华为云用户手册

  • 场景说明 假定HBase的table1表存储用户当天消费的金额信息,table2表存储用户历史消费的金额信息。 现table1表有记录key=1,cf:cid=100,表示用户1在当天消费金额为100元。 table2表有记录key=1,cf:cid=1000,表示用户1的历史消息记录金额为1000元。 基于某些业务要求,要求开发Spark应用程序实现如下功能: 根据用户名累计用户的历史消费金额,即用户总消费金额=100(用户当天的消费金额) + 1000(用户历史消费金额)。 上例所示,运行结果table2表用户key=1的总消费金融为cf:cid=1100元。
  • 数据规划 使用Spark-Beeline工具创建Spark和HBase表table1、table2,并通过HBase插入数据。 确保JD BCS erver已启动。然后在Spark2x客户端,使用Spark-Beeline工具执行如下操作。 使用Spark-Beeline工具创建Spark表table1。 create table table1 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table1", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table1', '1', 'cf:cid', '100' 使用Spark-Beeline工具创建Spark表table2。 create table table2 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table2", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table2', '1', 'cf:cid', '1000'
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。 运行样例程序前,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”)。
  • 常用接口 YARN常用的Java类有如下几个。 ApplicationClientProtocol 用于Client与ResourceManager之间。Client通过该协议可实现将应用程序提交到ResourceManager上,查询应用程序的运行状态或者中止应用程序等功能。 表1 ApplicationClientProtocol常用方法 方法 说明 forceKillApplication(KillApplicationRequest request) Client通过此接口请求RM中止一个已提交的任务。 getApplicationAttemptReport(GetApplicationAttemptReportRequest request) Client通过此接口从RM获取指定ApplicationAttempt的报告信息。 getApplicationAttempts(GetApplicationAttemptsRequest request) Client通过此接口从RM获取所有ApplicationAttempt的报告信息。 getApplicationReport(GetApplicationReportRequest request) Client通过此接口从RM获取某个应用的报告信息。 getApplications(GetApplicationsRequest request) Client通过此接口从RM获取满足一定过滤条件的应用的报告信息。 getClusterMetrics(GetClusterMetricsRequest request) Client通过此接口从RM获取集群的Metrics。 getClusterNodes(GetClusterNodesRequest request) Client通过此接口从RM获取集群中的所有节点信息。 getContainerReport(GetContainerReportRequest request) Client通过此接口从RM获取某个Container的报告信息。 getContainers(GetContainersRequest request) Client通过此接口从RM获取某个ApplicationAttemp的所有Container的报告信息。 getDelegationToken(GetDelegationTokenRequest request) Client通过此接口获取授权票据,用于container访问相应的service。 getNewApplication(GetNewApplicationRequest request) Client通过此接口获取一个新的应用ID号,用于提交新的应用。 getQueueInfo(GetQueueInfoRequest request) Client通过此接口从RM中获取队列的相关信息。 getQueueUserAcls(GetQueueUserAclsInfoRequest request) Client通过此接口从RM中获取当前用户的队列访问权限信息。 moveApplicationAcrossQueues(MoveApplicationAcrossQueuesRequest request) 移动一个应用到新的队列。 submitApplication(SubmitApplicationRequest request) Client通过此接口提交一个新的应用到RM。 ApplicationMasterProtocol 用于ApplicationMaster与ResourceManager之间。ApplicationMaster使用该协议向ResourceManager注册、申请资源、获取各个任务的运行情况等。 表2 ApplicationMasterProtocol常用方法 方法 说明 allocate(AllocateRequest request) AM通过此接口提交资源分配申请。 finishApplicationMaster(FinishApplicationMasterRequest request) AM通过此接口通知RM其运行成功或者失败。 registerApplicationMaster(RegisterApplicationMasterRequest request) AM通过此接口向RM进行注册。 ContainerManagementProtocol 用于ApplicationMaster与NodeManager之间。ApplicationMaster使用该协议要求NodeManager启动/中止Container或者查询Container的运行状态。 表3 ContainerManagementProtocol常用方法 方法 说明 getContainerStatuses(GetContainerStatusesRequest request) AM通过此接口向NM请求Containers的当前状态信息。 startContainers(StartContainersRequest request) AM通过此接口向NM提供需要启动的containers列表的请求。 stopContainers(StopContainersRequest request) AM通过此接口请求NM停止一系列已分配的Containers。
  • 运行任务 进入Spark客户端目录,使用java -cp命令运行代码(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java样例代码: java -cp $SPARK_HOME/jars/*:$SPARK_HOME/jars/hive/*:$SPARK_HOME/conf:/opt/female/SparkThriftServerJavaExample-1.0.jar com.huawei.bigdata.spark.examples.ThriftServerQueriesTest $SPARK_HOME/conf/hive-site.xml $SPARK_HOME/conf/spark-defaults.conf 运行Scala样例代码: java -cp $SPARK_HOME/jars/*:$SPARK_HOME/jars/hive/*:$SPARK_HOME/conf:/opt/female/SparkThriftServerExample-1.0.jar com.huawei.bigdata.spark.examples.ThriftServerQueriesTest $SPARK_HOME/conf/hive-site.xml $SPARK_HOME/conf/spark-defaults.conf 集群开启ZooKeeper的SSL特性后(查看ZooKeeper服务的ssl.enabled参数),请在执行命令中添加-Dzookeeper.client.secure=true -Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty两项参数: java -Dzookeeper.client.secure=true -Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty -cp $SPARK_HOME/jars/*:$SPARK_HOME/jars/hive/*:$SPARK_HOME/conf:/opt/female/SparkThriftServerJavaExample-1.0.jar com.huawei.bigdata.spark.examples.ThriftServerQueriesTest $SPARK_HOME/conf/hive-site.xml $SPARK_HOME/conf/spark-defaults.conf
  • 打包项目 将krb5.conf和user.keytab文件上传到客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。
  • SparkSQL常用接口 Spark SQL中常用的类有: SQLContext:是Spark SQL功能和DataFrame的主入口。 DataFrame:是一个以命名列方式组织的分布式数据集。 HiveContext:获取存储在Hive中数据的主入口。 表6 常用的Actions方法 方法 说明 collect(): Array[Row] 返回一个数组,包含DataFrame的所有列。 count(): Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int, truncate: Boolean): Unit 用表格形式显示DataFrame。 take(n:Int): Array[Row] 返回DataFrame中的前n行。 表7 基本的DataFrame Functions 方法 说明 explain(): Unit 打印出SQL语句的逻辑计划和物理计划。 printSchema(): Unit 打印schema信息到控制台。 registerTempTable(tableName: String): Unit 将DataFrame注册为一张临时表,其周期和SQLContext绑定在一起。 toDF(colNames: String*): DataFrame 返回一个列重命名的DataFrame。
  • Spark Streaming常用接口 Spark Streaming中常见的类有: StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 dstream.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dstream.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表4 Spark Streaming方法介绍 方法 说明 socketTextStream(hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2): ReceiverInputDStream[String] 从TCP源主机:端口创建一个输入流。 start():Unit 启动Spark Streaming计算。 awaitTermination(timeout: long):Unit 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit 终止Spark Streaming计算。 transform[T](dstreams: Seq[DStream[_]], transformFunc: (Seq[RDD[_]], Time) ? RDD[T])(implicit arg0: ClassTag[T]): DStream[T] 对每一个RDD应用function操作得到一个新的DStream。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义状态和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(otherStream, [numTasks]) 实现不同的Spark Streaming之间做合并操作。 DStreamKafkaWriter.writeToKafka() 支持将DStream中的数据批量写入到Kafka。 DStreamKafkaWriter.writeToKafkaBySingle() 支持将DStream中的数据逐条写入到Kafka。 表5 Spark Streaming增强特性接口 方法 说明 DStreamKafkaWriter.writeToKafka() 支持将DStream中的数据批量写入到Kafka。 DStreamKafkaWriter.writeToKafkaBySingle() 支持将DStream中的数据逐条写入到Kafka。
  • Structured Streaming常用概念 Input Source 输入数据源,数据源需要支持根据offset重放数据,不同的数据源有不同的容错性。 Sink 数据输出,Sink要支持幂等性写入操作,不同的sink有不同的容错性。 outputMode 结果输出模式,当前支持3种输出模: Complete Mode:整个更新的结果集都会写入外部存储。整张表的写入操作将由外部存储系统的连接器完成。 Append Mode:当时间间隔触发时,只有在Result Table中新增加的数据行会被写入外部存储。这种方式只适用于结果集中已经存在的内容不希望发生改变的情况下,如果已经存在的数据会被更新,不适合适用此种方式。 Update Mode:当时间间隔触发时,只有在Result Table中被更新的数据才会被写入外部存储系统。注意,和Complete Mode方式的不同之处是不更新的结果集不会写入外部存储。 Trigger 输出触发器,当前支持以下几种trigger: 默认:以微批模式执行,每个批次完成后自动执行下个批次。 固定间隔:固定时间间隔执行。 一次执行:只执行一次query,完成后退出。 连续模式:实验特性,可实现低至1ms延迟的流处理(推荐100ms)。 Structured Streaming支持微批模式和连续模式。微批模式不能保证对数据的低延迟处理,但是在相同时间下有更大的吞吐量;连续模式适合毫秒级的数据处理延迟,当前暂时还属于实验特性。 在当前版本中,若需要使用流流Join功能,则output模式只能选择append模式。 图6 微批模式运行过程简图 图7 连续模式运行过程简图
  • Spark Streaming常用概念 Dstream DStream(又称Discretized Stream)是Spark Streaming提供的抽象概念。 DStream表示一个连续的数据流,是从数据源获取或者通过输入流转换生成的数据流。从本质上说,一个DStream表示一系列连续的RDD。RDD是一个只读的、可分区的分布式数据集。 DStream中的每个RDD包含了一个区间的数据。如图4所示。 图4 DStream与RDD关系 应用到DStream上的所有算子会被转译成下层RDD的算子操作,如图5所示。这些下层的RDD转换会通过Spark引擎进行计算。DStream算子隐藏大部分的操作细节,并且提供了方便的High-level API给开发者使用。 图5 DStream算子转译
  • Spark简介 Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言(Scala/Java/Python)的应用开发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data Mining):在海量数据基础上进行复杂的挖掘分析,可支持各种数据挖掘和机器学习算法。 流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query Analysis):支持标准SQL查询分析,同时提供DSL(DataFrame), 并支持多种外部输入。 本文档重点介绍Spark、Spark SQL和Spark Streaming应用开发指导。
  • Spark开发接口简介 Spark支持使用Scala、Java和Python语言进行程序开发,由于Spark本身是由Scala语言开发出来的,且Scala语言具有简洁易懂的特性,推荐用户使用Scala语言进行Spark应用程序开发。 按不同的语言分,Spark的API接口如表1所示。 表1 Spark API接口 功能 说明 Scala API 提供Scala语言的API,Spark Core、SparkSQL和Spark Streaming模块的常用接口请参见Spark Scala API接口介绍。由于Scala语言的简洁易懂,推荐用户使用Scala接口进行程序开发。 Java API 提供Java语言的API,Spark Core、SparkSQL和Spark Streaming模块的常用接口请参见Spark Java API接口介绍。 Python API 提供Python语言的API,Spark Core、SparkSQL和Spark Streaming模块的常用接口请参见Spark Python API接口介绍。 按不同的模块分,Spark Core和Spark Streaming使用上表中的API接口进行程序开发。而SparkSQL模块,支持CLI或者JDB CS erver两种方式访问。其中JDBCServer的连接方式也有Beeline和JDBC客户端代码两种。详情请参见Spark JDBCServer接口介绍。 spark-sql脚本、spark-shell脚本和spark-submit脚本(运行的应用中带SQL操作),不支持使用proxy user参数去提交任务。
  • Spark SQL常用概念 DataSet DataSet是一个由特定域的对象组成的强类型集合,可通过功能或关系操作并行转换其中的对象。 每个Dataset还有一个非类型视图,即由多个列组成的DataSet,称为DataFrame。 DataFrame是一个由多个列组成的结构化的分布式数据集合,等同于关系数据库中的一张表,或者是R/Python中的data frame。DataFrame是Spark SQL中的最基本的概念,可以通过多种方式创建,例如结构化的数据集、Hive表、外部数据库或者是RDD。
  • 代码样例 如下是代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 在Linux客户端运行应用和在Windows环境下运行应用的初始化代码相同,代码样例如下所示。 //初始化 confLoad(); // 创建一个用例 HdfsExample hdfs_examples = new HdfsExample("/user/hdfs-examples", "test.txt"); /** * * 如果程序运行在Linux上,则需要core-site.xml、hdfs-site.xml的路径修改 * 为在Linux下客户端文件的绝对路径 * * */ private static void confLoad() throws IOException { conf = new Configuration(); // conf file conf.addResource(new Path(PATH_TO_HDFS_SITE_XML)); conf.addResource(new Path(PATH_TO_CORE_SITE_XML)); // conf.addResource(new Path(PATH_TO_SMALL_SITE_XML)); } /** *创建用例 */ public HdfsExample(String path, String fileName) throws IOException { this.DEST_PATH = path; this.FILE_NAME = fileName; instanceBuild(); } private void instanceBuild() throws IOException { fSystem = FileSystem.get(conf); } (可选)运行此样例代码需要设置运行用户,若需运行Colocation相关操作的样例代码,则此用户需属supergroup用户组。设置运行用户有两种方式,添加环境变量HADOOP_USER_NAME或者修改代码。 添加环境变量HADOOP_USER_NAME:参考调测HDFS应用章节。 修改代码:在没有设置HADOOP_USER_NAME的场景下,直接修改代码中的USER。如下所示。 System.setProperty("HADOOP_USER_NAME", USER);
  • 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Windows或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 7-zip 用于解压“*.zip”和“*.rar”文件。 支持7-Zip 16.04版本。
  • SparkSQL常用接口 Spark SQL中常用的类有: SQLContext:是Spark SQL功能和DataFrame的主入口。 DataFrame:是一个以命名列方式组织的分布式数据集。 HiveContext:获取存储在Hive中数据的主入口。 表6 常用的Actions方法 方法 说明 collect(): Array[Row] 返回一个数组,包含DataFrame的所有列。 count(): Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int, truncate: Boolean): Unit 用表格形式显示DataFrame。 take(n:Int): Array[Row] 返回DataFrame中的前n行。 表7 基本的DataFrame Functions 方法 说明 explain(): Unit 打印出SQL语句的逻辑计划和物理计划。 printSchema(): Unit 打印schema信息到控制台。 registerTempTable(tableName: String): Unit 将DataFrame注册为一张临时表,其周期和SQLContext绑定在一起。 toDF(colNames: String*): DataFrame 返回一个列重命名的DataFrame。
  • Spark Streaming常用接口 Spark Streaming中常见的类有: StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 dstream.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dstream.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表4 Spark Streaming方法介绍 方法 说明 socketTextStream(hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2): ReceiverInputDStream[String] 从TCP源主机:端口创建一个输入流。 start():Unit 启动Spark Streaming计算。 awaitTermination(timeout: long):Unit 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit 终止Spark Streaming计算。 transform[T](dstreams: Seq[DStream[_]], transformFunc: (Seq[RDD[_]], Time) ? RDD[T])(implicit arg0: ClassTag[T]): DStream[T] 对每一个RDD应用function操作得到一个新的DStream。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义状态和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(otherStream, [numTasks]) 实现不同的Spark Streaming之间做合并操作。 DStreamKafkaWriter.writeToKafka() 支持将DStream中的数据批量写入到Kafka。 DStreamKafkaWriter.writeToKafkaBySingle() 支持将DStream中的数据逐条写入到Kafka。 表5 Spark Streaming增强特性接口 方法 说明 DStreamKafkaWriter.writeToKafka() 支持将DStream中的数据批量写入到Kafka。 DStreamKafkaWriter.writeToKafkaBySingle() 支持将DStream中的数据逐条写入到Kafka。
  • 常用接口 YARN常用的Java类有如下几个。 ApplicationClientProtocol 用于Client与ResourceManager之间。Client通过该协议可实现将应用程序提交到ResourceManager上,查询应用程序的运行状态或者中止应用程序等功能。 表1 ApplicationClientProtocol常用方法 方法 说明 forceKillApplication(KillApplicationRequest request) Client通过此接口请求RM中止一个已提交的任务。 getApplicationAttemptReport(GetApplicationAttemptReportRequest request) Client通过此接口从RM获取指定ApplicationAttempt的报告信息。 getApplicationAttempts(GetApplicationAttemptsRequest request) Client通过此接口从RM获取所有ApplicationAttempt的报告信息。 getApplicationReport(GetApplicationReportRequest request) Client通过此接口从RM获取某个应用的报告信息。 getApplications(GetApplicationsRequest request) Client通过此接口从RM获取满足一定过滤条件的应用的报告信息。 getClusterMetrics(GetClusterMetricsRequest request) Client通过此接口从RM获取集群的Metrics。 getClusterNodes(GetClusterNodesRequest request) Client通过此接口从RM获取集群中的所有节点信息。 getContainerReport(GetContainerReportRequest request) Client通过此接口从RM获取某个Container的报告信息。 getContainers(GetContainersRequest request) Client通过此接口从RM获取某个ApplicationAttemp的所有Container的报告信息。 getDelegationToken(GetDelegationTokenRequest request) Client通过此接口获取授权票据,用于container访问相应的service。 getNewApplication(GetNewApplicationRequest request) Client通过此接口获取一个新的应用ID号,用于提交新的应用。 getQueueInfo(GetQueueInfoRequest request) Client通过此接口从RM中获取队列的相关信息。 getQueueUserAcls(GetQueueUserAclsInfoRequest request) Client通过此接口从RM中获取当前用户的队列访问权限信息。 moveApplicationAcrossQueues(MoveApplicationAcrossQueuesRequest request) 移动一个应用到新的队列。 submitApplication(SubmitApplicationRequest request) Client通过此接口提交一个新的应用到RM。 ApplicationMasterProtocol 用于ApplicationMaster与ResourceManager之间。ApplicationMaster使用该协议向ResourceManager注册、申请资源、获取各个任务的运行情况等。 表2 ApplicationMasterProtocol常用方法 方法 说明 allocate(AllocateRequest request) AM通过此接口提交资源分配申请。 finishApplicationMaster(FinishApplicationMasterRequest request) AM通过此接口通知RM其运行成功或者失败。 registerApplicationMaster(RegisterApplicationMasterRequest request) AM通过此接口向RM进行注册。 ContainerManagementProtocol 用于ApplicationMaster与NodeManager之间。ApplicationMaster使用该协议要求NodeManager启动/中止Container或者查询Container的运行状态。 表3 ContainerManagementProtocol常用方法 方法 说明 getContainerStatuses(GetContainerStatusesRequest request) AM通过此接口向NM请求Containers的当前状态信息。 startContainers(StartContainersRequest request) AM通过此接口向NM提供需要启动的containers列表的请求。 stopContainers(StopContainersRequest request) AM通过此接口请求NM停止一系列已分配的Containers。
  • 创建Doris数据库 本章节介绍创建Doris数据库样例代码。 以下代码片段在“JDBCExample”类中。 以Java JDBC方式执行SQL语句在集群中创建dbName变量对应的数据库。 String createDatabaseSql = "create database if not exists " + dbName; public static void execDDL(Connection connection, String sql) throws Exception { try (PreparedStatement statement = connection.prepareStatement(sql)) { statement.execute(); } catch (Exception e) { logger.error("Execute sql {} failed.", sql, e); throw new Exception(e); } } 父主题: Doris JDBC接口调用样例程序
  • Doris应用开发流程介绍 开发流程中各阶段的说明如下图所示。 图1 Doris应用程序开发流程 表1 Doris应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备本地应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接 MRS 集群,配置文件通常包括用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接Doris集群配置文件 配置并导入样例工程 Doris提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 配置并导入JDBC样例工程 配置并导入SpringBoot样例工程 配置安全认证 使用JDBC或SpringBoot接口连接Doris时,需配置具有Doris管理员权限的用户进行安全认证。 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 Doris JDBC接口调用样例程序 编译并运行程序 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 调测Doris应用 父主题: Doris开发指南(安全模式)
  • 准备本地应用开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows7以上版本。 运行环境:Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持集群自带的OpenJDK,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的: X86客户端: Oracle JDK:支持1.8版本; IBM JDK:支持1.8.0.7.20和1.8.0.6.15版本。 ARM客户端: OpenJDK:支持1.8.0_272版本(集群自带JDK,可通过集群客户端安装目录中“JDK”文件夹下获取)。 毕昇JDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情可参考https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 毕昇JDK详细信息可参考https://www.hikunpeng.com/zh/developer/devkit/compiler/jdk。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 华为提供开源镜像站,各服务样例工程依赖的Jar包通过华为开源镜像站下载,剩余所依赖的开源Jar包请直接从Maven中央库或者其他用户自定义的仓库地址下载,详情请参考配置华为开源镜像仓。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。 父主题: 准备Doris应用开发环境
  • SparkSQL常用接口 Spark SQL中在Python中重要的类有: pyspark.sql.SQLContext:是Spark SQL功能和DataFrame的主入口。 pyspark.sql.DataFrame:是一个以命名列方式组织的分布式数据集。 pyspark.sql.HiveContext:获取存储在Hive中数据的主入口。 pyspark.sql.DataFrameStatFunctions:统计功能中一些函数。 pyspark.sql.functions:DataFrame中内嵌的函数。 pyspark.sql.Window:sql中提供窗口功能。 表4 Spark SQL常用的Action 方法 说明 collect() 返回一个数组,包含DataFrame的所有列。 count() 返回DataFrame中的行数。 describe() 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first() 返回第一行。 head(n) 返回前n行。 show() 用表格形式显示DataFrame。 take(num) 返回DataFrame中的前num行。 表5 基本的DataFrame Functions 方法 说明 explain() 打印出SQL语句的逻辑计划和物理计划。 printSchema() 打印schema信息到控制台。 registerTempTable(name) 将DataFrame注册为一张临时表,命名为name,其周期和SQLContext绑定在一起。 toDF() 返回一个列重命名的DataFrame。
  • Spark Streaming常用接口 Spark Streaming中常见的类有: pyspark.streaming.StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 pyspark.streaming.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dsteam.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表3 Spark Streaming常用接口介绍 方法 说明 socketTextStream(hostname, port, storageLevel) 从TCP源主机:端口创建一个输入流。 start() 启动Spark Streaming计算。 awaitTermination(timeout) 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext, stopGraceFully) 终止Spark Streaming计算,stopSparkContext用于判断是否需要终止相关的SparkContext,StopGracefully用于判断是否需要等待所有接受到的数据处理完成。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义State和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(other,numPartitions) 实现不同的Spark Streaming之间做合并操作。
  • 场景说明 在安全集群环境下,各个组件之间的相互通信不能够简单的互通,而需要在通信之前进行相互认证,以确保通信的安全性。用户在提交Flink应用程序时,需要与Yarn、HDFS等之间进行通信。那么提交Flink的应用程序中需要设置安全认证,确保Flink程序能够正常运行。 当前Flink系统支持认证和加密传输,要使用认证和加密传输,用户需要安装Flink客户端并配置安全认证,本章节以“/opt/hadoopclient”为客户端安装目录为例,介绍安装客户端及配置安全认证。客户端安装目录请根据实际修改。
  • Spark Streaming常用接口 Spark Streaming中常见的类有: pyspark.streaming.StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 pyspark.streaming.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dsteam.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表3 Spark Streaming常用接口介绍 方法 说明 socketTextStream(hostname, port, storageLevel) 从TCP源主机:端口创建一个输入流。 start() 启动Spark Streaming计算。 awaitTermination(timeout) 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext, stopGraceFully) 终止Spark Streaming计算,stopSparkContext用于判断是否需要终止相关的SparkContext,StopGracefully用于判断是否需要等待所有接受到的数据处理完成。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义State和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(other,numPartitions) 实现不同的Spark Streaming之间做合并操作。
  • SparkSQL常用接口 Spark SQL中在Python中重要的类有: pyspark.sql.SQLContext:是Spark SQL功能和DataFrame的主入口。 pyspark.sql.DataFrame:是一个以命名列方式组织的分布式数据集。 pyspark.sql.HiveContext:获取存储在Hive中数据的主入口。 pyspark.sql.DataFrameStatFunctions:统计功能中一些函数。 pyspark.sql.functions:DataFrame中内嵌的函数。 pyspark.sql.Window:sql中提供窗口功能。 表4 Spark SQL常用的Action 方法 说明 collect() 返回一个数组,包含DataFrame的所有列。 count() 返回DataFrame中的行数。 describe() 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first() 返回第一行。 head(n) 返回前n行。 show() 用表格形式显示DataFrame。 take(num) 返回DataFrame中的前num行。 表5 基本的DataFrame Functions 方法 说明 explain() 打印出SQL语句的逻辑计划和物理计划。 printSchema() 打印schema信息到控制台。 registerTempTable(name) 将DataFrame注册为一张临时表,命名为name,其周期和SQLContext绑定在一起。 toDF() 返回一个列重命名的DataFrame。
  • Spark SQL常用概念 DataSet DataSet是一个由特定域的对象组成的强类型集合,可通过功能或关系操作并行转换其中的对象。 每个Dataset还有一个非类型视图,即由多个列组成的DataSet,称为DataFrame。 DataFrame是一个由多个列组成的结构化的分布式数据集合,等同于关系数据库中的一张表,或者是R/Python中的data frame。DataFrame是Spark SQL中的最基本的概念,可以通过多种方式创建,例如结构化的数据集、Hive表、外部数据库或者是RDD。
  • Structured Streaming常用概念 Input Source 输入数据源,数据源需要支持根据offset重放数据,不同的数据源有不同的容错性。 Sink 数据输出,Sink要支持幂等性写入操作,不同的sink有不同的容错性。 outputMode 结果输出模式,当前支持3种输出模: Complete Mode:整个更新的结果集都会写入外部存储。整张表的写入操作将由外部存储系统的连接器完成。 Append Mode:当时间间隔触发时,只有在Result Table中新增加的数据行会被写入外部存储。这种方式只适用于结果集中已经存在的内容不希望发生改变的情况下,如果已经存在的数据会被更新,不适合适用此种方式。 Update Mode:当时间间隔触发时,只有在Result Table中被更新的数据才会被写入外部存储系统。注意,和Complete Mode方式的不同之处是不更新的结果集不会写入外部存储。 Trigger 输出触发器,当前支持以下几种trigger: 默认:以微批模式执行,每个批次完成后自动执行下个批次。 固定间隔:固定时间间隔执行。 一次执行:只执行一次query,完成后退出。 连续模式:实验特性,可实现低至1ms延迟的流处理(推荐100ms)。 Structured Streaming支持微批模式和连续模式。微批模式不能保证对数据的低延迟处理,但是在相同时间下有更大的吞吐量;连续模式适合毫秒级的数据处理延迟,当前暂时还属于实验特性。 在当前版本中,若需要使用流流Join功能,则output模式只能选择append模式。 图6 微批模式运行过程简图 图7 连续模式运行过程简图
  • Spark Streaming常用概念 Dstream DStream(又称Discretized Stream)是Spark Streaming提供的抽象概念。 DStream表示一个连续的数据流,是从数据源获取或者通过输入流转换生成的数据流。从本质上说,一个DStream表示一系列连续的RDD。RDD是一个只读的、可分区的分布式数据集。 DStream中的每个RDD包含了一个区间的数据。如图4所示。 图4 DStream与RDD关系 应用到DStream上的所有算子会被转译成下层RDD的算子操作,如图5所示。这些下层的RDD转换会通过Spark引擎进行计算。DStream算子隐藏大部分的操作细节,并且提供了方便的High-level API给开发者使用。 图5 DStream算子转译
  • Spark简介 Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言(Scala/Java/Python)的应用开发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data Mining):在海量数据基础上进行复杂的挖掘分析,可支持各种数据挖掘和机器学习算法。 流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query Analysis):支持标准SQL查询分析,同时提供DSL(DataFrame), 并支持多种外部输入。 本文档重点介绍Spark、Spark SQL和Spark Streaming应用开发指导。
共100000条