华为云用户手册

  • 下标生成函数 generate_subscripts(array anyarray, dim int) 描述:生成一系列包括给定数组的下标。 返回值类型:setof int generate_subscripts(array anyarray, dim int, reverse boolean) 描述:生成一系列包括给定数组的下标。当reverse为真时,该系列则以相反的顺序返回。 返回值类型:setof int
  • 聚集函数嵌套 描述:对聚集函数分组计算的结果再进行一次聚集函数操作。 一般可描述为: SELECT AGG1(AGG2(column_name1)) FROM table_name GROUP BY column_name2; 等价为: SELECT AGG1(value) FROM (SELECT AGG2(column_name1) value FROM table_name GROUP BY column_name2); 其中: AGG1():表示外层聚集函数。 AGG2():表示内层聚集函数。 table_name:表示表名。 column_name1、column_name2:表示列名。 value:表示内层聚集函数结果的别名。 整体含义可描述为:将内层聚集函数AGG2()分组计算的结果作为外层聚集函数AGG1()的输入再计算一次。 嵌套的聚集函数应位于SELECT和FROM之间,否则无意义。 使用嵌套聚集函数的SELECT语句应包含GROUP BY子句。 与嵌套聚集函数同时被SELECT的,应同为嵌套聚集函数,或为常量表达式。 聚集函数仅支持一次聚集函数嵌套操作。 当前支持以下聚集函数之间的嵌套:avg、max、min、sum、var_pop、var_samp、variance、stddev_pop、stddev_samp、stddev、median、regr_sxx、regr_syy、regr_sxy、regr_avgx、regr_avgy、regr_r2、regr_slope、regr_intercept、covar_pop、covar_samp、corr和listagg。 内层聚集函数的返回结果类型应符合外层聚集函数的参数类型。 示例: gaussdb=# CREATE TABLE test1 (id INT,val INT); CREATE TABLE gaussdb=# INSERT INTO test1 VALUES (1, 1); INSERT 0 1 gaussdb=# INSERT INTO test1 VALUES (1, null); INSERT 0 1 gaussdb=# INSERT INTO test1 VALUES (2, 10); INSERT 0 1 gaussdb=# INSERT INTO test1 VALUES (2, 55); INSERT 0 1 gaussdb=# SELECT SUM(MIN(val)) FROM test1 GROUP BY id; sum ----- 11 (1 row) gaussdb=# DROP TABLE test1; DROP TABLE
  • 内置函数 HLL(HyperLogLog)有一系列内置函数用于内部对数据进行处理,一般情况下用户不需要熟知这些函数的使用,具体如表1所示。 表1 内置函数 函数名称 功能描述 hll_in 以string格式接收hll数据。 hll_out 以string格式发送hll数据。 hll_recv 以bytea格式接收hll数据。 hll_send 以bytea格式发送hll数据。 hll_trans_in 以string格式接收hll_trans_type数据。 hll_trans_out 以string格式发送hll_trans_type数据。 hll_trans_recv 以bytea形式接收hll_trans_type数据。 hll_trans_send 以bytea形式发送hll_trans_type数据。 hll_typmod_in 接收typmod类型数据。 hll_typmod_out 发送typmod类型数据。 hll_hashval_in 接收hll_hashval类型数据。 hll_hashval_out 发送hll_hashval类型数据。 hll_add_trans0 类似于hll_add所提供的功能,初始化时无指定入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans1 类似于hll_add所提供的功能,初始化时指定一个入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans2 类似于hll_add所提供的功能,初始化时指定两个入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans3 类似于hll_add所提供的功能,初始化时指定三个入参,通常在聚合运算的第一阶段DN上使用。 hll_add_trans4 类似于hll_add所提供的功能,初始化时指定四个入参,通常在聚合运算的第一阶段DN上使用。 hll_union_trans 类似hll_union所提供的功能,在聚合运算的第一阶段DN上使用。 hll_union_collect 类似于hll_union所提供的功能,在聚合运算第二阶段DN上使用,汇总各个DN上的结果。 hll_pack 在聚合运算第三阶段DN上使用,把自定义hll_trans_type类型最后转换成hll类型。 hll 用于hll类型转换成hll类型,根据输入参数会设定指定参数。 hll_hashval 用于bigint类型转换成hll_hashval类型。 hll_hashval_int4 用于int4类型转换成hll_hashval类型。
  • 废弃函数 由于版本升级,HLL(HyperLogLog)有一些旧的函数废弃,用户可以用类似的函数进行替代。 hll_schema_version(hll) 描述:查看当前hll中的schema version。旧版本schema version是常值1,用来进行hll字段的头部校验,重构后的hll在头部增加字段“HLL”进行校验,schema version不再使用。 hll_regwidth(hll) 描述:查看hll数据结构中桶的位数大小。旧版本桶的位数regwidth取值1~5,会存在较大的误差,也限制了基数估计上限。 重构后regwidth为固定值6,不再使用regwidth变量。 hll_expthresh(hll) 描述:得到当前hll中expthresh大小。采用hll_log2explicit(hll)替代类似功能。 hll_sparseon(hll) 描述:是否启用Sparse模式。采用hll_log2sparse(hll)替代类似功能,0表示关闭Sparse模式。
  • 聚合函数 hll_add_agg(hll_hashval) 描述:把哈希后的数据按照分组放到hll中。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 --准备数据 gaussdb=# CREATE TABLE t_id(id int); gaussdb=# INSERT INTO t_id VALUES(generate_series(1,500)); gaussdb=# CREATE TABLE t_data(a int, c text); gaussdb=# INSERT INTO t_data SELECT mod(id,2), id FROM t_id; --创建表并指定列为hll gaussdb=# CREATE TABLE t_a_c_hll(a int, c hll); --根据a列group by对数据分组,把各组数据加到hll中 gaussdb=# INSERT INTO t_a_c_hll SELECT a, hll_add_agg(hll_hash_text(c)) FROM t_data GROUP BY a; --得到每组数据中hll的Distinct值 gaussdb=# SELECT a, #c AS cardinality FROM t_a_c_hll ORDER BY a; a | cardinality ---+------------------ 0 | 247.862354346299 1 | 250.908710610377 (2 rows) hll_add_agg(hll_hashval, int32 log2m) 描述:把哈希后的数据按照分组放到hll中, 并指定参数log2m,取值范围是10到16。若输入-1或者NULL,则采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), 12)) FROM t_data; hll_cardinality ------------------ 497.965240179228 (1 row) hll_add_agg(hll_hashval, int32 log2m, int32 log2explicit) 描述:把哈希后的数据按照分组放到hll中,依次指定参数log2m、log2explicit。 log2explicit取值范围是0到12,0表示直接跳过Explicit模式。该参数可以用来设置Explicit模式的阈值大小,在数据段长度达到2log2explicit后切换为Sparse模式或者Full模式。若输入-1或者NULL,则log2explicit采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1)) FROM t_data; hll_cardinality ------------------ 498.496062953313 (1 row) hll_add_agg(hll_hashval, int32 log2m, int32 log2explicit, int64 log2sparse) 描述:把哈希后的数据按照分组放到hll中, 依次指定参数log2m、log2explicit、log2sparse。log2sparse取值范围是0到14,0表示直接跳过Sparse模式。该参数可以用来设置Sparse模式的阈值大小,在数据段长度达到2log2sparse后切换为Full模式。若输入-1或者NULL,则log2sparse采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 6, 10)) FROM t_data; hll_cardinality ------------------ 498.496062953313 (1 row) hll_add_agg(hll_hashval, int32 log2m, int32 log2explicit, int64 log2sparse, int32 duplicatecheck) 描述:把哈希后的数据按照分组放到hll中, 依次制定参数log2m、log2explicit、log2sparse、duplicatecheck,duplicatecheck取值范围是0或者1,表示是否开启该模式,默认情况下该模式会关闭。若输入-1或者NULL,则duplicatecheck采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 6, 10, -1)) FROM t_data; hll_cardinality ------------------ 498.496062953313 (1 row) hll_union_agg(hll) 描述:将多个hll类型数据union成一个hll。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 --将各组中的hll数据union成一个hll,并计算distinct值。 gaussdb=# SELECT #hll_union_agg(c) AS cardinality FROM t_a_c_hll; cardinality ------------------ 498.496062953313 (1 row) --删除表 gaussdb=# DROP TABLE t_id; gaussdb=# DROP TABLE t_data; gaussdb=# DROP TABLE t_a_c_hll; 注意:当两个或者多个hll数据结构做union的时候,必须要保证其中每一个hll里面的精度参数一样,否则将不可以进行union。同样的约束也适用于函数hll_union(hll,hll)。
  • 功能函数 hll_empty() 描述:创建一个空的hll。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_empty(); hll_empty ------------------------------------------------------------ \x484c4c00000000002b05000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m) 描述:创建空的hll并指定参数log2m,取值范围是10到16。若输入-1,则采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 gaussdb=# SELECT hll_empty(10); hll_empty ------------------------------------------------------------ \x484c4c00000000002b04000000000000000000000000000000000000 (1 row) gaussdb=# SELECT hll_empty(-1); hll_empty ------------------------------------------------------------ \x484c4c00000000002b05000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit) 描述:创建空的hll并依次指定参数log2m、log2explicit。log2explicit取值范围是0到12,0表示直接跳过Explicit模式。该参数可以用来设置Explicit模式的阈值大小,在数据段长度达到2log2explicit后切换为Sparse模式或者Full模式。若输入-1,则log2explicit采用内置默认值。 返回值类型: hll 示例: 1 2 3 4 5 6 7 8 9 10 11 gaussdb=# SELECT hll_empty(10, 4); hll_empty ------------------------------------------------------------ \x484c4c00000000001304000000000000000000000000000000000000 (1 row) gaussdb=# SELECT hll_empty(10, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000002b04000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit, int64 log2sparse) 描述:创建空的hll并依次指定参数log2m、log2explicit、log2sparse。log2sparse取值范围是0到14,0表示直接跳过Sparse模式。该参数可以用来设置Sparse模式的阈值大小,在数据段长度达到2log2sparse后切换为Full模式。若输入-1,则log2sparse采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 gaussdb=# SELECT hll_empty(10, 4, 8); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) gaussdb=# SELECT hll_empty(10, 4, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000001304000000000000000000000000000000000000 (1 row) hll_empty(int32 log2m, int32 log2explicit, int64 log2sparse, int32 duplicatecheck) 描述:创建空的hll并依次指定参数log2m、log2explicit、log2sparse、duplicatecheck。duplicatecheck取0或者1,表示是否开启该模式,默认情况下该模式会关闭。若输入-1,则duplicatecheck采用内置默认值。 返回值类型:hll 示例: 1 2 3 4 5 6 7 8 9 10 11 gaussdb=# SELECT hll_empty(10, 4, 8, 0); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) gaussdb=# SELECT hll_empty(10, 4, 8, -1); hll_empty ------------------------------------------------------------ \x484c4c00000000001204000000000000000000000000000000000000 (1 row) hll_add(hll, hll_hashval) 描述:把hll_hashval加入到hll中。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_add(hll_empty(), hll_hash_integer(1)); hll_add ---------------------------------------------------------------------------- \x484c4c08000002002b0900000000000000f03f3e2921ff133fbaed3e2921ff133fbaed00 (1 row) hll_add_rev(hll_hashval, hll) 描述:把hll_hashval加入到hll中,和hll_add功能一样,只是参数位置进行了交换。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_add_rev(hll_hash_integer(1), hll_empty()); hll_add_rev ---------------------------------------------------------------------------- \x484c4c08000002002b0900000000000000f03f3e2921ff133fbaed3e2921ff133fbaed00 (1 row) hll_eq(hll, hll) 描述:比较两个hll是否相等。 返回值类型:bool 示例: 1 2 3 4 5 gaussdb=# SELECT hll_eq(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_eq -------- f (1 row) hll_ne(hll, hll) 描述:比较两个hll是否不相等。 返回值类型:bool 示例: 1 2 3 4 5 gaussdb=# SELECT hll_ne(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_ne -------- t (1 row) hll_cardinality(hll) 描述:计算hll的distinct值。 返回值类型:int 示例: 1 2 3 4 5 gaussdb=# SELECT hll_cardinality(hll_empty() || hll_hash_integer(1)); hll_cardinality ----------------- 1 (1 row) hll_union(hll, hll) 描述:把两个hll数据结构union成一个。 返回值类型:hll 示例: 1 2 3 4 5 gaussdb=# SELECT hll_union(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2))); hll_union -------------------------------------------------------------------------------------------- \x484c4c10002000002b090000000000000000400000000000000000b3ccc49320cca1ae3e2921ff133fbaed00 (1 row)
  • macaddr函数 函数trunc(macaddr)返回一个MAC地址,该地址的最后三个字节设置为零。 trunc(macaddr) 描述:把后三个字节置为零。 返回类型:macaddr 示例: 1 2 3 4 5 gaussdb=# SELECT trunc(macaddr '12:34:56:78:90:ab') AS RESULT; result ------------------- 12:34:56:00:00:00 (1 row)
  • date_part date_part函数是在传统的Ingres函数的基础上制作的(该函数等效于SQL标准函数extract): date_part('field, source) 这里的field参数必须是一个字符串,而不是一个名称。有效的field与extract一样,详细信息请参见EXTRACT。 示例: 1 2 3 4 5 gaussdb=# SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 16 (1 row) 1 2 3 4 5 gaussdb=# SELECT date_part('hour', INTERVAL '4 hours 3 minutes'); date_part ----------- 4 (1 row)
  • EXTRACT EXTRACT(field FROM source) extract函数从日期或时间的数值里抽取子域,比如年、小时等。source必须是一个timestamp、time或interval类型的值表达式(类型为date的表达式转换为timestamp,因此也可以用)。field是一个标识符或者字符串,它指定从源数据中抽取的域。extract函数返回类型为double precision的数值。field的取值范围如下所示。 century 世纪。 第一个世纪从0001-01-01 00:00:00 AD开始。这个定义适用于所有使用阳历的国家。没有0世纪,直接从公元前1世纪到公元1世纪。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13'); date_part ----------- 20 (1 row) day 如果source为timestamp,表示月份里的日期(1-31)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 16 (1 row) 如果source为interval,表示天数。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute'); date_part ----------- 40 (1 row) decade 年份除以10。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 200 (1 row) dow 每周的星期几,星期天(0)到星期六(6)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 5 (1 row) doy 一年的第几天(1~365/366)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 47 (1 row) epoch 如果source为timestamp with time zone,表示自1970-01-01 00:00:00-00 UTC以来的秒数(结果可能是负数); 如果source为date和timestamp,表示自1970-01-01 00:00:00-00当地时间以来的秒数; 如果source为interval,表示时间间隔的总秒数。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08'); date_part -------------- 982384720.12 (1 row) 1 2 3 4 5 gaussdb=# SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours'); date_part ----------- 442800 (1 row) 将epoch值转换为时间戳的方法。 1 2 3 4 5 gaussdb=# SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720.12 * INTERVAL '1 second' AS RESULT; result --------------------------- 2001-02-17 12:38:40.12+08 (1 row) hour 小时域(0-23)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 20 (1 row) isodow 一周的第几天(1-7)。 星期一为1,星期天为7。 除了星期天外,都与dow相同。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40'); date_part ----------- 7 (1 row) isoyear 日期中的ISO 8601标准年(不适用于间隔)。 每个带有星期一开始的周中包含1月4日的ISO年,所以在年初的1月或12月下旬的ISO年可能会不同于阳历的年。详细信息请参见后续的week描述。 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01'); date_part ----------- 2005 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-01 00:00:40'); date_part ----------- 52 (1 row) gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02'); date_part ----------- 2006 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-02 00:00:40'); date_part ----------- 1 (1 row) microseconds 秒域(包括小数部分)乘以1,000,000。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5'); date_part ----------- 28500000 (1 row) millennium 千年。 20世纪(19xx年)里面的年份在第二个千年里。第三个千年从2001年1月1日零时开始。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 3 (1 row) milliseconds 秒域(包括小数部分)乘以1000。请注意它包括完整的秒。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5'); date_part ----------- 28500 (1 row) minute 分钟域(0-59)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 38 (1 row) month 如果source为timestamp,表示一年里的月份数(1-12)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 2 (1 row) 如果source为interval,表示月的数目,然后对12取模(0-11)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months'); date_part ----------- 1 (1 row) quarter 该天所在的该年的季度(1-4)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 1 (1 row) second 秒域,包括小数部分(0-59)。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(SECOND FROM TIME '17:12:28.5'); date_part ----------- 28.5 (1 row) timezone 与UTC的时区偏移量,单位为秒。正数对应UTC东边的时区,负数对应UTC西边的时区。 timezone_hour 时区偏移量的小时部分。 timezone_minute 时区偏移量的分钟部分。 week 该天在所在的年份里是第几周。ISO 8601定义一年的第一周包含该年的一月四日(ISO-8601 的周从星期一开始)。换句话说,一年的第一个星期四在第一周。 在ISO定义里,一月的头几天可能是前一年的第52或者第53周,十二月的后几天可能是下一年第一周。比如,2006-01-01是2005年的第52周,而2006-01-02是2006年的第1周。建议isoyear字段和week一起使用以得到一致的结果。 1 2 3 4 5 6 7 8 9 10 gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01'); date_part ----------- 2005 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-01 00:00:40'); date_part ----------- 52 (1 row) gaussdb=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02'); date_part ----------- 2006 (1 row) gaussdb=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2006-01-02 00:00:40'); date_part ----------- 1 (1 row) year 年份域。 1 2 3 4 5 gaussdb=# SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40'); date_part ----------- 2001 (1 row)
  • 时间日期操作符 时间日期操作符如表1所示。 要尽量避免在查询中使用 'now'::date, 'now'::timestamp,'now'::timestamptz字符串常量强转以及text_date('now')的类似表达式来获取数据库当前时间或者将当前时间值作为函数入参场景,在这些场景下,优化器会提前算出常量时间,造成查询结果不正确。 gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b='now'::date; QUERY PLAN ----------------------------------------------------- Seq Scan on t1 (cost=0.00..13.60 rows=1 width=310) Filter: ((b)::text = '2024-11-09 15:07:56'::text) (2 rows) gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b=text_date('now'); QUERY PLAN ----------------------------------------------------- Seq Scan on t1 (cost=0.00..13.60 rows=1 width=310) Filter: ((b)::text = '2024-11-09'::text) (2 rows) 推荐使用now(), currenttimestamp()函数作为获取数据库当前时间的方法。 gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b=now(); QUERY PLAN ----------------------------------------------------- Seq Scan on t1 (cost=0.00..14.80 rows=1 width=310) Filter: ((b)::text = (now())::text) (2 rows) gaussdb=# EXPLAIN SELECT * FROM t1 WHERE b=text_date(now()); QUERY PLAN ---------------------------------------------------------- Seq Scan on t1 (cost=0.00..16.00 rows=1 width=310) Filter: ((b)::text = (text_date((now())::text))::text) (2 rows) 用户在使用时间和日期操作符时,对应的操作数请使用明确的类型前缀修饰,以确保数据库在解析操作数的时候能够与用户预期一致,不会产生用户非预期的结果。 比如下面示例没有明确数据类型就会出现异常错误。 1 2 3 4 5 6 7 gaussdb=# SELECT date '2001-10-01' - '7' AS RESULT; ERROR: GAUSS-10416: invalid input syntax for type timestamp: "7" SQLSTATE: 22007 LINE 1: SELECT date '2001-10-01' - '7' AS RESULT; ^ CONTEXT: referenced column: result
  • TIMESTAMPDIFF TIMESTAMPDIFF(unit , timestamp_expr1, timestamp_expr2) 描述:timestampdiff函数计算两个时间之间(timestamp_expr2-timestamp_expr1)的差值,并以unit形式返回结果。等效于timestamp_diff(text, timestamp, timestamp)。 参数:timestamp_expr1、timestamp_expr2为时间类型表达式、text、datetime、date或time等类型。unit表示的是两个日期差的单位。 返回值类型:bigint 该函数仅在B模式数据库中有效。 timestampdiff在sql_compatibility = 'B',且参数b_format_version值为5.7、b_format_dev_version值为s1时,调用的函数实际上注册为b_timestampdiff;在B模式数据库中且未开启guc参数时,调用的函数注册为timestamp_diff,可以用“\df b_timestampdiff”等指令查询函数详细入参与返回值。 year 年份。 1 2 3 4 5 gaussdb=# SELECT TIMESTAMPDIFF(YEAR, '2018-01-01', '2020-01-01'); timestamp_diff ---------------- 2 (1 row)
  • 二进制字符串函数 GaussDB 也提供了函数调用所使用的常用语法。 btrim(string bytea,bytes bytea) 描述:从string的开头和结尾删除只包含bytes中字节的最长的字符串。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# SELECT btrim(E'\\000trim\\000'::bytea, E'\\000'::bytea) AS RESULT; result ------------ \x7472696d (1 row) get_bit(string, offset) 描述:从字符串中抽取位。 返回值类型:int 示例: 1 2 3 4 5 gaussdb=# SELECT get_bit(E'Th\\000omas'::bytea, 45) AS RESULT; result -------- 1 (1 row) get_byte(string, offset) 描述:从字符串中抽取字节。 返回值类型:int 示例: 1 2 3 4 5 gaussdb=# SELECT get_byte(E'Th\\000omas'::bytea, 4) AS RESULT; result -------- 109 (1 row) set_bit(string,offset, newvalue) 描述:设置字符串中的位。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# SELECT set_bit(E'Th\\000omas'::bytea, 45, 0) AS RESULT; result ------------------ \x5468006f6d4173 (1 row) set_byte(string,offset, newvalue) 描述:设置字符串中的字节。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# SELECT set_byte(E'Th\\000omas'::bytea, 4, 64) AS RESULT; result ------------------ \x5468006f406173 (1 row) rawcmp(raw, raw) 描述:raw数据类型比较函数。 参数:raw, raw。 返回值类型:integer raweq(raw, raw) 描述:raw数据类型比较函数。 参数:raw, raw。 返回值类型:boolean rawge(raw, raw) 描述:raw数据类型比较函数。 参数:raw, raw。 返回值类型:boolean rawgt(raw, raw) 描述:raw数据类型比较函数。 参数:raw, raw。 返回值类型:boolean rawin(cstring) 描述:raw数据类型解析函数。 参数:cstring。 返回值类型:bytea rawle(raw, raw) 描述:raw数据类型解析函数。 参数:raw, raw。 返回值类型:boolean rawlike(raw, raw) 描述:raw数据类型解析函数。 参数:raw, raw。 返回值类型:boolean rawlt(raw, raw) 描述:raw数据类型解析函数。 参数:raw, raw。 返回值类型:boolean rawne(raw, raw) 描述:比较raw类型是否一样。 参数:raw, raw。 返回值类型:boolean rawnlike(raw, raw) 描述:比较raw类型与模式是否不匹配。 参数:raw, raw。 返回值类型:boolean rawout(bytea) 描述:RAW类型的输出接口。 参数:bytea 返回值类型:cstring rawsend(raw) 描述:转换bytea为二进制类型。 参数:raw 返回值类型:bytea rawtohex(text) 描述:raw格式转换为十六进制。 参数:text 返回值类型:text
  • 字符串操作符 SQL定义了一些字符串函数,在这些函数里使用关键字而不是逗号来分隔参数。 octet_length(string) 描述:二进制字符串中的字节数。 返回值类型:int 示例: 1 2 3 4 5 gaussdb=# SELECT octet_length(E'jo\\000se'::bytea) AS RESULT; result -------- 5 (1 row) overlay(string placing string from int [for int]) 描述:替换子串。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# SELECT overlay(E'Th\\000omas'::bytea placing E'\\002\\003'::bytea from 2 for 3) AS RESULT; result ---------------- \x5402036d6173 (1 row) position(substring in string) 描述:特定子字符串的位置。 返回值类型:int 示例: 1 2 3 4 5 gaussdb=# SELECT position(E'\\000om'::bytea in E'Th\\000omas'::bytea) AS RESULT; result -------- 3 (1 row) substring(string [from int] [for int]) 描述:截取子串。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# SELECT substring(E'Th\\000omas'::bytea from 2 for 3) AS RESULT; result ---------- \x68006f (1 row) substr(string, from int [, for int]) 描述:截取子串。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# select substr(E'Th\\000omas'::bytea,2, 3) as result; result ---------- \x68006f (1 row) trim([both] bytes from string) 描述:从string的开头和结尾删除只包含bytes中字节的最长字符串。 返回值类型:bytea 示例: 1 2 3 4 5 gaussdb=# SELECT trim(E'\\000'::bytea from E'\\000Tom\\000'::bytea) AS RESULT; result ---------- \x546f6d (1 row)
  • 函数和操作符 操作符可以对一个或多个操作数进行处理,位置上可能处于操作数之前、之后,或两个操作数中间。完成处理之后,返回处理结果。 函数是对一些业务逻辑的封装,以完成特定的功能。函数可以有参数,也可以没有参数。函数是有返回类型的,执行完成后,会返回执行结果。 对于系统函数,用户可以进行修改,但是修改之后系统函数的语义可能会发生改变,从而导致系统控制紊乱。正常情况下不允许用户手工修改系统函数。 当GUC参数behavior_compat_options含有'enable_funcname_with_argsname'选项时,投影别名显示完整函数。 当GUC参数enable_volatile_match_index设置为ON,且DBCOMPATIBILITY设置为A时,volatile类型函数可以匹配索引。volatile函数在部分索引下,不确保可以命中索引;在函数执行过程中含有隐式转换时,不确保命中索引。在本就不可以命中索引的场景中,开启此选项,volatile函数依然不能够命中索引。 当GUC参数enable_immutable_optimization设置为ON且DBCOMPATIBILITY设置为A时,如果immutable存储过程参数为常量或者可以被转换为常量的表达式(例如immutable函数,但是stable、volatile函数不可以),该场景下immutable存储过程并非每行执行一次。immutable存储过程在入参为行表达式的场景下为每行执行一次。在部分场景下,immutable存储过程执行次数会减少但不会减少至只执行一次。 逻辑操作符 比较操作符 字符处理函数和操作符 二进制字符串函数和操作符 位串函数和操作符 模式匹配操作符 数字操作函数和操作符 时间和日期处理函数和操作符 类型转换函数 几何函数和操作符 网络地址函数和操作符 文本检索函数和操作符 JSON/JSONB函数和操作符 HLL函数和操作符 SEQUENCE函数 数组函数和操作符 范围函数和操作符 聚集函数 窗口函数 安全函数 账本数据库的函数 密态函数和操作符 返回集合的函数 条件表达式函数 系统信息函数 系统管理函数 SPM计划管理函数 统计信息函数 触发器函数 HashFunc函数 提示信息函数 全局临时表函数 故障注入系统函数 AI特性函数 敏感数据发现函数 动态数据脱敏函数 层次递归查询函数 其他系统函数 内部函数 Global SysCache特性函数 数据损坏检测修复函数 XML类型函数 XMLTYPE类型函数 Global Plsql Cache特性函数 数据透视函数 通用标识符函数 SQL限流函数 向量计算接口与函数 废弃函数 父主题: SQL参考
  • 模式级字符集和字符序 创建模式并指定默认字符集和字符序。 CREATE SCHEMA schema_name [ [DEFAULT] CHARACTER SET | CHARSET [ = ] default_charset ] [ [DEFAULT] COLLATE [ = ] default_collation ]; 修改模式的默认字符集、字符序属性。 ALTER SCHEMA schema_name [ [DEFAULT] CHARACTER SET | CHARSET [ = ] default_charset ] [ [DEFAULT] COLLATE [ = ] default_collation ]; 语法说明: schema_name 模式名称。 取值范围:字符串,要符合标识符的命名规范。 default_charset 指定模式的默认字符集,单独指定时会将模式的默认字符序设置为指定的字符集的默认字符序。 default_collation 指定模式的默认字符序,单独指定时会将模式的默认字符集设置为指定的字符序对应的字符集。 GaussDB通过以下方式选择模式的字符集和字符序: 如果同时指定了default_charset和default_collation,则使用字符集default_charset和字符序default_collation ,且default_charset和 default_collation需要对应,不对应会产生报错。 如果仅指定了default_charset ,则使用字符集default_charset及其默认字符序。 如果仅指定了default_collation ,则使用default_collation字符序和其对应的字符集。 如果既不指定default_charset也不指定default_collation ,则该模式没有默认字符集和默认字符序。 default_charset仅支持指定为带有默认字符序的字符集,如果指定的字符集没有默认字符序则报错。 default_collation仅支持指定为B模式(即sql_compatibility = 'B')下的字符序,指定其他字符序报错。 暂不支持创建新SCHEMA的字符集与数据库的server_encoding不同。 示例: 1 2 3 4 5 6 7 8 9 10 11 -- 仅设置字符集,字符序为字符集的默认字符序。 gaussdb=# CREATE SCHEMA test CHARSET utf8; -- 仅设置字符序,字符集为字符序关联的字符集。 gaussdb=# CREATE SCHEMA test COLLATE utf8_bin; -- 同时设置字符集与字符序,字符集和字符序需对应。 gaussdb=# CREATE SCHEMA test CHARSET utf8 COLLATE utf8_bin; -- 将test的默认字符集修改为utf8mb4,默认字符序修改为utf8mb4_bin。 gaussdb=# ALTER SCHEMA test CHARSET utf8mb4 COLLATE utf8mb4_bin; 父主题: 字符集与字符序
  • 数据库级字符集和字符序 创建一个新的数据库时,可以指定数据库的字符集字符序。 CREATE DATABASE [IF NOT EXISTS] database_name [ ENCODING [=] encoding ] | [ LC_COLLATE [=] lc_collate ] | [ LC_CTYPE [=] lc_ctype ] |; 语法说明: database_name 数据库名称。 取值范围:字符串,要符合标识符的命名规范。 ENCODING [ = ] encoding 指定数据库使用的字符编码,可以是字符串(如'SQL_ASCII')、整数编号。 LC_COLLATE [ = ] ‘lc_collate’ 指定新数据库使用的字符集。例如,通过lc_collate = 'zh_CN.gbk'设定该参数。 该参数的使用会影响到对字符串的排序(如使用ORDER BY执行,以及在文本列上使用索引的顺序)。默认是使用模板数据库的排序。 取值范围:操作系统支持的字符集。 LC_CTYPE [ = ] ‘lc_ctype’ 指定新数据库使用的字符分类。例如,通过lc_ctype = 'zh_CN.gbk'设定该参数。该参数的使用会影响到字符的分类,如大写、小写和数字。默认是使用模板数据库的字符分类。 取值范围:操作系统支持的字符分类。 数据库级字符集、字符序语法所有模式均可使用,详细语法请参见CREATE DATABASE。 LC_COLLATE/LC_CTYPE语法不支持指定B模式特有的字符序,参数的取值范围取决于本地环境支持的字符集,可通过locale -a查看。 父主题: 字符集与字符序
  • aclitem类型 aclitem数据类型是用来存储对象权限信息的,它的内部实现是int类型,支持的格式为‘user1=privs/user2’。 aclitem[]数据类型为aclitem组成的数组,支持的格式为‘{user1=privs1/user3,user2=privs2/user3}’。 其中user1、user2和user3为数据库中已存在的用户/角色名,privs为数据库中支持的权限(请参见表2)。 示例: --创建相应用户。 gaussdb=# CREATE USER user1 WITH PASSWORD 'Aa123456789'; gaussdb=# CREATE USER user2 WITH PASSWORD 'Aa123456789'; gaussdb=# CREATE USER omm WITH PASSWORD 'Aa123456789'; --新建一张数据表table_acl,有三个字段,类型分别为int、aclitem、aclitem[]。 gaussdb=# CREATE TABLE table_acl (id int,priv aclitem,privs aclitem[]); --向数据表table_acl插入一条内容为(1,'user1=arw/omm','{omm=d/user2,omm=w/omm}')的数据。 gaussdb=# INSERT INTO table_acl VALUES (1,'user1=arw/omm','{omm=d/user2,omm=w/omm}'); --向数据表table_acl再插入一条内容为(2,'user1=aw/omm','{omm=d/user2}')的数据。 gaussdb=# INSERT INTO table_acl VALUES (2,'user1=aw/omm','{omm=d/user2}'); gaussdb=# SELECT * FROM table_acl; id | priv | privs ----+---------------+------------------------- 1 | user1=arw/omm | {omm=d/user2,omm=w/omm} 2 | user1=aw/omm | {omm=d/user2} (2 rows) --删除表和用户。 gaussdb=# DROP USER user1; gaussdb=# DROP USER user2; gaussdb=# DROP USER omm; gaussdb=# DROP TABLE table_acl; 父主题: 数据类型
  • 定义新的范围类型 用户可以定义自己的范围类型。这样做最常见的原因是为了使用内建范围类型中提供的subtype上没有的范围。例如,要创建一个subtype float8的范围类型: gaussdb=# CREATE TYPE floatrange AS RANGE ( subtype = float8, subtype_diff = float8mi ); gaussdb=# SELECT '[1.234, 5.678]'::floatrange; floatrange --------------- [1.234,5.678] (1 row) gaussdb=# DROP TYPE floatrange; 因为float8没有有意义的“步长”,在这个例子中没有定义一个正规化函数。 定义自己的范围类型也允许你指定使用一个不同的子类型B-树操作符类或者集合, 以便更改排序顺序来决定哪些值会落入到给定的范围中。 如果subtype被认为是具有离散值而不是连续值,CREATE TYPE命令应当指定一个canonical函数。正规化函数接收一个输入的范围值,并且必须返回一个可能具有不同界限和格式的等价的范围值。对于两个表示相同值集合的范围(例如[1, 7]和[1, 8)),正规的输出必须相同。选择哪一种表达作为正规的没有关系,只要两个具有不同格式的等价值总是能被映射到具有相同格式的相同值就行。除了调整包含/排除界限格式外,假设期望的补偿比subtype能够存储的要大,一个正规化函数可能会舍入边界值。例如,一个timestamp之上的范围类型可能被定义为具有一个一小时的步长,这样正规化函数可能需要对不是一小时的倍数的界限进行舍入,或者可能直接抛出一个错误。 subtype差异函数采用两个subtype输入值,并且返回表示为一个float8值的差(即X减Y)。在上面的例子中,可以使用常规float8减法操作符之下的函数。但是对于任何其他subtype,可能需要某种类型转换。还可能需要一些关于如何把差异表达为数字的创新型想法。为了最大的可扩展性,subtype_diff函数应该同意选中的操作符类和排序规则所蕴含的排序顺序,即只要它的第一个参数根据排序顺序大于第二个参数,它的结果就应该是正值。 subtype_diff函数相关示例: gaussdb=# CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS 'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE; gaussdb=# CREATE TYPE timerange AS RANGE ( subtype = time, subtype_diff = time_subtype_diff ); gaussdb=# SELECT '[11:10, 23:00]'::timerange; timerange --------------------- [11:10:00,23:00:00] (1 row) gaussdb=# DROP TYPE timerange; gaussdb=# DROP FUNCTION time_subtype_diff; 更多关于创建范围类型的信息请参考CREATE TYPE。
  • 无限(无界)范围 一个范围的下界可以被忽略,意味着所有小于上界的值都被包括在范围中。 同样,如果范围的上界被忽略,那么所有比下界大的值都被包括在范围中。如果上下界都被忽略,该元素类型的所有值都被认为在该范围中。 规定缺失的包括界限自动转换为排除。 你可以认为这些缺失值为 +/- 无穷大,但它们是特殊范围类型值,并且被视为超出任何范围元素类型的 +/- 无穷大值。 具有“infinity”概念的元素类型可以用它们作为显式边界值。例如,在时间戳范围,[today,infinity)不包括特殊的timestamp值infinity,尽管 [today,infinity] 包括它,就好比 [today,) 和 [today,]。 函数lower_inf和upper_inf分别测试一个范围的无限上下界。
  • 范围输入/输出 一个范围值的输入必须遵循下列模式之一: (lower-bound,upper-bound) (lower-bound,upper-bound] [lower-bound,upper-bound) [lower-bound,upper-bound] empty 一个范围值的输出必须遵循下列模式之一: [lower-bound,upper-bound) empty 圆括号或方括号指示上下界是否为排除的或者包含的。注意最后一个模式是empty,它表示一个空范围(一个不包含点的范围)。 lower-bound可以是作为subtype的合法输入的一个字符串,或者是空表示没有下界。同样,upper-bound可以是作为 subtype的合法输入的一个字符串,或者是空表示没有上界。 每个界限值可以使用"(双引号)字符引用。如果界限值包含圆括号、方括号、逗号、双引号或反斜线时,必须使用双引号进行引用,否则那些字符会被认作范围语法的一部分。要把一个双引号或反斜线放在一个被引用的界限值中,需在其前面添加一个反斜线(还有,在一个双引号引用的界限值中的一对双引号表示一个双引号字符,这与SQL字符串中的单引号规则类似)。此外,可以避免引用或者使用反斜线转义来保护所有数据字符,否则它们会被当作范围语法的一部分。如果要写一个是空字符串的界限值,则可以写成"",因为什么都不写表示一个无限界限。 范围值前后允许有空格,但是圆括号或方括号之间的任何空格会被当做上下界值的一部分(取决于元素类型,它可能是也可能不是有意义的)。 例子: -- 包括3,不包括7,并且包括3和7之间的所有点。 gaussdb=# SELECT '[3,7)'::int4range; int4range ----------- [3,7) (1 row) -- 既不包括3 也不包括7,但是包括之间的所有点。 gaussdb=# SELECT '(3,7)'::int4range; int4range ----------- [4,7) (1 row) -- 只包括单独一个点4。 gaussdb=# SELECT '[4,4]'::int4range; int4range ----------- [4,5) (1 row) -- 不包括点(并且将被标准化为 '空')。 gaussdb=# SELECT '[4,4)'::int4range; int4range ----------- empty (1 row)
  • 离散范围类型 一种范围的元素类型具有一个良定义的“步长”,例如integer或date。在这些类型中,如果两个元素之间没有合法值,它们可以被称作是相邻。这与连续范围相反,连续范围中总是(或者几乎总是)可以在两个给定值之间标识其他元素值。例如,numeric类型之上的一个范围就是连续的,timestamp上的范围也是(尽管timestamp具有有限的精度,并且在理论上可以被当做离散的,但是可以认为它是连续的,因为通常并不关心它的步长)。 另一种考虑离散范围类型的方法是对每一个元素值都有一个清晰的“下一个”或“上一个”值。了解了这种思想之后,通过选择原来给定的下一个或上一个元素值来取代它,就可以在一个范围界限的包含和排除表达之间转换。例如,在一个整数范围类型中,[4,8]和(3,9)表示相同的值集合,但是对于numeric上的范围并非如此。 一个离散范围类型应该具有一个正规化函数,它知道元素类型期望的步长。正规化函数负责把范围类型的相等值转换成具有相同的表达,特别是与包含或者排除界限一致。如果没有指定一个正规化函数,那么具有不同格式的范围将总是会被当作不等,即使它们实际上是表达相同的一组值。 内建的范围类型int4range、int8range和daterange都使用一种正规的形式,该形式包括下界并且排除上界,也就是[)。不过,用户定义的范围类型可以使用其他形式。
  • 构造范围 每一种范围类型都有一个与其同名的构造器函数。使用构造器函数通常比写一个范围文字常数更方便,因为它避免了对界限值的额外引用。构造器函数接受两个或三个参数。两个参数的形式以标准的形式构造一个范围(下界是包含的,上界是排除的),而三个参数的形式按照第三个参数指定的界限形式构造一个范围。第三个参数必须是下列字符串之一: “()”、 “(]”、 “[)”或者 “[]”。 例如: -- 完整形式是:下界、上界以及指示界限包含性/排除性的文本参数。 gaussdb=# SELECT numrange(1.0, 14.0, '(]'); numrange ------------ (1.0,14.0] (1 row) -- 如果第三个参数被忽略,则假定为 '[)'。 gaussdb=# SELECT numrange(1.0, 14.0); numrange ------------ [1.0,14.0) (1 row) -- 尽管这里指定了 '(]',显示时该值将被转换成标准形式,因为int8range是一种离散范围类型(见下文)。 gaussdb=# SELECT int8range(1, 14, '(]'); int8range ----------- [2,15) (1 row) -- 为一个界限使用NULL导致范围在那一边是无界的。 gaussdb=# SELECT numrange(NULL, 2.2); numrange ---------- (,2.2) (1 row)
  • macaddr macaddr类型存储MAC地址,也就是以太网卡硬件地址(尽管MAC地址还用于其它用途)。可以接受下列格式: '08:00:2b:01:02:03' '08-00-2b-01-02-03' '08002b:010203' '08002b-010203' '0800.2b01.0203' '08002b010203' 以上示例都表示同一个地址。对于数据位a到f,大小写均可。输出时都是以第一种形式展示。 示例: gaussdb=# CREATE TABLE macaddr_test(id int, m macaddr); CREATE TABLE gaussdb=# INSERT INTO macaddr_test VALUES (1, '08:00:2b:01:02:03'); INSERT 0 1 gaussdb=# INSERT INTO macaddr_test VALUES (2, '08-00-2b-01-02-03'); INSERT 0 1 gaussdb=# INSERT INTO macaddr_test VALUES (3, '08002b:010203'); INSERT 0 1 gaussdb=# INSERT INTO macaddr_test VALUES (4, '08002b-010203'); INSERT 0 1 gaussdb=# INSERT INTO macaddr_test VALUES (5, '0800.2b01.0203'); INSERT 0 1 gaussdb=# INSERT INTO macaddr_test VALUES (6, '08002b010203'); INSERT 0 1 gaussdb=# SELECT * FROM macaddr_test ORDER BY id; id | m ----+------------------- 1 | 08:00:2b:01:02:03 2 | 08:00:2b:01:02:03 3 | 08:00:2b:01:02:03 4 | 08:00:2b:01:02:03 5 | 08:00:2b:01:02:03 6 | 08:00:2b:01:02:03 (6 rows) gaussdb=# DROP TABLE macaddr_test; DROP TABLE
  • inet inet类型在一个数据区域内保存主机的IPv4或IPv6地址,以及一个可选子网。主机地址中网络地址的位数表示子网(“子网掩码”)。如果子网掩码是32并且地址是IPv4,则这个值不表示任何子网,只表示一台主机。在IPv6里,地址长度是128位,因此128位表示唯一的主机地址。 该类型的输入格式是address/y,address表示IPv4或者IPv6地址,y是子网掩码的二进制位数。如果省略/y,则子网掩码对IPv4是32,对IPv6是128,所以该值表示只有一台主机。如果该值表示只有一台主机,/y将不会显示。 inet和cidr类型之间的基本区别是inet接受子网掩码,而cidr不接受。 示例: gaussdb=# CREATE TABLE inet_test(id int, i inet); CREATE TABLE gaussdb=# INSERT INTO inet_test VALUES (1, '192.168.100.128/25'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (2, '192.168.100.128'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (3, '192.168.1.0/24'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (4, '192.168.1.0/25'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (5, '192.168.1.255/24'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (6, '192.168.1.255/25'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (7, '10.1.2.3/8'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (8, '11.1.2.3/16'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (9, '12.1.2.3/24'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (10, '13.1.2.3/32'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (11, '2001:4f8:3:ba::/64'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (12, '2001:4f8:3:ba:2e0:81ff:fe22:d1f1/128'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (13, '::ffff:127.0.0.0/120'); INSERT 0 1 gaussdb=# INSERT INTO inet_test VALUES (14, '::ffff:127.0.0.0/128'); INSERT 0 1 gaussdb=# SELECT * FROM inet_test ORDER BY id; id | i ----+---------------------------------- 1 | 192.168.100.128/25 2 | 192.168.100.128 3 | 192.168.1.0/24 4 | 192.168.1.0/25 5 | 192.168.1.255/24 6 | 192.168.1.255/25 7 | 10.1.2.3/8 8 | 11.1.2.3/16 9 | 12.1.2.3/24 10 | 13.1.2.3 11 | 2001:4f8:3:ba::/64 12 | 2001:4f8:3:ba:2e0:81ff:fe22:d1f1 13 | ::ffff:127.0.0.0/120 14 | ::ffff:127.0.0.0 (14 rows) gaussdb=# DROP TABLE inet_test; DROP TABLE
  • 路径 路径由一系列连接的点组成。路径可能是开放的,也就是认为列表中第一个点和最后一个点没有连接,也可能是闭合的,这时认为第一个点和最后一个点连接起来。 用下面的语法描述path的数值: [ ( x1 , y1 ) , ... , ( xn , yn ) ] ( ( x1 , y1 ) , ... , ( xn , yn ) ) ( x1 , y1 ) , ... , ( xn , yn ) ( x1 , y1 , ... , xn , yn ) x1 , y1 , ... , xn , yn 点表示组成路径的线段的端点,点的数值类型为float8类型。方括号([])表明一个开放的路径,圆括号(())表明一个闭合的路径。当最外层的括号被省略,如在第三至第五语法,会假定一个封闭的路径。 路径的输出使用第一种或第二种语法输出。 示例: gaussdb=# SELECT path(polygon '((0,0),(1,1),(2,0))'); path --------------------- ((0,0),(1,1),(2,0)) (1 row)
  • 多边形 多边形由一系列点代表(多边形的顶点)。多边形可以认为与闭合路径一样,但是存储方式不一样而且有自己的一套支持函数。 用下面的语法描述polygon的数值: ( ( x1 , y1 ) , ... , ( xn , yn ) ) ( x1 , y1 ) , ... , ( xn , yn ) ( x1 , y1 , ... , xn , yn ) x1 , y1 , ... , xn , yn 点表示多边形的顶点,点的数值类型为float8类型。 多边形输出使用第一种语法。 示例: gaussdb=# SELECT polygon(box '((0,0),(1,1))'); polygon --------------------------- ((0,0),(0,1),(1,1),(1,0)) (1 row)
  • 日期输入 日期和时间的输入几乎可以是任何合理的格式,包括ISO-8601格式、SQL-兼容格式或者其它的格式。系统支持按照日、月、年的顺序自定义日期输入。如果把DateStyle参数设置为MDY就按照“月-日-年”解析,设置为DMY就按照“日-月-年”解析,设置为YMD就按照“年-月-日”解析。 日期的文本输入需要加单引号包围,语法如下: type [ ( p ) ] 'value' 可选的精度声明中的p是一个整数,表示在秒域中小数部分的位数。表2显示了date类型的输入格式。 表2 日期输入格式 例子 描述 1999-01-08 ISO 8601格式(建议格式),任何方式下都是1999年1月8日。 January 8, 1999 在任何datestyle输入模式下都无歧义。 1/8/1999 有歧义,在MDY模式下是1月8日,在DMY模式下是8月1日。 1/18/1999 MDY模式下是1月18日,其它模式下被拒绝。 01/02/03 MDY模式下的2003年1月2日。 DMY模式下的2003年2月1日。 YMD模式下的2001年2月3日。 1999-Jan-08 任何模式下都是1月8日。 Jan-08-1999 任何模式下都是1月8日。 08-Jan-1999 任何模式下都是1月8日。 99-Jan-08 YMD模式下是1月8日,否则错误。 08-Jan-99 1月8日,除了在YMD模式下是错误的之外。 Jan-08-99 1月8日,除了在YMD模式下是错误的之外。 19990108 ISO 8601格式,任何模式下都是1999年1月8日。 990108 ISO 8601格式,任何模式下都是1999年1月8日。 1999.008 年和年里的第几天。 J2451187 儒略日。 January 8, 99 BC 公元前99年。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 --创建表。 gaussdb=# CREATE TABLE date_type_tab(coll date); --插入数据。 gaussdb=# INSERT INTO date_type_tab VALUES (date '12-10-2010'); --查看数据。 gaussdb=# SELECT * FROM date_type_tab; coll --------------------- 2010-12-10 (1 row) --查看日期格式。 gaussdb=# SHOW datestyle; DateStyle ----------- ISO, MDY (1 row) --设置日期格式。 gaussdb=# SET datestyle='YMD'; SET --插入数据。 gaussdb=# INSERT INTO date_type_tab VALUES(date '2010-12-11'); --查看数据。 gaussdb=# SELECT * FROM date_type_tab; coll --------------------- 2010-12-10 2010-12-11 (2 rows) --删除表。 gaussdb=# DROP TABLE date_type_tab;
  • 时间段输入 reltime的输入方式可以采用任何合法的时间段文本格式,包括数字形式(含负数和小数)及时间形式,其中时间形式的输入支持SQL标准格式、ISO-8601格式等。另外,文本输入需要加单引号。 时间段输入的详细信息请参考表6。 表6 时间段输入 输入示例 输出结果 描述 60 2 mons 采用数字表示时间段,默认单位是day,可以是小数或负数。特别的,负数时间段,在语义上,可以理解为“早于多久”。 31.25 1 mons 1 days 06:00:00 -365 -12 mons -5 days 1 years 1 mons 8 days 12:00:00 1 years 1 mons 8 days 12:00:00 采用POSTGRES格式表示时间段,可以正负混用,不区分大小写,输出结果为将输入时间段计算并转换得到的简化POSTGRES格式时间段。 -13 months -10 hours -1 years -25 days -04:00:00 -2 YEARS +5 MONTHS 10 DAYS -1 years -6 mons -25 days -06:00:00 P-1.1Y10M -3 mons -5 days -06:00:00 采用ISO-8601格式表示时间段,可以正负混用,不区分大小写,输出结果为将输入时间段计算并转换得到的简化POSTGRES格式时间段。 -12H -12:00:00 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 --创建表。 gaussdb=# CREATE TABLE reltime_type_tab(col1 character(30), col2 reltime); --插入数据。 gaussdb=# INSERT INTO reltime_type_tab VALUES ('90', '90'); gaussdb=# INSERT INTO reltime_type_tab VALUES ('-366', '-366'); gaussdb=# INSERT INTO reltime_type_tab VALUES ('1975.25', '1975.25'); gaussdb=# INSERT INTO reltime_type_tab VALUES ('-2 YEARS +5 MONTHS 10 DAYS', '-2 YEARS +5 MONTHS 10 DAYS'); gaussdb=# INSERT INTO reltime_type_tab VALUES ('30 DAYS 12:00:00', '30 DAYS 12:00:00'); gaussdb=# INSERT INTO reltime_type_tab VALUES ('P-1.1Y10M', 'P-1.1Y10M'); --查看数据。 gaussdb=# SELECT * FROM reltime_type_tab; col1 | col2 --------------------------------+------------------------------------- 90 | 3 mons -366 | -1 years -18:00:00 1975.25 | 5 years 4 mons 29 days -2 YEARS +5 MONTHS 10 DAYS | -1 years -6 mons -25 days -06:00:00 30 DAYS 12:00:00 | 1 mon 12:00:00 P-1.1Y10M | -3 mons -5 days -06:00:00 (6 rows) --删除表。 gaussdb=# DROP TABLE reltime_type_tab;
  • 二进制类型 GaussDB支持的二进制类型如表1所示。 表1 二进制类型 名称 描述 存储空间 BLOB 二进制大对象。 目前BLOB支持的外部存取接口仅为: DBE_LOB.GET_LENGTH DBE_LOB.READ DBE_LOB.WRITE DBE_LOB.WRITE_APPEND DBE_LOB.COPY DBE_LOB.ERASE 这些接口详细说明请参见DBE_LOB。 在ustore下,最大为1GB-1,但还需要考虑到列描述头信息的大小,以及列所在元组的大小限制(也小于1GB-1),因此BLOB类型最大值可能小于1GB-1。 当sql_compatibility = 'B'时,设置参数b_format_version = '5.7'和参数b_format_dev_version = 's1'时,BLOB类型映射为BYTEA类型,别名为BYTEA。 具体存储规格参考BYTEA类型。 TINYBLOB MEDIUMBLOB LONGBLOB 二进制大对象。 具体存储规格参考BYTEA类型。 只有当sql_compatibility = 'B'时,设置参数b_format_version = '5.7'和参数b_format_dev_version = 's1'时,可以使用此类型,类型映射为BYTEA类型,别名为BYTEA。 RAW 变长的十六进制类型。 4字节加上实际的二进制字符串。最大为1GB-1,但还需要考虑到列描述头信息的大小,以及列所在元组的大小限制(也小于1GB-1),因此类型最大值可能小于1GB-1。 BYTEA 变长的二进制字符串。 4字节加上实际的二进制字符串。最大为1GB-1,但还需要考虑到列描述头信息的大小,以及列所在元组的大小限制(也小于1GB-1),因此类型最大值可能小于1GB-1。 BYTEAWITHOUTORDERWITHEQUALCOL 变长的二进制字符串(密态特性新增的类型,如果加密列的加密类型指定为确定性加密,则该列的实际类型为BYTEAWITHOUTORDERWITHEQUALCOL),元命令打印加密表将显示原始数据类型。 4字节加上实际的二进制字符串。最大为1GB减去53字节(即1073741771字节)。 BYTEAWITHOUTORDERCOL 变长的二进制字符串(密态特性新增的类型,如果加密列的加密类型指定为随机加密,则该列的实际类型为BYTEAWITHOUTORDERCOL),元命令打印加密表将显示原始数据类型。 4字节加上实际的二进制字符串。最大为1GB减去53字节(即1073741771字节)。 _BYTEAWITHOUTORDERWITHEQUALCOL 变长的二进制字符串,密态特性新增的类型。 4字节加上实际的二进制字符串。最大为1GB减去53字节(即1073741771字节)。 _BYTEAWITHOUTORDERCOL 变长的二进制字符串,密态特性新增的类型。 4字节加上实际的二进制字符串。最大为1GB减去53字节(即1073741771字节)。 除了每列的大小限制以外,每个元组的总大小也不可超过1GB-1字节。 不支持直接使用BYTEAWITHOUTORDERWITHEQUALCOL、BYTEAWITHOUTORDERCOL、_BYTEAWITHOUTORDERWITHEQUALCOL和_BYTEAWITHOUTORDERCOL类型创建表。 RAW(n),n是指字节长度建议值,不会用于校验输入RAW类型的字节长度。 当sql_compatibility = 'B'时,设置参数b_format_version = '5.7'和参数b_format_dev_version = 's1'后,TINYBLOB、BLOB、MEDIUMBLOB、LONGBLOB类型的表现规格为BYTEA类型,如查询表结构显示为BYTEA类型。 示例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 --创建表。 gaussdb=# CREATE TABLE blob_type_t1 ( BT_COL1 INTEGER, BT_COL2 BLOB, BT_COL3 RAW, BT_COL4 BYTEA ) ; --插入数据。 gaussdb=# INSERT INTO blob_type_t1 VALUES(10,empty_blob(), HEXTORAW('DEADBEEF'),E'\\xDEADBEEF'); --查询表中的数据。 gaussdb=# SELECT * FROM blob_type_t1; bt_col1 | bt_col2 | bt_col3 | bt_col4 ---------+---------+----------+------------ 10 | | DEADBEEF | \xdeadbeef (1 row) --删除表。 gaussdb=# DROP TABLE blob_type_t1; --示例:TINYBLOB MEDIUMBLOB LONGBLOB二进制大对象类型。 gaussdb=# CREATE DATABASE gaussdb_m WITH dbcompatibility 'B'; gaussdb=# \c gaussdb_m --设置兼容版本控制参数。 gaussdb_m=# SET b_format_version='5.7'; gaussdb_m=# SET b_format_dev_version='s1'; --创建表。 gaussdb_m=# CREATE TABLE t1(a tinyblob, b blob, m mediumblob, l longblob); --插入数据。 gaussdb_m=# INSERT INTO t1 VALUES ('tinyblobtest', 'blobtest', 'mediumblobtest', 'longblobtest'); --查询表中数据。 gaussdb_m=# SELECT * FROM t1; a | b | m | l --------------+----------+----------------+-------------- tinyblobtest | blobtest | mediumblobtest | longblobtest (1 row) --删除表和数据库。 gaussdb_m=# DROP TABLE t1; gaussdb_m=# \c postgres; gaussdb=# DROP DATABASE gaussdb_m; --重置参数。 gaussdb=# \c RESET ALL; 父主题: 数据类型
  • 示例 插入的数据长度超过类型规定的长度的示例。 --创建表。 gaussdb=# CREATE TABLE char_type_t1 ( CT_COL1 CHARACTER(4) ); --插入数据。 gaussdb=# INSERT INTO char_type_t1 VALUES ('ok'); --查询表中的数据。 gaussdb=# SELECT ct_col1, char_length(ct_col1) FROM char_type_t1; ct_col1 | char_length ---------+------------- ok | 4 (1 row) --删除表。 gaussdb=# DROP TABLE char_type_t1; --创建表。 gaussdb=# CREATE TABLE char_type_t2 ( CT_COL1 VARCHAR(5) ); --插入数据。 gaussdb=# INSERT INTO char_type_t2 VALUES ('ok'); gaussdb=# INSERT INTO char_type_t2 VALUES ('good'); --插入的数据长度超过类型规定的长度报错。 gaussdb=# INSERT INTO char_type_t2 VALUES ('too long'); ERROR: value too long for type character varying(5) CONTEXT: referenced column: ct_col1 --明确类型的长度,超过数据类型长度后会自动截断。 gaussdb=# INSERT INTO char_type_t2 VALUES ('too long'::varchar(5)); --查询数据。 gaussdb=# SELECT ct_col1, char_length(ct_col1) FROM char_type_t2; ct_col1 | char_length ---------+------------- ok | 2 good | 4 too l | 5 (3 rows) --删除数据。 gaussdb=# DROP TABLE char_type_t2; -- 示例:char和varchar类型。 -- 创建B兼容模式下的数据库。 gaussdb=# create database gaussdb_m with dbcompatibility 'b'; gaussdb=# \c gaussdb_m -- 设置兼容版本控制参数。 gaussdb_m=# set b_format_version='5.7'; gaussdb_m=# set b_format_dev_version='s1'; -- 创建表。 gaussdb_m=# create table t1(a char(5), b varchar(5)); -- 插入数据。 gaussdb_m=# insert into t1 values('一二三四五','一二三四五'); -- 查看数据。 gaussdb_m=# select char_length(a),char_length(b) from t1; char_length | char_length -------------+------------- 5 | 5 (1 row) gaussdb_m=# select length(a),length(b) from t1; length | length --------+-------- 15 | 15 (1 row) gaussdb_m=# select * from t1; a | b ------------+------------ 一二三四五 | 一二三四五 (1 row) -- 删除表。 gaussdb_m=# drop table t1; -- 示例:tinytext,mediumtext,longtext类型。 -- 创建表。 gaussdb_m=# create table t2(a tinytext, b mediumtext, c longtext); -- 插入数据。 gaussdb_m=# insert into t2 values('abcde','abcde','abcde'); -- 查看数据。 gaussdb_m=# select * from t2; a | b | c -------+-------+------- abcde | abcde | abcde (1 row) -- 删除表和数据库。 gaussdb_m=# drop table t2; gaussdb_m=# \c postgres; gaussdb=# drop database gaussdb_m; -- 重置参数。 gaussdb=# reset all; 变长类型最大存储长度说明示例。 此示例以varchar为例,varchar2/nvarchar/nvarchar2/text同理。 -- 创建表,表中有三列,分别为int、varchar、int,根据计算规则,varchar最大存储长度为1GB-85-4-4-4=1073741727。 gaussdb=# CREATE TABLE varchar_maxlength_test1 (a int, b varchar, c int); -- varchar为1073741728,超过规定长度,插入失败。 gaussdb=# insert into varchar_maxlength_test1 values(1, repeat('a', 1073741728), 1); ERROR: invalid memory alloc request size 1073741824 in tuplesort.cpp:219 -- varchar为1073741727,长度符合要求,插入成功。 gaussdb=# insert into varchar_maxlength_test1 values(1, repeat('a', 1073741727), 1); -- 创建表,表中仅varchar一列,根据计算规则,varchar最大存储长度为1GB-85-4=1073741735。 gaussdb=# CREATE TABLE varchar_maxlength_test2 (a varchar); -- varchar为1073741736,超过规定长度,插入失败。 insert into varchar_maxlength_test2 values(repeat('a', 1073741736)); ERROR: invalid memory alloc request size 1073741824 in tuplesort.cpp:219 -- varchar为1073741735,长度符合要求,插入成功。 insert into varchar_maxlength_test2 values(repeat('a', 1073741735));
共100000条