接收的原始输入数据也将自动清除。设置为false时原始输入数据和存留的RDDs不会自动清除,因此在streaming应用外部依然可以访问,但是这会占用更多的Spark内存。 true
  • Spark长时间任务安全认证配置 安全模式下,使用Spark CLI(如spark shell、spark sql、spark submit)时,如果使用kinit命令进行安全认证,当执行长时间运行任务时,会因为认证过期导致任务失败。 在客户端的“spark-defaults.conf”配置文件中设置如下参数,配置完成后,重新执行Spark CLI即可。 当参数值为“true”时,需要保证“spark-defaults.conf”和“hive-site.xml”中的Keytab和principal的值相同。 表3 参数说明 参数名称 含义 默认值 spark.kerberos.principal 具有Spark操作权限的principal。请联系 MRS 集群管理员获取对应principal。 - spark.kerberos.keytab 具有Spark操作权限的Keytab文件名称和文件路径。请联系MRS集群管理员获取对应Keytab文件。 - spark.security.bigdata.loginOnce Principal用户是否只登录一次。true为单次登录;false为多次登录。 单次登录与多次登录的区别在于:Spark社区使用多次Kerberos用户登录多次的方案,但容易出现TGT过期或者Token过期异常导致应用无法长时间运行。DataSight修改了Kerberos登录方式,只允许用户登录一次,可以有效的解决过期问题。限制在于,Hive相关的principal与keytab的配置项必须与Spark配置相同。 说明: 当参数值为true时,需要保证“spark-defaults.conf”和“hive-site.xml”中的Keytab和principal的值相同。 true
  • Spark Streaming Kafka Receiver是Spark Streaming一个重要的组成部分,它负责接收外部数据,并将数据封装为Block,提供给Streaming消费。最常见的数据源是Kafka,Spark Streaming对Kafka的集成也是最完善的,不仅有可靠性的保障,而且也支持从Kafka直接作为RDD输入。 表7 参数说明 参数 描述 默认值 spark.streaming.kafka.maxRatePerPartition 使用Kafka direct stream API时,从每个Kafka分区读取数据的最大速率(每秒记录数量)。 - spark.streaming.blockInterval 在被存入Spark之前Spark Streaming Receiver接收数据累积成数据块的间隔(毫秒)。推荐最小值为50毫秒。 200ms spark.streaming.receiver.maxRate 每个Receiver接收数据的最大速率(每秒记录数量)。配置设置为0或者负值将不会对速率设限。 - spark.streaming.receiver.writeAheadLog.enable 是否使用ReliableKafkaReceiver。该Receiver支持流式数据不丢失。 false
  • 配置Stage失败重试次数 Spark任务在遇到FetchFailedException时会触发Stage重试。为了防止Stage无限重试,对Stage重试次数进行限制。重试次数可以根据实际需要进行调整。 在Spark客户端的“spark-defaults.conf”文件中配置如下参数。 表1 参数说明 参数 说明 默认值 spark.stage.maxConsecutiveAttempts Stage失败重试最大次数。 4
  • 使用coalesce调整分片的数量 coalesce可以调整分片的数量。coalesce函数有两个参数: coalesce(numPartitions: Int, shuffle: Boolean = false) 当shuffle为true的时候,函数作用与repartition(numPartitions: Int)相同,会将数据通过Shuffle的方式重新分区;当shuffle为false的时候,则只是简单的将父RDD的多个partition合并到同一个task进行计算,shuffle为false时,如果numPartitions大于父RDD的切片数,那么分区不会重新调整。 遇到下列场景,可选择使用coalesce算子: 当之前的操作有很多filter时,使用coalesce减少空运行的任务数量。此时使用coalesce(numPartitions, false),numPartitions小于父RDD切片数。 当输入切片个数太大,导致程序无法正常运行时使用。 当任务数过大时候Shuffle压力太大导致程序挂住不动,或者出现linux资源受限的问题。此时需要对数据重新进行分区,使用coalesce(numPartitions, true)。
  • spark-defaults.conf相关参数 登录客户端节点,在“{客户端安装目录}/Spark/spark/conf/spark-defaults.conf”文件中配置表4相关参数。 表4 spark-defaults.conf中的Spark配置参考 参数 默认值 描述 spark.driver.memory 4G 指定用于driver端进程的内存,其中SparkContext已初始化。 说明: 在客户端模式下,不要使用SparkConf在应用程序中设置该参数,因为驱动程序JVM已经启动。要配置该参数,请在--driver-memory命令行选项或默认属性文件中进行配置。 spark.executor.memory 4GB 指定每个执行程序进程使用的内存。 spark.sql.crossJoin.enabled true 如果查询包含交叉连接,请启用此属性,以便不会发生错误,此时使用交叉连接而不是连接,可实现更好的性能。
  • 操作场景 SparkSQL在往动态分区表中插入数据时,分区数越多,单个Task生成的HDFS文件越多,则元数据占用的内存也越多。这就导致程序GC(Garbage Collection)严重,甚至发生OOM(Out of Memory)。 经测试证明:10240个Task,2000个分区,在执行HDFS文件从临时目录rename到目标目录动作前,FileStatus元数据大小约29G。为避免以上问题,可修改SQL语句对数据进行重分区,以减少HDFS文件个数。
  • 操作步骤 在动态分区语句中加入distribute by,by值为分区字段。 示例如下: insert into table store_returns partition (sr_returned_date_sk) select sr_return_time_sk,sr_item_sk,sr_customer_sk,sr_cdemo_sk,sr_hdemo_sk,sr_addr_sk,sr_store_sk,sr_reason_sk,sr_ticket_number,sr_return_quantity,sr_return_amt,sr_return_tax,sr_return_amt_inc_tax,sr_fee,sr_return_ship_cost,sr_refunded_cash,sr_reversed_charge,sr_store_credit,sr_net_loss,sr_returned_date_sk from ${SOURCE}.store_returns distribute by sr_returned_date_sk;
  • Web安全 Flink Web安全加固,支持白名单过滤,Flink Web只能通过YARN代理访问,支持安全头域增强。在Flink集群中,各部件的监测端口支持范围可配置。 编码规范: 说明:Web Service客户端和服务器间使用相同的编码方式,是为了防止出现乱码现象,也是实施输入校验的基础。 安全加固:web server响应消息统一采用UTF-8字符编码。 支持IP白名单过滤: 说明:防止非法用户登录,需在web server侧添加IP Filter过滤源IP非法的请求。 安全加固:支持IP Filter实现Web白名单配置,配置项是“jobmanager.web.allow-access-address”,默认情况下只支持YARN用户接入。 安装客户端之后需要将客户端节点IP追加到jobmanager.web.allow-access-address配置项中。 禁止将文件绝对路径发送到客户端: 说明:文件绝对路径发送到客户端会暴露服务端的目录结构信息,有助于攻击者遍历了解系统,为攻击者攻击提供帮助。 安全加固:Flink配置文件中所有配置项中如果包含以/开头的,则删掉第一级目录。 同源策略: 适用于MRS 3.x及之后版本。 说明:如果两个URL的协议,主机和端口均相同,则它们同源;如果不同源,默认不能相互访问;除非被访问者在其服务端显示指定访问者的来源。 安全加固:响应头“Access-Control-Allow-Origin”头域默认配置为YARN集群ResourceManager的IP地址,如果源不是来自YARN的,则不能互相访问。 防范敏感信息泄露: 适用于MRS 3.x及之后版本。 说明:带有敏感数据的Web页面都应该禁止缓存,以防止敏感信息泄漏或通过代理服务器上网的用户数据互窜现象。 安全加固:添加“Cache-control”、“Pragma”、“Expires”安全头域,默认值为:“Cache-Control:no-store”,“Pragma :no-cache”,“Expires : 0”。实现了安全加固,Flink和web server交互的内容将不会被缓存。 防止劫持: 适用于MRS 3.x及之后版本。 说明:由于点击劫持(ClickJacking)和框架盗链都利用到框架技术,所以需要采用安全措施。 安全加固:添加“X-Frame-Options”安全头域,给浏览器提供允许一个页面可否在“iframe”、“frame”或“object”网站中的展现页面的指示,如果默认配置为“X-Frame-Options: DENY”,则确保任何页面都不能被嵌入到别的“iframe”、“frame”或“object”网站中,从而避免了点击劫持 (clickjacking) 的攻击。 对Web Service接口调用记录日志: 适用于MRS 3.x及之后版本。 说明:对“Flink webmonitor restful”接口调用进行日志记录。 安全加固:“access log”支持配置:“jobmanager.web.accesslog.enable”,默认为“true”。且日志保存在单独的“webaccess.log”文件中。 跨站请求(CSRF)伪造防范: 适用于MRS 3.x及之后版本。 说明:在B/S应用中,对于涉及服务器端数据改动(如增加、修改、删除)的操作必须进行跨站请求伪造的防范。跨站请求伪造是一种挟制终端用户在当前已登录的Web应用程序上执行非本意的操作的攻击方法。 安全加固:现有请求修改的接口有2个post,1个delete,其余均是get请求,非get请求的接口均已删除。 异常处理: 适用于MRS 3.x及之后版本。 说明:应用程序出现异常时,捕获异常,过滤返回给客户端的信息,并在日志中记录详细的错误信息。 安全加固:默认的错误提示页面,进行信息过滤,并在日志中记录详细的错误信息。新加四个配置项,默认配置为 FusionInsight 提供的跳转URL,错误提示页面跳转到固定配置的URL中,防止暴露不必要的信息。 表1 四个配置项参数介绍 参数 描述 默认值 是否必选配置 jobmanager.web.403-redirect-url web403页面,访问若遇到403错误,则会重定向到配置的页面。 - 是 jobmanager.web.404-redirect-url web404页面,访问若遇到404错误,则会重定向到配置的页面。 - 是 jobmanager.web.415-redirect-url web415页面,访问若遇到415错误,则会重定向到配置的页面。 - 是 jobmanager.web.500-redirect-url web500页面,访问若遇到500错误,则会重定向到配置的页面。 - 是 HTML5安全: 适用于MRS 3.x及之后版本。 说明:HTML5是下一代的Web开发规范,为开发者提供了许多新的功能并扩展了标签。这些新的标签及功能增加了攻击面,存在被攻击的风险(例如跨域资源共享、客户端存储、WebWorker、WebRTC、WebSocket等)。 安全加固:添加“Access-Control-Allow-Origin”配置,如运用到跨域资源共享功能,可对HTTP响应头的“Access-Control-Allow-Origin”属性进行控制。 Flink不涉及如客户端存储、WebWorker、WebRTC、WebSocket等安全风险。
  • Flink认证和加密 Flink集群中,各部件支持认证。 Flink集群内部各部件和外部部件之间,支持和外部部件如YARN、HDFS、ZooKeeper进行Kerberos认证。 Flink集群内部各部件之间,如Flink client和JobManager、JobManager和TaskManager、TaskManager和TaskManager之间支持security cookie认证。 Flink集群中,各部件支持SSL加密传输;集群内部各部件之间,如Flink client和JobManager、JobManager和TaskManager、TaskManager和TaskManager之间支持SSL加密传输。 详情可参考配置Flink认证和加密。
  • ACL控制 在HA模式下,支持ACL控制。 Flink在HA模式下,支持用ZooKeeper来管理集群和发现服务。ZooKeeper支持SASL ACL控制,即只有通过SASL(kerberos)认证的用户,才有往ZK上操作文件的权限。如果要在Flink上使用SASL ACL控制,需要在Flink配置文件中设置如下配置: high-availability.zookeeper.client.acl: creator zookeeper.sasl.disable: false 具体配置项介绍请参考HA。
  • 操作场景 该任务指导MRS集群管理员在Manager创建并设置SparkSQL的角色。SparkSQL角色可设置Spark管理员权限以及数据表的数据操作权限。 用户使用Hive并创建数据库需要加入hive组,不需要角色授权。用户在Hive和HDFS中对自己创建的数据库或表拥有完整权限,可直接创建表、查询数据、删除数据、插入数据、更新数据以及授权他人访问表与对应HDFS目录与文件。默认创建的数据库或表保存在HDFS目录“/user/hive/warehouse”。 如果当前组件使用了Ranger进行权限控制,须基于Ranger配置相关策略进行权限管理,具体操作可参考添加Spark2x的Ranger访问权限策略。 Spark2x开启或关闭Ranger鉴权后,需要重启Spark2x服务,并重新下载客户端,或刷新客户端配置文件spark/conf/spark-defaults.conf: 开启Ranger鉴权:spark.ranger.plugin.authorization.enable=true 关闭Ranger鉴权:spark.ranger.plugin.authorization.enable=false
  • 操作步骤 使用安装客户端的用户登录客户端所在节点,具体操作请参见使用命令行运行Loader作业。 执行以下命令,进入“backup.properties”文件所在目录。例如,Loader客户端安装目录为 “/opt/client/Loader/”。 cd /opt/client/Loader/loader-tools-1.99.3/loader-backup/conf 执行以下命令,修改“backup.properties”文件的配置参数,参数具体说明如表1所示。 vi backup.properties server.url = 10.0.0.1:21351,10.0.0.2:12000 authentication.type = kerberos authentication.user = authentication.password= job.jobId = 1 use.keytab = true client.principal = loader/hadoop client.keytab = /opt/client/conf/loader.keytab 表1 配置参数说明 配置参数 说明 示例 server.url Loader服务的浮动IP地址和端口(21351)。 为了兼容性,此处支持配置多个IP地址和端口,并以“,”进行分隔。其中第一个必须是Loader服务的浮动IP地址和端口(21351),其余的可根据业务需求配置。 10.0.0.1:21351,10.0.0.2:12000 authentication.type 登录认证的方式。 “kerberos”,表示使用安全模式,进行Kerberos认证。Kerberos认证提供两种认证方式:密码和keytab文件。 “simple”,表示使用普通模式,不进行Kerberos认证。 kerberos authentication.user 普通模式或者使用密码认证方式时,登录使用的用户。 keytab登录方式,则不需要设置该参数。 bar authentication.password 使用密码认证方式时,登录使用的用户密码。 普通模式或者keytab登录方式,则不需要设置该参数。 用户需要对密码加密,加密方法: 进入“encrypt_tool”所在目录。例如,Loader客户端安装目录为“/opt/hadoopclient/Loader”,则执行如下命令。 cd /opt/hadoopclient/Loader/loader-tools-1.99.3 执行以下命令,对非加密密码进行加密。 ./encrypt_tool 未加密的密码 得到加密后的密文,作为“authentication.password”的取值。 说明: 非加密密码中含有特殊字符时需要转义。例如,$符号属于特殊字符,可使用单引号进行转义;非加密密码中含有单引号时可用双引号进行转义,非加密密码中含有双引号应使用反斜杠\进行转义。可参考Shell的转义字符规则。 命令中如果携带认证密码信息可能存在安全风险,在执行命令前建议关闭系统的history命令记录功能,避免信息泄露。 - job.jobId 需要执行数据备份的作业ID。 作业ID可通过登录Loader webUI在已创建的作业查看。 1 use.keytab 是否使用keytab方式登录。 true,表示使用keytab文件登录 false,表示使用密码登录。 true client.principal 使用keytab认证方式时,访问Loader服务的用户规则。 普通模式或者密码登录方式,则不需要设置该参数。 loader/hadoop client.keytab 使用keytab认证方式登录时,使用的keytab文件所在目录。 普通模式或者密码登录方式,则不需要设置该参数。 /opt/client/conf/loader.keytab 执行以下命令,进入备份脚本“run.sh”所在目录。例如,Loader客户端安装目录为“/opt/hadoopclient/Loader”。 cd /opt/hadoopclient/Loader/loader-tools-1.99.3/loader-backup 执行以下命令,运行备份脚本“run.sh”,进行Loader作业数据备份。系统将数据备份到作业的输出路径同一层目录。 ./run.sh 备份数据的输入目录 例如,备份数据的输入目录为“/user/hbase/”,作业的输出路径为/opt/client/sftp/sftp1,其中sftp1只起到一个占位符的作用。执行如下命令,数据将备份到/opt/client/sftp/hbase目录。 ./run.sh /user/hbase/
  • 回答 由于Spark存在一个机制,为了提高性能会缓存ORC的元数据信息。当通过Hive或其他方式更新了ORC表时,缓存的元数据信息未更新,导致Spark SQL查询不到新插入的数据。 对于存储类型为ORC的Hive分区表,在执行插入数据操作后,如果分区信息未改变,则缓存的元数据信息未更新,导致Spark SQL查询不到新插入的数据。 解决措施: 在使用Spark SQL查询之前,需执行Refresh操作更新元数据信息: REFRESH TABLE table_name; table_name为刷新的表名,该表必须存在,否则会出错。 执行查询语句时,即可获取到最新插入的数据。 使用spark时,执行以下命令禁用Spark优化: set spark.sql.hive.convertMetastoreOrc=false;
  • 相关接口 使用HIndex的API都在类org.apache.hadoop.hbase.hindex.client.HIndexAdmin中,相关接口介绍如下: 操作 接口 描述 注意事项 添加索引 addIndices() 将索引添加到没有数据的表中。调用此接口会将用户指定的索引添加到表中,但会跳过生成索引数据。因此,在此操作之后,索引不能用于scan/filter操作。该接口的使用场景为用户想要在具有大量预先存在用户数据的表上批量添加索引,其具体操作为使用诸如TableIndexer工具之类的外部工具来构建索引数据。 索引一旦添加则不能修改。若要修改,则需先删除旧的索引然后重新创建。 应注意不要在具有不同索引名称的相同列上创建两个索引,否则会导致存储和处理的资源浪费。 索引不能添加到系统表中。 向索引列put数据时不支持append和increment操作。 如果客户端出现任何故障,除非发生DoNotRetryIOException,否则应该重试。 索引列族按以下优先级从数据表中已存在的列族选取,优先级从高到低依次为: d、#、@、$、%、#0、@0、$0、%0、#1、@1 ...上至#255、@255、$255和%255 创建索引时,系统会在表中按以上优先级顺序检查是否存在以上列族,如果不存在,则将第一个不存在的列族设为索引列族。 例如: 数据表中仅存在d列族,则索引列族默认为#。 数据表中已存在d和#列族,则默认索引列族默认为@。 数据表中已存在d、#和$列族,则索引列族默认为@。 可以通过HIndex TableIndexer工具添加索引而无需建立索引数据。 addIndicesWithData() 将索引添加到有数据的表中。此方法将用户指定的索引添加到表中,并会对已经存在的用户数据创建对应的索引数据,也可先调用该方法生成索引再在存入用户数据的同时生成索引数据。在此操作之后,这些索引立即可用于scan/filter操作。 删除索引 dropIndices() 仅删除索引。该API从表中删除用户指定的索引,但跳过相应的索引数据。在此操作之后,索引不能用于scan/filter操作。集群在major compaction期间会自动删除旧的索引数据。 此API使用场景为表中包含大量索引数据且dropIndicesWithData()不可行。另外,也可以通过TableIndexer工具删除索引以及索引数据。 在索引的状态为ACTIVE,INACTIVE和DROPPING时,允许禁用索引的操作。 对于使用dropIndices()删除索引的操作,用户必须确保在将索引添加到具有相同索引名的表之前,相应的索引数据已被删除(即major compaction已完成)。 用户删除相应的索引会删除: 一个带有索引的列族。 组合索引所有列族中的任一个列族。 索引可以通过HIndex TableIndexer工具与索引数据一起删除。 dropIndicesWithData() 删除索引数据。此API删除用户指定的索引,并删除用户表中与这些索引对应的所有索引数据。在此操作之后,删除的索引完全从表中删除,不再可用于scan/filter操作。 启用/禁用索引 disableIndices() 该API禁用所有用户指定的索引,使其不再可用于scan/filter操作。 在索引的状态为ACTIVE,INACTIVE和BUILDING时允许启用索引的操作。 在索引的状态为ACTIVE和INACTIVE时允许禁用索引操作。 在禁用索引之前,用户必须确保索引数据与用户数据一致。如果在索引处于禁用状态期间没有在表中添加新的数据,索引数据与用户数据将保持一致。 启用索引时,可以通过使用TableIndexer工具构建索引来保证数据一致性。 enableIndices() 该API启用所有用户指定的索引,使其可用于scan/filter操作。 查看已创建的索引 listIndices() 该API可用于列出给定表中的所有索引。 无
  • 基于HBase本地二级索引查询数据 在具有索引的用户表中,可以使用Filter来查询数据。对于创建单索引和组合索引的用户表,使用过滤器查询的结果与没有使用索引的表相同,但数据查询性能高于没有使用索引的表。 索引的使用规则如下: 对于为一个或多个列创建单个索引的情况: 当将此列用于AND或OR查询筛选时,使用索引可以提高查询性能。 例如,Filter_Condition(IndexCol1)AND / OR Filter_Condition(IndexCol2)。 当在查询中使用“索引列和非索引列”进行过滤时,此索引可以提高查询性能。 例如,Filter_Condition(IndexCol1)AND Filter_Condition(IndexCol2)AND Filter_Condition(NonIndexCol1)。 当在查询中使用“索引列或非索引列”进行筛选时,但不使用索引,查询性能不会提高。 例如,Filter_Condition(IndexCol1)AND / OR Filter_Condition(IndexCol2) OR Filter_Condition(NonIndexCol1)。 对于为多个列创建组合索引的情况: 当用于查询的列是组合索引的全部或部分列并且与组合索引具有相同的顺序时,使用索引会提高查询性能。 例如,为C1,C2和C3创建组合索引。 该索引在以下情况下生效: Filter_Condition(IndexCol1)AND Filter_Condition(IndexCol2)AND Filter_Condition(IndexCol3) Filter_Condition(IndexCol1)AND Filter_Condition(IndexCol2) FILTER_CONDITION(IndexCol1) 该索引在下列情况下不生效: Filter_Condition(IndexCol2)AND Filter_Condition(IndexCol3) Filter_Condition(IndexCol1)AND Filter_Condition(IndexCol3) FILTER_CONDITION(IndexCol2) FILTER_CONDITION(IndexCol3) 当在查询中使用“索引列和非索引列”进行过滤时,使用索引可提高查询性能。 例如: Filter_Condition(IndexCol1)AND Filter_Condition(NonIndexCol1) Filter_Condition(IndexCol1)AND Filter_Condition(IndexCol2)AND Filter_Condition(NonIndexCol1) 当在查询中使用“索引列或非索引列”进行筛选时,但不使用索引,查询性能不会提高。 例如: Filter_Condition(IndexCol1)OR Filter_Condition(NonIndexCol1) (Filter_Condition(IndexCol1)AND Filter_Condition(IndexCol2))OR(Filter_Condition(NonIndexCol1)) 当多个列用于查询时,只能为组合索引中的最后一列指定值范围,而其他列只能设置为指定值。 例如,为C1,C2和C3创建组合索引。在范围查询中,只能为C3设置数值范围,过滤条件为“C1 = XXX,C2 = XXX,C3 = 数值范围”。
  • 快速配置常用参数 其他参数在安装集群时已进行了适配,以下参数需要根据使用场景进行调整。以下参数除特别指出外,一般在Spark2x客户端的“spark-defaults.conf”文件中配置。 表1 快速配置常用参数 配置项 说明 默认值 spark.sql.parquet.compression.codec 对于非分区parquet表,设置其存储文件的压缩格式。 在JDBCServer服务端的“spark-defaults.conf”配置文件中进行设置。 snappy spark.dynamicAllocation.enabled 是否使用动态资源调度,用于根据规模调整注册于该应用的executor的数量。目前仅在YARN模式下有效。 JDBCServer默认值为true,client默认值为false。 false spark.executor.memory 每个Executor进程使用的内存数量,与JVM内存设置字符串的格式相同(例如:512m,2g)。 4G spark.sql.autoBroadcastJoinThreshold 当进行join操作时,配置广播的最大值。 当SQL语句中涉及的表中相应字段的大小小于该值时,进行广播。 配置为-1时,将不进行广播。 10485760 spark.yarn.queue JDBCServer服务所在的Yarn队列。 在JDBCServer服务端的“spark-defaults.conf”配置文件中进行设置。 default spark.driver.memory 大集群下推荐配置32~64g驱动程序进程使用的内存数量,即SparkContext初始化的进程(例如:512m, 2g)。 4G spark.yarn.security.credentials.hbase.enabled 是否打开获取HBase token的功能。如果需要Spark-on-HBase功能,并且配置了安全集群,参数值设置为“true”。否则设置为“false”。 false spark.serializer 用于串行化将通过网络发送或需要缓存的对象的类以序列化形式展现。 Java序列化的默认值适用于任何Serializable Java对象,但运行速度相当慢,所以建议使用org.apache.spark.serializer.KryoSerializer并配置Kryo序列化。可以是org.apache.spark.serializer.Serializer的任何子类。 org.apache.spark.serializer.JavaSerializer spark.executor.cores 每个执行者使用的内核个数。 在独立模式和Mesos粗粒度模式下设置此参数。当有足够多的内核时,允许应用程序在同样的worker上执行多个执行程序;否则,在每个worker上,每个应用程序只能运行一个执行程序。 1 spark.shuffle.service.enabled NodeManager中一个长期运行的辅助服务,用于提升Shuffle计算性能。 false spark.sql.adaptive.enabled 是否开启自适应执行框架。 false spark.executor.memoryOverhead 每个执行器要分配的堆内存量(单位为兆字节)。 这是占用虚拟机开销的内存,类似于内部字符串,其他内置开销等等。会随着执行器大小(通常为6-10%)而增长。 1GB spark.streaming.kafka.direct.lifo 配置是否开启Kafka后进先出功能。 false
  • 访问文件浏览器(File Browser) 访问Hue WebUI。 单击,进入“File Browser”。 默认进入当前登录用户的主目录。 文件浏览器将显示目录中的子目录或文件以下信息: 表1 HDFS文件属性介绍 属性名 描述 “Name” 表示目录或文件的名称。 “Size” 表示文件的大小。 “User” 表示目录或文件的属主。 “Group” 表示目录或文件的属组。 “Permissions” 表示目录或文件的权限设置。 “Date” 表示目录或文件创建时间。 在搜索框输入关键字,系统会在当前目录自动搜索目录或文件。 清空搜索框的内容,系统会重新显示所有目录和文件。
  • 执行动作 单击,选择一个或多个目录或文件。 单击“Actions”,在弹出菜单选择一个操作。 “Rename”:表示重新命名一个目录或文件。 “Move”:表示移动文件,在“移至”选择新的目录并单击“移动”完成移动。 “Copy”:表示复制选中的文件或目录。 “Change permissions”:表示修改选中目录或文件的访问权限。 可以为属主、属组和其他用户设置“Read”、“Write”和“Execute”权限。 “Sticky”表示禁止HDFS的管理员、目录属主或文件属主以外的用户在目录中移动文件。 “Recursive”表示递归设置权限到子目录。 “Storage policies”:表示设置目录或文件在HDFS中的存储策略。 “Summary”:表示查看选中的文件或目录的HDFS存储信息。
  • 操作场景 HDFS集群可能出现DataNode节点间磁盘利用率不平衡的情况,比如集群中添加新数据节点的场景。如果HDFS出现数据不平衡的状况,可能导致多种问题,比如MapReduce应用程序无法很好地利用本地计算的优势、数据节点之间无法达到更好的网络带宽使用率或节点磁盘无法利用等等。所以MRS集群管理员需要定期检查并保持DataNode数据平衡。 HDFS提供了一个容量均衡程序Balancer。通过运行这个程序,可以使得HDFS集群达到一个平衡的状态,使各DataNode磁盘使用率与HDFS集群磁盘使用率的偏差不超过阈值。图1和图2分别是Balance前后DataNode的磁盘使用率变化。 图1 执行均衡操作前DataNode的磁盘使用率 图2 执行均衡操作后DataNode的磁盘使用率 均衡操作时间估算受两个因素影响: 需要迁移的总数据量: 每个DataNode节点的数据量应大于(平均使用率-阈值)*平均数据量,小于(平均使用率+阈值)*平均数据量。若实际数据量小于最小值或大于最大值即存在不平衡,系统选择所有DataNode节点中偏差最多的数据量作为迁移的总数据量。 Balancer的迁移是按迭代(iteration)方式串行顺序处理的,每个iteration迁移数据量不超过10GB,每个iteration重新计算使用率的情况。 因此针对集群情况,可以大概估算每个iteration耗费的时间(可以通过执行Balancer的日志观察到每次iteration的时间),并用总数据量除以10GB估算任务执行时间。 由于按iteration处理,Balancer可以随时启动或者停止。
  • 相关文档 如果执行start-balancer.sh,“hadoop-root-balancer-主机名.out”日志显示“Access denied for user test1. Superuser privilege is required”,请参见执行balance常见问题定位方法。 如果在HDFS客户端启动一个Balance进程,该进程被异常停止后,再次执行Balance操作时失败,请参见HDFS执行Balance时被异常停止如何处理。 如果数据出现不均衡,某磁盘过满而其他磁盘未写满,请参见非HDFS数据残留导致数据分布不均衡。 如果单个节点内DataNode的各磁盘使用率不均匀,请参见节点内DataNode磁盘使用率不均衡。 如果需要平衡正在运行的单个DataNode上的磁盘数据,请参见配置HDFS DiskBalancer磁盘均衡。
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全