华为云用户手册

  • 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/llm_train/AscendSpeed/training_data/alpaca_gpt4_data.json 必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/AscendSpeed/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/ws/llm_train/AscendSpeed/tokenizers/llama2-13B 该参数为tokenizer文件的存放地址。默认与ORIGINAL_HF_WEIGHT路径相同。若用户需要将Hugging Face权重与tokenizer文件分开存放时,则需要修改参数。 INPUT_PRO CES SED_DIR /home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。若用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、P LOG 、LOG 文件。示例中,默认统一保存在“saved_dir_for_output”文件夹下。若用户需要修改,可添加并自定义该变量。 CKPT_SAVE_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/saved_models/llama2-13b 保存训练生成的模型 CKPT 文件。示例中,默认保存在“saved_dir_for_output/saved_models”文件夹下。若用户需要修改,可添加并自定义该变量。 LOG_SAVE_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/saved_models/llama2-13b/log 保存训练过程记录的日志 LOG 文件。示例中,默认保存在“saved_models/llama2-13b/log”文件夹下。若用户需要修改,可添加并自定义该变量。 ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。示例中,默认保存在“saved_dir_for_output/plog”文件夹下。若用户需要修改,可添加并自定义该变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
  • 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide 若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为上述pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name}
  • 步骤二 修改训练超参配置 以 llama2-70b 和 llama2-13b 预训练 为例,执行脚本为 0_pl_pretrain_70b.sh 和 0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/llm_train/AscendSpeed/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/AscendSpeed/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/ws/llm_train/AscendSpeed/tokenizers/llama2-13B 该参数为tokenizer文件的存放地址。默认与ORIGINAL_HF_WEIGHT路径相同。若用户需要将Hugging Face权重与tokenizer文件分开存放时,则需要修改参数。 INPUT_PROCESSED_DIR /home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。若用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、PLOG、LOG 文件。示例中,默认统一保存在“saved_dir_for_output”文件夹下。若用户需要修改,可添加并自定义该变量。 CKPT_SAVE_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/saved_models/llama2-13b 保存训练生成的模型 CKPT 文件。示例中,默认保存在“saved_dir_for_output/saved_models”文件夹下。若用户需要修改,可添加并自定义该变量。 LOG_SAVE_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/saved_models/llama2-13b/log 保存训练过程记录的日志 LOG 文件。示例中,默认保存在“saved_models/llama2-13b/log”文件夹下。若用户需要修改,可添加并自定义该变量。 ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。示例中,默认保存在“saved_dir_for_output/plog”文件夹下。若用户需要修改,可添加并自定义该变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
  • 步骤六 编写Config.yaml文件 k8s有两种方式来管理对象: 命令式,即通过Kubectl指令直接操作对象。 声明式,通过定义资源YAML格式的文件来操作对象。 首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: # data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vcjob # job名字,需要和configmap中名字保持联系 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 schedulerName: volcano # 保持不动 policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 5 queue: default tasks: - name: main replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure 双个节点训练的config.yaml文件模板,用于实现双机分布式训练。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: #data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vcjob # job名字,需要和configmap中名字保持联系 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 schedulerName: volcano # 保持不动 policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 5 queue: default tasks: - name: main replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure - name: work replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure 参数说明: ${container_name} 容器名称,此处可以自己定义一个容器名称,例如ascendspeed。 ${image_name} 为步骤五 修改并上传镜像中,上传至SWR上的镜像链接。 ${command} 使用config.yaml文件创建pod后,在容器内自动运行的命令。在进行训练任务中会给出替换命令。 /mnt/sfs_turbo 为宿主机中默认挂载SFS Turbo的工作目录,目录下存放着训练所需代码、数据等文件。 同样,/mnt/sfs_turbo 也可以映射至容器中,作为容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。为方便访问两个地址可以相同。 ${pvc_name} 为在CCE集群关联SFS Turbo步骤中创建的PVC名称。 在设置容器中需要的CPU与内存大小时,可通过运行以下命令查看申请的节点机器中具体的CPU与内存信息。 kubectl describe node ${requests_cpu} 指在容器中请求的最小CPU核心数量,可使用Requests中的值,例如2650m。 ${requests_memory} 指在容器中请求的最小内存空间大小,可使用Requests中的值,例如3200Mi。 ${limits_cpu} 指在容器中可使用的最大CPU核心数量,例如192。 ${limits_memory} 指在容器中可使用的最大内存空间大小,例如换算成1500Gi。
  • 步骤二 获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 containerd 容器引擎有命名空间的概念。Kubernetes 下使用的 containerd 默认命名空间是 k8s.io。所以在导入镜像时需要指定命令空间为 k8s.io,否则使用 crictl images 无法查询到。以下命令可选其一进行镜像拉取: 使用 containerd 自带的工具 ctr 进行镜像拉取。 ctr -n k8s.io pull {image_url} 使用nerdctl工具拉取镜像。 nerdctl --namespace k8s.io pull {image_url} 集群有多个节点,要确保每个节点都拥有镜像。 镜像获取完成后可通过如下其中一个命令进行查看: # ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2406-aarch64-snt9b-20240910112800-2a95df3 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0
  • 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir} |── training_data |── train-00000-of-00001-a09b74b3ef9c3b56.parquet # 训练原始数据集 |── alpaca_gpt4_data.json # 微调数据文件
  • Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet,数据大小:24M左右。 SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。
  • 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录DevServer。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如SFS Turbo的路径:/mnt/sfs_turbo目录下,以下都以/mnt/sfs_turbo为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/mnt/sfs_turbo/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/mnt/sfs_turbo,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。 cd /mnt/sfs_turbo mkdir -p tokenizers/Llama2-70B
  • 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 请联系您所在企业的华为方技术支持下载获取。
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.909中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹 |──qwen1.5 # Qwen1.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
  • 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如使用SFS Turbo的路径:/mnt/sfs_turbo/) |──llm_train #解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能代码包 |──scripts/ # 各模型训练需要的启动脚本,训练脚本以分类的方式集中在scripts文件夹中。 # 自动生成数据目录结构 |── processed_for_input #目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |── lora # lora微调输出权重 |── sft # 增量训练输出权重 |── pretrain # 预训练输出权重 |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data #原始数据目录,需要用户手动创建,后续操作步骤中会提示 |── train-00000-of-00001-a09b74b3ef9c3b56.parquet #原始数据文件 |── alpaca_gpt4_data.json #微调数据文件
  • 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统前提条件: 创建SFS Turbo文件系统前,确认已有可用的VPC。 图4 创建SFS Turbo 需要由 IAM 用户设置SFS Turbo FullAccess权限,用于授权ModelArts云服务使用SFS Turbo。 详细操作指导请参考创建SFS Turbo文件系统。 其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用 6.0~10.8TB ,以存储更多模型文件。 图5 SFS类型和容量选择
  • kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。 首先进入已创建的 CCE 集群控制版面中。根据图1的步骤进行操作,单击kubectl配置时,会弹出图2步骤页面。 图1 配置中心 根据图2,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图2 kubectl 访问集群配置 在节点机器中,输入命令,查看Kubernetes集群信息。若显示如图图3的内容,则配置成功。 kubectl cluster-info 图3 查看 Kubernetes 集群信息正确弹出内容
  • CCE集群关联SFS Turbo 进入已购买创建的CCE集群,选择存储,随后单击“创建存储卷声明PVC”。 选择“极速文件存储”,随后输入PVC名称。 选择“新建存储卷PV”,并单击“选择极速文件存储”。 进入选择页面,选择已经创建好的SFS Turbo,最后输入PV名称。 接下来需要通过访问集群节点,挂载SFS Turbo。 可通过ssh登录CCE集群中的某个节点(ssh使用的是eip地址)。 创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图: 挂载完成后,可通过以下步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。
  • 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite k8s Cluster运行的,需要购买并开通k8s Cluster资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。
  • 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 3 llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 5 llama3-70b https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 6 Qwen qwen-7b https://huggingface.co/Qwen/Qwen-7B-Chat 7 qwen-14b https://huggingface.co/Qwen/Qwen-14B-Chat 8 qwen-72b https://huggingface.co/Qwen/Qwen-72B-Chat 9 Qwen1.5 qwen1.5-7b https://huggingface.co/Qwen/Qwen1.5-7B-Chat 10 qwen1.5-14b https://huggingface.co/Qwen/Qwen1.5-14B-Chat 11 qwen1.5-32b https://huggingface.co/Qwen/Qwen1.5-32B-Chat 12 qwen1.5-72b https://huggingface.co/Qwen/Qwen1.5-72B-Chat 13 Yi yi-6b https://huggingface.co/01-ai/Yi-6B-Chat 14 yi-34b https://huggingface.co/01-ai/Yi-34B-Chat 15 ChatGLMv3 glm3-6b https://huggingface.co/THUDM/chatglm3-6b 16 Baichuan2 baichuan2-13b https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 17 Qwen2 qwen2-0.5b https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 18 qwen2-1.5b https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 19 qwen2-7b https://huggingface.co/Qwen/Qwen2-7B-Instruct 20 qwen2-72b https://huggingface.co/Qwen/Qwen2-72B-Instruct 21 GLMv4 glm4-9b https://huggingface.co/THUDM/glm-4-9b-chat 说明: glm4-9b模型必须使用版本4b556ad4d70c38924cb8c120adbf21a0012de6ce 22 mistral mistral-7b https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 23 mixtral mixtral-8x7b https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 24 llama3.1 llama3.1-8b https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct 25 llama3.1-70b https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
  • 问题5:训练完成使用vllm0.6.0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: ①更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤: pip install transformers==4.45.0 pip install tokenizers==0.20.0 ②使用原始hf权重的tokenizer.json覆盖保存的tokenizer.json即可,如llama3-8b_lora具体过程如下: # 进入模型tokenizer目录 cd /home/ma-user/ws/tokenizers/llama3-8b/ # 替换tokenizer.json文件 cp -f tokenizer.json /home/ma-user/ws/saves/rm/llama3-8b/lora/tokenizer.json
  • 问题3:训练过程报错:ImportError: XXX not found in your environment: flash_attn 根因:昇腾环境暂时不支持flash_attn接口 规避措施:修改dynamic_module_utils.py文件,将180-184行代码注释掉 vim /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/transformers/dynamic_module_utils.py
  • 问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api.py文件参数: vim /home/ma-user/anaconda3/envs/PyTorch-2.2.0/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py 修改def _exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000 图1 修改后的barrier_timeout参数
  • 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model Parameter分布到不同的NPU 增加卡数重新训练,未解决找相关人员定位。
  • 录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost 1 0 PROF_SAVE_PATH:Profiling录制结果存放路径 DO_PROFILER:是否开启Profiling录制功能 父主题: 训练脚本说明
  • BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式往往取决于具体的应用场景和训练需求。 父主题: 训练脚本说明
  • NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask 只支持布尔(bool)数据类型,或者为None。 query的shape仅支持 [B, N1, S1, D],其中N1≤ 2048,D≤ 512并且dim== 4。 对于GQA,key的shape是 [B, N2, S2, D],其中 N2 ≤ 2048,并且N1是N2的正整数倍。 不满足以上场景,则不能实现NPU_Flash_Attn功能。 父主题: 训练脚本说明
  • glm4-9b模型 在训练开始前,需要修改glm4-9b模型中的tokenizer文件modeling_chatglm.py内容,具体步骤如下: 进入到tokenizer目录下{work_dir}/tokenizers/glm4-9B/,命令如下: cd /home/ma-user/ws/tokenizers/glm4-9B 修改modeling_chatglm.py文件内容: vim modeling_chatglm.py # 注释掉以下两行内容 # if attention_mask is not None # attention_mask = ~attention_mask 样例图:
  • falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入到代码目录下{work_dir}/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/如: cd /home/ma-user/ws/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/
  • 模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 1*Ascend full gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend 13B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 1*Ascend full gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 8*Ascend 70B lora 4096 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend 8192 gradient_accumulation_steps: 8 ZeRO-3-Offload 2*节点 & 8*Ascend full 4096/8192 gradient_accumulation_steps: 4 ZeRO-3-Offload 4*节点 & 8*Ascend llama3 llama3 70B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend full gradient_accumulation_steps: 4 ZeRO-3-Offload 4*节点 & 8*Ascend 8B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 1*Ascend full gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend llama3.1 llama3 8B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend 70B lora 4096 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend 8192 gradient_accumulation_steps: 8 ZeRO-3-Offload 2*节点 & 8*Ascend full 4096/8192 gradient_accumulation_steps: 4 ZeRO-3-Offload 4*节点 & 8*Ascend Qwen2 qwen 72B lora 4096 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend 8192 gradient_accumulation_steps: 8 ZeRO-3-Offload 2*节点 & 8*Ascend full 4096/8192 gradient_accumulation_steps: 4 ZeRO-3-Offload 4*节点 & 8*Ascend 7B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-0 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend 0.5/1.5B lora/full 4096/8192 gradient_accumulation_steps: 8 ZeRO-0 1*节点 & 1*Ascend Qwen2_vl qwen2_vl 2B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-0 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-0 1*节点 & 2*Ascend 7B lora 4096 gradient_accumulation_steps: 8 ZeRO-0 1*节点 & 1*Ascend 8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 1*Ascend full 4096 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend 8192 gradient_accumulation_steps: 8 ZeRO-2-Offload 1*节点 & 8*Ascend Qwen1.5 qwen 0.5/1.8B lora/full 4096/8192 gradient_accumulation_steps: 8 ZeRO-0 1*节点 & 1*Ascend 4B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 4*Ascend 7B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend 14B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 8*Ascend 32B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 4*Ascend full 4096 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend full 8192 gradient_accumulation_steps: 4 ZeRO-3-Offload 2*节点 & 8*Ascend 72B lora 4096 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend lora 8192 gradient_accumulation_steps: 8 ZeRO-3-Offload 2*节点 & 8*Ascend full 4096/8192 gradient_accumulation_steps: 4 ZeRO-3-Offload 4*节点 & 8*Ascend falcon2 falcon 11B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 8*Ascend GLM4 glm4 9B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-2 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 8*Ascend Yi yi 6B lora 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 1*Ascend full 4096/8192 gradient_accumulation_steps: 8 ZeRO-1 1*节点 & 4*Ascend 34B full 4096 gradient_accumulation_steps: 8 ZeRO-3 2*节点 & 8*Ascend lora gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 2*Ascend full 8192 gradient_accumulation_steps: 8 ZeRO-3 4*节点 & 8*Ascend lora gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 4*Ascend 以上参数为开启NPU FlashAttention融合算子,上述参数值仅供参考,请根据自己实际要求合理配置其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
  • rm_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/llama3-8b ### method stage: rm do_train: true # 全参 # finetuning_type: full # lora finetuning_type: lora lora_target: all deepspeed: examples/deepspeed/ds_z0_config.json ### dataset dataset: dpo_en_demo template: llama3 cutoff_len: 4096 max_samples: 50000 overwrite_cache: true preprocessing_num_workers: 16 packing: true ### output output_dir: /home/ma-user/ws/saves/rm/llama3-8b/lora logging_steps: 1 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0 bf16: true ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • tune_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: sft do_train: true # 全参 finetuning_type: full # lora # finetuning_type: lora # lora_target: all deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: identity,alpaca_en_demo dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data template: qwen cutoff_len: 4096 packing: true max_samples: 100000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: /home/ma-user/ws/saves/tune/Qwen2-72B/sft logging_steps: 2 save_steps: 5000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 2.0e-5 num_train_epochs: 10.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true flash_attn: sdpa ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • dpo_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: dpo do_train: true # lora finetuning_type: lora lora_target: all pref_beta: 0.1 pref_loss: sigmoid deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: dpo_en_demo dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data template: qwen cutoff_len: 4096 packing: true max_samples: 50000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: /home/ma-user/ws/saves/dpo/llama3-8b/lora logging_steps: 2 save_steps: 5000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 5.0e-6 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true flash_attn: sdpa ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
共100000条