华为云用户手册

  • 回答 Spark部署时,如下jar包存放在客户端的“${SPARK_HOME}/jars/streamingClient010”目录以及服务端的“${BIGDATA_HOME}/ FusionInsight _Spark2x_8.1.0.1/install/FusionInsight-Spark2x-3.1.1/spark/jars/streamingClient010”目录: kafka-clients-xxx.jar kafka_2.12-xxx.jar spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar spark-token-provider-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 由于“$SPARK_HOME/jars/streamingClient010/*”默认没有添加到classpath,所以需要手动配置。 在提交应用程序运行时,在命令中添加如下参数即可,详细示例可参考在Linux环境中编包并运行Spark程序。 --jars $SPARK_CLIENT_HOME/jars/streamingClient010/kafka-client-2.4.0.jar,$SPARK_CLIENT_HOME/jars/streamingClient010/kafka_2.12-*.jar,$SPARK_CLIENT_HOME/jars/streamingClient010/spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 用户自己开发的应用程序以及样例工程都可使用上述命令提交。 但是Spark开源社区提供的KafkaWordCount等样例程序,不仅需要添加--jars参数,还需要配置其他,否则会报“ClassNotFoundException”错误,yarn-client和yarn-cluster模式下稍有不同。 yarn-client模式下 在除--jars参数外,在客户端“spark-defaults.conf”配置文件中,将“spark.driver.extraClassPath”参数值中添加客户端依赖包路径,如“$SPARK_HOME/jars/streamingClient010/*”。 yarn-cluster模式下 除--jars参数外,还需要配置其他,有三种方法任选其一即可,具体如下: 在客户端spark-defaults.conf配置文件中,在“spark.yarn.cluster.driver.extraClassPath”参数值中添加服务端的依赖包路径,如“${BIGDATA_HOME}/FusionInsight_Spark2x_8.1.0.1/install/FusionInsight-Spark2x-3.1.1/spark/jars/streamingClient010/*”。 将各服务端节点的“original-spark-examples_2.12-3.1.1-xxx.jar”包删除。 在客户端“spark-defaults.conf”配置文件中,修改或增加配置选项“spark.driver.userClassPathFirst” = “true”。
  • 回答 用户尝试收集大量数据到Driver端,如果Driver端的内存不足以存放这些数据,那么就会抛出OOM(OutOfMemory)的异常,然后Driver端一直在进行GC,尝试回收垃圾来存放返回的数据,导致应用长时间挂起。 解决措施: 如果用户需要在OOM场景下强制将应用退出,那么可以在启动Spark Core应用时,在客户端配置文件“$SPARK_HOME/conf/spark-defaults.conf”中的配置项“spark.driver.extraJavaOptions”中添加如下内容: -XX:OnOutOfMemoryError='kill -9 %p'
  • 代码样例 下面代码片段在com.huawei.storm.example.common包的“SplitSentenceBolt”类的“execute”方法中,作用在于拆分每条语句为单个单词并发送。 /** * {@inheritDoc} */ @Override public void execute(Tuple input, BasicOutputCollector collector) { String sentence = input.getString(0); String[] words = sentence.split(" "); for (String word : words) { word = word.trim(); if (!word.isEmpty()) { word = word.toLowerCase(); collector.emit(new Values(word)); } } } 下面代码片段在com.huawei.storm.example.wordcount.WordCountBolt类中,作用在于统计收到的每个单词的数量。 @Override public void execute(Tuple tuple, BasicOutputCollector collector) { String word = tuple.getString(0); Integer count = counts.get(word); if (count == null) { count = 0; } count++; counts.put(word, count); System.out.println("word: " + word + ", count: " + count); }
  • 创建ClickHouse库 本章节介绍创建ClickHouse库样例代码。 以下代码片段在com.huawei.clickhouse.examples包的“Demo”类的createDatabase方法中。 通过on cluster语句在集群中创建表1中以databaseName参数值为数据库名的数据库。 private void createDatabase(String databaseName, String clusterName) throws Exception { String createDbSql = "create database if not exists " + databaseName + " on cluster " + clusterName; util.exeSql(createDbSql);} 父主题: 开发ClickHouse应用
  • 配置ClickHouse连接属性 在ClickhouseJDBCHaDemo、Demo、NativeJDBCHaDemo和Util文件创建connection的样例中设置连接属性,如下样例代码设置socket超时时间为60s。 ClickHouseProperties clickHouseProperties = new ClickHouseProperties();clickHouseProperties.setSocketTimeout(60000); 如果导入并配置ClickHouse样例工程中的“clickhouse-example.properties”配置文件中“sslUsed”参数配置为“true”时,则需要在ClickhouseJDBCHaDemo、Demo、NativeJDBCHaDemo和Util文件创建connection的样例中设置如下连接属性: clickHouseProperties.setSsl(true);clickHouseProperties.setSslMode("none"); 父主题: 开发ClickHouse应用
  • 配置ClickHouse连接属性 在ClickhouseJDBCHaDemo、Demo、NativeJDBCHaDemo和Util文件创建connection的样例中设置连接属性,如下样例代码设置socket超时时间为60s。 ClickHouseProperties clickHouseProperties = new ClickHouseProperties();clickHouseProperties.setSocketTimeout(60000); 如果导入并配置ClickHouse样例工程中的“clickhouse-example.properties”配置文件中“sslUsed”参数配置为“true”时,则需要在ClickhouseJDBCHaDemo、Demo、NativeJDBCHaDemo和Util文件创建connection的样例中设置如下连接属性: clickHouseProperties.setSsl(true);clickHouseProperties.setSslMode("none"); 父主题: 开发ClickHouse应用
  • 建立ClickHouse连接 本章节介绍建立ClickHouse连接样例代码。 以下代码片段在“ClickhouseJDBCHaDemo”类的initConnection方法中。 在创建连接时传入表1中配置的user和password作为认证凭据,ClickHouse会带着用户名和密码在服务端进行安全认证。 clickHouseProperties.setPassword(userPass);clickHouseProperties.setUser(userName);BalancedClickhouseDataSource balancedClickhouseDataSource = new BalancedClickhouseDataSource(JDBC_PREFIX + UriList, clickHouseProperties); 父主题: 开发ClickHouse应用
  • 开发思路 ClickHouse作为一款独立的DBMS系统,使用SQL语言就可以进行常见的操作。开发程序示例中,全部通过clickhouse-jdbc API接口来进行描述,开发流程主要分为以下几部分: 设置属性:设置连接ClickHouse服务实例的参数属性。 建立连接:建立和ClickHouse服务实例的连接。 创建库:创建ClickHouse数据库。 创建表:创建ClickHouse数据库下的表。 插入数据:插入数据到ClickHouse表中。 查询数据:查询ClickHouse表数据。 删除表:删除已创建的ClickHouse表。
  • ClickHouse简介 ClickHouse是面向联机分析处理的列式数据库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。 ClickHouse的设计优点: 数据压缩比高 多核并行计算 向量化计算引擎 支持嵌套数据结构 支持稀疏索引 支持数据Insert和Update ClickHouse的应用场景: 实时数仓场景 使用流式计算引擎(如Flink)把实时数据写入ClickHouse,借助ClickHouse的优异查询性能,在亚秒级内响应多维度、多模式的实时查询分析请求。 离线查询场景 把规模庞大的业务数据导入到ClickHouse,构造数亿至数百亿记录规模、数百以上的维度的大宽表,随时进行个性化统计和持续探索式查询分析,辅助商业决策,具有非常好的查询体验。
  • 开发思路 ClickHouse作为一款独立的DBMS系统,使用SQL语言就可以进行常见的操作。开发程序示例中,全部通过clickhouse-jdbc API接口来进行描述,开发流程主要分为以下几部分: 设置属性:设置连接ClickHouse服务实例的参数属性。 建立连接:建立和ClickHouse服务实例的连接。 创建库:创建ClickHouse数据库。 创建表:创建ClickHouse数据库下的表。 插入数据:插入数据到ClickHouse表中。 查询数据:查询ClickHouse表数据。 删除表:删除已创建的ClickHouse表。
  • 建立ClickHouse连接 本章节介绍建立ClickHouse连接样例代码。 以下代码片段在“ClickhouseJDBCHaDemo”类的initConnection方法中。 在创建连接时传入表1中配置的user和password作为认证凭据,ClickHouse会带着用户名和密码在服务端进行安全认证。 clickHouseProperties.setPassword(userPass);clickHouseProperties.setUser(userName);BalancedClickhouseDataSource balancedClickhouseDataSource = new BalancedClickhouseDataSource(JDBC_PREFIX + UriList, clickHouseProperties); 父主题: 开发ClickHouse应用
  • ClickHouse应用开发流程介绍 开发流程中各阶段的说明如ClickHouse应用程序开发流程和表1所示。 图1 ClickHouse应用程序开发流程 表1 ClickHouse应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,ClickHouse的应用程序支持多种语言开发,推荐使用Java语言,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备ClickHouse应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接 MRS 集群,配置文件通常包括集群信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备ClickHouse应用运行环境 配置并导入样例工程 ClickHouse提供了不同场景下的样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 导入并配置ClickHouse样例工程 根据业务场景开发程序 提供样例工程,帮助用户快速了解ClickHouse各部件的编程接口。 开发ClickHouse应用 编译并运行程序 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 在本地Windows环境中调测ClickHouse应用 在Linux环境中调测ClickHouse应用 父主题: ClickHouse应用开发简介
  • 查看调测结果 ClickHouse应用程序运行完成后,可通过以下方式查看程序运行情况: 通过运行结果查看程序运行情况。 通过ClickHouse日志获取应用运行情况。 即查看当前jar文件所在目录的“logs/clickhouse-example.log”日志文件,例如“客户端安装目录/JDBC/logs/clickhouse-example.log”。 jar包运行结果如下: 2021-06-10 20:53:56,028 | INFO | main | Current load balancer is 10.112.17.150:21426 | com.huawei.clickhouse.examples.Util.insertData(Util.java:128)2021-06-10 20:53:58,247 | INFO | main | Inert batch time is 1442 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:53:59,649 | INFO | main | Inert batch time is 1313 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:05,872 | INFO | main | Inert batch time is 6132 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:10,223 | INFO | main | Inert batch time is 4272 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:11,614 | INFO | main | Inert batch time is 1300 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:12,871 | INFO | main | Inert batch time is 1200 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:14,589 | INFO | main | Inert batch time is 1663 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:16,141 | INFO | main | Inert batch time is 1500 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:17,690 | INFO | main | Inert batch time is 1498 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:19,206 | INFO | main | Inert batch time is 1468 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:145)2021-06-10 20:54:19,207 | INFO | main | Inert all batch time is 22626 ms | com.huawei.clickhouse.examples.Util.insertData(Util.java:148)2021-06-10 20:54:19,208 | INFO | main | Current load balancer is 10.112.17.150:21426 | com.huawei.clickhouse.examples.Util.exeSql(Util.java:58)2021-06-10 20:54:20,231 | INFO | main | Execute query:select * from mutong1.testtb_all order by age limit 10 | com.huawei.clickhouse.examples.Util.exeSql(Util.java:63)2021-06-10 20:54:21,266 | INFO | main | Execute time is 1035 ms | com.huawei.clickhouse.examples.Util.exeSql(Util.java:67)2021-06-10 20:54:21,267 | INFO | main | Current load balancer is 10.112.17.150:21426 | com.huawei.clickhouse.examples.Util.exeSql(Util.java:58)2021-06-10 20:54:21,815 | INFO | main | Execute query:select toYYYYMM(date),count(1) from mutong1.testtb_all group by toYYYYMM(date) order by count(1) DESC limit 10 | com.huawei.clickhouse.examples.Util.exeSql(Util.java:63)2021-06-10 20:54:22,897 | INFO | main | Execute time is 1082 ms | com.huawei.clickhouse.examples.Util.exeSql(Util.java:67)2021-06-10 20:54:22,898 | INFO | main | nameagedate | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,898 | INFO | main | huawei_26602021-12-19 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_250002021-12-29 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_898002021-12-16 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_67102021-12-29 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_222502021-12-12 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_604002021-12-14 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_729402021-12-10 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,899 | INFO | main | huawei_113302021-12-25 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | huawei_316102021-12-21 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | huawei_399202021-11-25 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | toYYYYMM(date)count() | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | 2019102247 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | 2021052213 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | 2018012208 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,900 | INFO | main | 2018032204 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,901 | INFO | main | 2018102167 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,901 | INFO | main | 2018052166 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,901 | INFO | main | 2019012164 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,901 | INFO | main | 2019082145 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,901 | INFO | main | 2019122143 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)2021-06-10 20:54:22,901 | INFO | main | 2021072137 | com.huawei.clickhouse.examples.Demo.queryData(Demo.java:144)
  • 准备ClickHouse应用开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置。版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 华为提供开源镜像站,各服务样例工程依赖的Jar包通过华为开源镜像站下载,剩余所依赖的开源Jar包请直接从Maven中央库或者其他用户自定义的仓库地址下载,详情请参考配置华为开源镜像仓。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。 父主题: 准备ClickHouse应用开发环境
  • 创建ClickHouse数据库 本章节介绍创建ClickHouse数据库样例代码。 以下代码片段在com.huawei.clickhouse.examples包的“Demo”类的createDatabase方法中。 通过on cluster语句在集群中创建表1中以databaseName参数值为数据库名的数据库。 private void createDatabase(String databaseName, String clusterName) throws Exception { String createDbSql = "create database if not exists " + databaseName + " on cluster " + clusterName; util.exeSql(createDbSql);} 父主题: 开发ClickHouse应用
  • ClickHouse样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下ClickHouse相关样例工程: 表1 ClickHouse相关样例工程 样例工程位置 描述 clickhouse-examples 指导用户基于Java语言,实现MRS集群中的ClickHouse的数据表创建、删除以及数据的插入、查询等操作。 本工程中包含了建立服务端连接、创建数据库、创建数据表、插入数据、查询数据及删除数据表等操作示例。 父主题: ClickHouse应用开发简介
  • ClickHouse样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下ClickHouse相关样例工程: 表1 ClickHouse相关样例工程 样例工程位置 描述 clickhouse-examples 指导用户基于Java语言,实现MRS集群中的ClickHouse的数据表创建、删除以及数据的插入、查询等操作。 本工程中包含了建立服务端连接、创建数据库、创建数据表、插入数据、查询数据及删除数据表等操作示例。 父主题: ClickHouse应用开发简介
  • 场景说明 访问安全集群环境中的服务,需要先通过Kerberos安全认证。所以HDFS应用程序中需要写入安全认证代码,确保HDFS程序能够正常运行。 安全认证有两种方式: 命令行认证: 提交HDFS应用程序运行前,在HDFS客户端执行如下命令进行认证。 kinit 组件业务用户 该方式仅适用于Linux操作系统,且安装了HDFS的客户端。 代码认证: 通过获取客户端的principal和keytab文件进行认证。 注意修改代码中的PRINCIPAL_NAME变量为实际使用的值。 private static final String PRNCIPAL_NAME = "hdfsDeveloper";
  • 代码样例 如下是写文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 创建文件,写文件 * * @throws java.io.IOException * @throws com.huawei.bigdata.hdfs.examples.ParameterException */private void write() throws IOException { final String content = "hi, I am bigdata. It is successful if you can see me."; FSDataOutputStream out = null; try { out = fSystem.create(new Path(DEST_PATH + File.separator + FILE_NAME)); out.write(content.getBytes()); out.hsync(); LOG .info("success to write."); } finally { // make sure the stream is closed finally. IOUtils.closeStream(out); }}
  • 安全认证代码 目前样例代码统一调用LoginUtil类进行安全认证。 在HDFS样例工程代码中,不同的样例工程,使用的认证代码不同,包括基本安全认证和带ZooKeeper认证。 基本安全认证: com.huawei.bigdata.hdfs.examples包的HdfsExample类样例程序不需要访问HBase或ZooKeeper,所以使用基本的安全认证代码即可。示例代码如下: ... private static final String PATH_TO_HDFS_SITE_XML = HdfsExample.class.getClassLoader().getResource("hdfs-site.xml").getPath(); private static final String PATH_TO_CORE_SITE_XML = HdfsExample.class.getClassLoader().getResource("core-site.xml").getPath(); private static final String PRNCIPAL_NAME = "hdfsDeveloper"; private static final String PATH_TO_KEYTAB = HdfsExample.class.getClassLoader().getResource("user.keytab").getPath(); private static final String PATH_TO_KRB5_CONF = HdfsExample.class.getClassLoader().getResource("krb5.conf").getPath(); private static Configuration conf = null; //private static String PATH_TO_SMALL_SITE_XML = HdfsExample.class.getClassLoader().getResource("smallfs-site.xml").getPath();... private static void confLoad() throws IOException { System.setProperty("java.security.krb5.conf", PATH_TO_KRB5_CONF); conf = new Configuration(); // conf file conf.addResource(new Path(PATH_TO_HDFS_SITE_XML)); conf.addResource(new Path(PATH_TO_CORE_SITE_XML)); // conf.addResource(new Path(PATH_TO_SMALL_SITE_XML)); }... private static void authentication() throws IOException { // security mode if ("kerberos".equalsIgnoreCase(conf.get("hadoop.security.authentication"))) { System.setProperty("java.security.krb5.conf", PATH_TO_KRB5_CONF); LoginUtil.login(PRNCIPAL_NAME, PATH_TO_KEYTAB, PATH_TO_KRB5_CONF, conf); } } 带ZooKeeper认证: com.huawei.bigdata.hdfs.examples包的“ColocationExample”类样例程序不仅需要基础安全认证,还需要添加ZooKeeper服务端Principal才能完成安全认证。示例代码如下: ... private static final String ZOOKEEPER_SERVER_PRINCIPAL_KEY = "zookeeper.server.principal"; private static final String PRINCIPAL = "username.client.kerberos.principal"; private static final String KEYTAB = "username.client.keytab.file"; private static final String PRNCIPAL_NAME = "hdfsDeveloper"; private static final String LOGIN_CONTEXT_NAME = "Client"; private static final String PATH_TO_KEYTAB = System.getProperty("user.dir") + File.separator + "conf" + File.separator + "user.keytab"; private static final String PATH_TO_KRB5_CONF = ColocationExample.class.getClassLoader().getResource("krb5.conf") .getPath(); private static String zookeeperDefaultServerPrincipal = null; private static Configuration conf = new Configuration(); private static DFSColocationAdmin dfsAdmin; private static DFSColocationClient dfs; private static void init() throws IOException { LoginUtil.login(PRNCIPAL_NAME, PATH_TO_KEYTAB, PATH_TO_KRB5_CONF, conf); LoginUtil.setJaasConf(LOGIN_CONTEXT_NAME, PRNCIPAL_NAME, PATH_TO_KEYTAB); zookeeperDefaultServerPrincipal = "zookeeper/hadoop." + KerberosUtil.getKrb5DomainRealm().toLowerCase(); LoginUtil.setZookeeperServerPrincipal(ZOOKEEPER_SERVER_PRINCIPAL_KEY, zookeeperDefaultServerPrincipal); }...
  • 开发思路 根据前述场景说明进行功能分解,以“/user/hdfs-examples/test.txt”文件的读写删除等操作为例,说明HDFS文件的基本操作流程,可分为以下八部分: 通过安全认证。 创建FileSystem对象:fSystem。 调用fSystem的mkdir接口创建目录。 调用fSystem的create接口创建FSDataOutputStream对象:out,使用out的write方法写入数据。 调用fSystem的append接口创建FSDataOutputStream对象:out,使用out的write方法追加写入数据。 调用fSystem的open接口创建FSDataInputStream对象:in,使用in的read方法读取文件。 调用fSystem中的delete接口删除文件。 调用fSystem中的delete接口删除文件夹。
  • HBase双读操作相关配置项说明 表1 hbase-dual.xml配置项 配置项名称 配置项详解 默认值 级别 hbase.dualclient.active.cluster.configuration.path 主集群HBase客户端配置目录 无 必选配置 hbase.dualclient.standby.cluster.configuration.path 备集群HBase客户端配置目录 无 必选配置 dual.client.schedule.update.table.delay.second 更新开启容灾表列表的周期时间 5 可选配置 hbase.dualclient.glitchtimeout.ms 可以容忍主集群的最大毛刺时间 50 可选配置 hbase.dualclient.slow.query.timeout.ms 慢查询告警日志 180000 可选配置 hbase.dualclient.active.cluster.id 主集群id ACTIVE 可选配置 hbase.dualclient.standby.cluster.id 备集群id STANDBY 可选配置 hbase.dualclient.active.executor.thread.max 请求主集群的线程池max大小 100 可选配置 hbase.dualclient.active.executor.thread.core 请求主集群的线程池core大小 100 可选配置 hbase.dualclient.active.executor.queue 请求主集群的线程池queue大小 256 可选配置 hbase.dualclient.standby.executor.thread.max 请求备集群的线程池max大小 100 可选配置 hbase.dualclient.standby.executor.thread.core 请求备集群的线程池core大小 100 可选配置 hbase.dualclient.standby.executor.queue 请求备集群的线程池queue大小 256 可选配置 hbase.dualclient.clear.executor.thread.max 清理资源线程池max大小 30 可选配置 hbase.dualclient.clear.executor.thread.core 清理资源线程池core大小 30 可选配置 hbase.dualclient.clear.executor.queue 清理资源线程池queue大小 Integer. MAX_VALUE 可选配置 dual.client.metrics.enable 客户端metric信息是否打印 true 可选配置 dual.client.schedule.metrics.second 客户端metric信息打印周期 300 可选配置 dual.client.asynchronous.enable 是否异步请求主备集群 false 可选配置
  • 打印metric信息 表2 基本指标项 Metric名称 描述 日志级别 total_request_count 周期时间内查询总次数 INFO active_success_count 周期时间内主集群查询成功次数 INFO active_error_count 周期时间内主集群查询失败次数 INFO active_timeout_count 周期时间内主集群查询超时次数 INFO standby_success_count 周期时间内备集群查询成功次数 INFO standby_error_count 周期时间内备集群查询失败次数 INFO Active Thread pool 周期打印请求主集群的执行线程池信息 DEBUG Standby Thread pool 周期打印请求备集群的执行线程池信息 DEBUG Clear Thread pool 周期打印释放资源的执行线程池信息 DEBUG 表3 针对GET、BatchGET、SCAN请求,分别打印Histogram指标项 Metric名称 描述 日志级别 averageLatency(ms) 平均时延 INFO minLatency(ms) 最小时延 INFO maxLatency(ms) 最大时延 INFO 95thPercentileLatency(ms) 95%请求的最大时延 INFO 99thPercentileLatency(ms) 99%请求的最大时延 INFO 99.9PercentileLatency(ms) 99.9%请求的最大时延 INFO 99.99PercentileLatency(ms) 99.99%请求的最大时延 INFO
  • 操作场景 HBase客户端应用通过自定义加载主备集群配置项,实现了双读能力。HBase双读作为提高HBase集群系统高可用性的一个关键特性,适用于四个查询场景:使用Get读取数据、使用批量Get读取数据、使用Scan读取数据,以及基于二级索引查询。它能够同时读取主备集群数据,减少查询毛刺,具体表现为: 高成功率:双并发读机制,保证每一次读请求的成功率。 可用性:单集群故障时,查询业务不中断。短暂的网络抖动也不会导致查询时间变长。 通用性:双读特性不支持双写,但不影响原有的实时写场景。 易用性:客户端封装处理,业务侧不感知。 HBase双读使用约束: HBase双读特性基于Replication实现,备集群读取的数据可能和主集群存在差异,因此只能实现最终一致性。 目前HBase双读功能仅用于查询。主集群宕机时,最新数据无法同步,备集群可能查询不到最新数据。 HBase的Scan操作可能分解为多次RPC。由于相关session信息在不同集群间不同步,数据不能保证完全一致,因此双读只在第一次RPC时生效,ResultScanner close之前的请求会固定访问第一次RPC时使用的集群。 HBase Admin接口、实时写入接口只会访问主集群。所以主集群宕机后,不能提供Admin接口功能和实时写入接口功能,只能提供Get、Scan查询服务。
  • 代码样例 创建双读Configuration,下面代码片段在“com.huawei.bigdata.hbase.examples”包的“TestMain”类的init方法中添加。 private static void init() throws IOException { // Default load from conf directory conf = HBaseConfiguration.create(); //In Windows environment String userdir = TestMain.class.getClassLoader().getResource("conf").getPath() + File.separator; //In Linux environment //String userdir = System.getProperty("user.dir") + File.separator + "conf" + File.separator; conf.addResource(new Path(userdir + "hbase-dual.xml"), false); } 确定数据来源的集群 GET请求,以下代码片段在“com.huawei.bigdata.hbase.examples”包的“HBaseSample”类的testGet方法中添加。 Result result = table.get(get); if (result instanceof DualResult) { LOG.info(((DualResult)result).getClusterId()); } Scan请求,以下代码片段在“com.huawei.bigdata.hbase.examples”包的“HBaseSample”类的testScanData方法中添加。 ResultScanner rScanner = table.getScanner(scan); if (rScanner instanceof HBaseMultiScanner) { LOG.info(((HBaseMultiScanner)rScanner).getClusterId()); } 客户端支持打印metric信息 “log4j.properties”文件中增加如下内容,客户端将metric信息输出到指定文件。 log4j.logger.DUAL=debug,DUAL log4j.appender.DUAL=org.apache.log4j.RollingFileAppender log4j.appender.DUAL.File=/var/log/dual.log //客户端本地双读日志路径,根据实际路径修改,但目录要有写入权限log4j.additivity.DUAL=false log4j.appender.DUAL.MaxFileSize=${hbase.log.maxfilesize} log4j.appender.DUAL.MaxBackupIndex=${hbase.log.maxbackupindex} log4j.appender.DUAL.layout=org.apache.log4j.PatternLayout log4j.appender.DUAL.layout.ConversionPattern=%d{ISO8601} %-5p [%t] %c{2}: %m%n
  • HBase应用开发样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下HBase相关样例工程: 表1 HBase相关样例工程 样例工程位置 描述 hbase-examples/hbase-example HBase数据读写操作的应用开发示例。 通过调用HBase接口可实现创建用户表、导入用户数据、增加用户信息、查询用户信息及为用户表创建二级索引等功能,相关业务场景介绍请参见HBase样例程序开发思路。 hbase-examples/hbase-rest-example HBase Rest接口应用开发示例。 使用Rest接口实现查询HBase集群信息、获取表、操作NameSpace、操作表等功能,相关样例介绍请参见HBase Rest接口调用样例程序。 hbase-examples/hbase-thrift-example 访问HBase ThriftServer应用开发示例。 访问ThriftServer操作表、向表中写数据、从表中读数据,相关样例介绍请参见访问HBase ThriftServer连接样例程序。 hbase-examples/hbase-zk-example HBase访问ZooKeeper应用开发示例。 在同一个客户端进程内同时访问MRS ZooKeeper和第三方的ZooKeeper,其中HBase客户端访问MRS ZooKeeper,客户应用访问第三方ZooKeeper。 父主题: HBase应用开发概述
  • 代码样例 如下是代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 追加文件内容 * * @throws java.io.IOException */private void append() throws IOException { final String content = "I append this content."; FSDataOutputStream out = null; try { out = fSystem.append(new Path(DEST_PATH + File.separator + FILE_NAME)); out.write(content.getBytes()); out.hsync(); LOG.info("success to append."); } finally { // make sure the stream is closed finally. IOUtils.closeStream(out); }}
  • HDFS常用概念 Colocation 同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client HDFS Client主要包括五种方式:JAVA API、C API、Shell、HTTP REST API、WEB UI五种方式,可参考常用API介绍、HDFS Shell命令介绍。 JAVA API 提供HDFS文件系统的应用接口,本开发指南主要介绍如何使用Java API进行HDFS文件系统的应用开发。 C API 提供HDFS文件系统的应用接口,使用C语言开发的用户可参考C接口的描述进行应用开发。 Shell 提供shell命令完成HDFS文件系统的基本操作。 HTTP REST API 提供除Shell、Java API和C API以外的其他接口,可通过此接口监控HDFS状态等信息。 WEB UI 提供Web可视化组件管理界面。 keytab文件 存放用户信息的密钥文件,应用程序采用此密钥文件在组件中进行API方式认证。
  • 功能简介 使用REST服务,传入对应host与port组成的url以及指定的Namespace,通过HTTPS协议,对Namespace进行创建、查询、删除,获取指定Namespace中表的操作。 HBase表以“命名空间:表名”格式进行存储,若在创建表时不指定命名空间,则默认存储在“default”中。其中,“hbase”命名空间为系统表命名空间,请不要对该系统表命名空间进行业务建表或数据读写等操作。
  • 代码样例 如下是读文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 读文件 * * @throws java.io.IOException */private void read() throws IOException { String strPath = DEST_PATH + File.separator + FILE_NAME; Path path = new Path(strPath); FSDataInputStream in = null; BufferedReader reader = null; StringBuffer strBuffer = new StringBuffer(); try { in = fSystem.open(path); reader = new BufferedReader(new InputStreamReader(in)); String sTempOneLine; // write file while ((sTempOneLine = reader.readLine()) != null) { strBuffer.append(sTempOneLine); } LOG.info("result is : " + strBuffer.toString()); LOG.info("success to read."); } finally { // make sure the streams are closed finally. IOUtils.closeStream(reader); IOUtils.closeStream(in); }}
共99315条