华为云用户手册

  • 结构 Flink结构如图2所示。 图2 Flink结构 Flink整个系统包含三个部分: Client Flink Client主要给用户提供向Flink系统提交用户任务(流式作业)的能力。 TaskManager Flink系统的业务执行节点,执行具体的用户任务。TaskManager可以有多个,各个TaskManager都平等。 JobManager Flink系统的管理节点,管理所有的TaskManager,并决策用户任务在哪些Taskmanager执行。JobManager在HA模式下可以有多个,但只有一个主JobManager。 Flink系统提供的关键能力: 低时延 提供ms级时延的处理能力。 ExactlyOnce 提供异步快照机制,保证所有数据真正只处理一次。 HA JobManager支持主备模式,保证无单点故障。 水平扩展能力 TaskManager支持手动水平扩展。
  • 样例工程介绍 MRS 样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下Flink相关样例工程,安全模式路径为“flink-examples/flink-examples-security”,普通模式路径为“flink-examples/flink-examples-normal”: 表2 Flink相关样例工程 样例工程 描述 FlinkCheckpointJavaExample 异步Checkpoint机制程序的应用开发示例。 假定用户需要每隔1秒钟需要统计4秒中窗口中数据的量,并做到状态严格一致性,即:当应用出现异常并恢复后,各个算子的状态能够处于统一的状态,相关业务场景介绍请参见Flink开启Checkpoint样例程序。 FlinkCheckpointScalaExample FlinkKafkaJavaExample 向Kafka生产并消费数据程序的应用开发示例。 通过调用flink-connector-kafka模块的接口,生产并消费数据,相关业务场景介绍请参见Flink Kafka样例程序。 FlinkKafkaScalaExample FlinkPipelineJavaExample Job Pipeline程序的应用开发示例。 相关业务场景介绍请参见Flink Job Pipeline样例程序。 发布者Job自己每秒钟产生10000条数据,然后经由该job的NettySink算子向下游发送。另外两个Job作为订阅者,分别订阅一份数据并打印输出。 FlinkPipelineScalaExample FlinkSqlJavaExample 使用客户端通过jar作业提交SQL作业的应用开发示例。 FlinkStreamJavaExample DataStream程序的应用开发示例。 相关业务场景介绍请参见Flink DataStream样例程序。 假定用户有某个网站周末网民网购停留时间的日志文本,另有一张网民个人信息的csv格式表,可通过Flink应用程序实现例如实时统计总计网购时间超过2个小时的女性网民信息,包含对应的个人详细信息的功能。 FlinkStreamScalaExample FlinkStreamSqlJoinExample Stream SQL Join程序的应用开发示例。 相关业务场景介绍请参见Flink Join样例程序。 假定某个Flink业务1每秒就会收到1条消息记录,消息记录某个用户的基本信息,包括名字、性别、年龄。另有一个Flink业务2会不定时收到1条消息记录,消息记录该用户的名字、职业信息。实现实时的以根据业务2中消息记录的用户名字作为关键字,对两个业务数据进行联合查询的功能。
  • 认证失败样例 解决认证出现如下关键字:clock skew too great的问题 检查集群时间。 检查开发环境所在机器的时间,与集群时间的偏差应小于5分钟。 解决认证出现如下关键字:(Receive time out) can not connect to kdc server的问题 要检查“krb5.conf”文件内容是否正确,即是否与集群中的KerberoServer的业务IP配置相同。 检查Kerberos服务是否正常。 检查防火墙是否关闭。 解决客户端应用提交任务到hadoop集群报错,提示Failed to find any Kerberos tgt或者No valid credentials provided的问题 检查是否执行了kinit,若未执行,则先执行kinit认证操作,再提交任务。 多线程场景下,需要在进程的开始处调用hadoop提供的loginfromkeytab函数登录KDC,得到TGT,后续提交任务之前,调用reloginFromKeytab函数刷新该TGT。 //进程入口首次登录,登录成功设置userGroupInformationUserGroupInformation.loginUserFromKeytab(this.userPrincipal,this.keytabFile);//线程提交任务之前:UserGroupInformation.getLoginUser().reloginFromKeytab(); 多个脚本同时使用kinit命令认证同一个用户的场景下,需要在各个脚本中执行kinit命令之前,先执行export KRB5CCNAME=keytab_path命令,确保每个脚本进程中KRB5CCNAME指向的路径不一致。
  • 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置。版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端:Oracle JDK:支持1.8版本;IBM JDK:支持1.8.5.11版本。 TaiShan客户端:OpenJDK:支持1.8.0_272版本。 安装和配置IDEA 用于开发Flink应用程序的工具。版本要求:2019.1或其他兼容版本。 安装Scala Scala开发环境的基本配置。版本要求:2.11.7。 安装Scala插件 Scala开发环境的基本配置。版本要求:1.5.4。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。
  • 处理流程 出现认证失败的原因很多,在不同场景中建议参考以下步骤来排查: 确认本应用所运行设备和集群网络上是否通畅,Kerberos认证所需的各类端口(TCP/UDP)是否可正常访问。 确认各个配置文件是否被正确读取到,路径是否保存正确。 确认用户名和keytab文件是按操作指导得到的。 确认各类配置信息是否已经先设置好了,再发起认证。 确认没有在同一个进程中发起多次认证,即重复调用login()方法。 若还有问题,需联系技术支持人员做进一步分析。
  • 样例工程获取地址 MRS服务1.8之前版本的样例工程下载地址为:http://mapreduceservice.obs-website.cn-north-1.myhuaweicloud.com/。 MRS服务1.8.x版本的样例工程下载地址为:https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-1.8。 MRS服务1.9.x版本的样例工程下载地址为:https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-1.9。 MRS服务2.0.x版本和2.1.x版本的样例工程下载地址为:https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-2.0。 MRS服务3.0.2版本的样例工程下载地址为:https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-3.0.2。 MRS服务3.1.0版本的样例工程下载地址为:https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-3.1.0。 MRS服务3.1.5版本的样例工程下载地址为:https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-3.1.5。 图1 样例代码下载 下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 MRS服务3.1.2-LTS版本获取样例工程请参考通过开源镜像站获取样例工程。
  • MRS应用开发流程说明 通常MRS应用开发流程如下图所示,各组件应用的开发编译操作可参考组件开发指南对应章节。 图1 MRS应用开发流程 表1 MRS应用开发流程说明 阶段 说明 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用IntelliJ IDEA工具,同时本地需完成JDK、Maven等初始配置。 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接MRS集群,配置文件通常包括用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通。 配置并导入样例工程 MRS提供了不同组件场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 配置安全认证 连接开启了Kerberos认证的MRS集群时,应用程序中需配置具有相关资源访问权限的用户进行安全认证。 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 编译并运行程序 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。
  • 代码样例 完整样例代码可参考com.huawei.bigdata.hdfs.examples.ColocationExample。 在运行Colocation工程时,需要将HDFS用户绑定supergroup用户组。 在运行Colocation工程时,HDFS的配置项fs.defaultFS不能配置为viewfs://ClusterX。 初始化 使用Colocation前需要进行kerberos安全认证。 private static void init() throws IOException { conf.set(KEYTAB, PATH_TO_KEYTAB); conf.set(PRINCIPAL, PRNCIPAL_NAME); LoginUtil.setJaasConf( LOG IN_CONTEXT_NAME, PRNCIPAL_NAME, PATH_TO_KEYTAB); LoginUtil.setZookeeperServerPrincipal(ZOOKEEPER_SERVER_PRINCIPAL_KEY, ZOOKEEPER_DEFAULT_SERVER_PRINCIPAL); LoginUtil.login(PRNCIPAL_NAME, PATH_TO_KEYTAB, PATH_TO_KRB5_CONF, conf);} 获取实例 样例:Colocation的操作使用DFSColocationAdmin和DFSColocationClient实例,在进行创建group等操作前需获取实例。 dfsAdmin = new DFSColocationAdmin(conf); dfs = new DFSColocationClient(); dfs.initialize(URI.create(conf.get("fs.defaultFS")), conf); 创建group 样例:创建一个gid01组,组中包含3个locator。 /** * 创建group * * @throws java.io.IOException */private static void createGroup() throws IOException { dfsAdmin.createColocationGroup(COLOCATION_GROUP_GROUP01, Arrays.asList(new String[] { "lid01", "lid02", "lid03" }));} 写文件,写文件前必须创建对应的group 样例:写入testfile.txt文件。 /** * 创建并写入文件 * * @throws java.io.IOException */private static void put() throws IOException { FSDataOutputStream out = dfs.create(new Path(TESTFILE_TXT), true, COLOCATION_GROUP_GROUP01, "lid01"); // 待写入HDFS的数据 byte[] readBuf = "Hello World".getBytes("UTF-8"); out.write(readBuf, 0, readBuf.length); out.close();} 删除文件 样例:删除testfile.txt文件。 /** * 删除文件 * * @throws java.io.IOException */@SuppressWarnings("deprecation")private static void delete() throws IOException { dfs.delete(new Path(TESTFILE_TXT));} 删除group 样例:删除gid01。 /** * 删除group * * @throws java.io.IOException */private static void deleteGroup() throws IOException { dfsAdmin.deleteColocationGroup(COLOCATION_GROUP_GROUP01);}
  • 代码样例 如下是删除文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 删除目录 * * @throws java.io.IOException */private void rmdir() throws IOException { Path destPath = new Path(DEST_PATH); if (!deletePath(destPath)) { LOG.error("failed to delete destPath " + DEST_PATH); return; } LOG.info("success to delete path " + DEST_PATH);}/** * delete file path * * @param filePath * @return * @throws java.io.IOException */private boolean deletePath(final Path filePath) throws IOException { if (!fSystem.exists(filePath)) { return false; } // fSystem.delete(filePath, true); return fSystem.delete(filePath, true);}
  • 功能简介 同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性,将那些需进行关联操作的文件存放在相同数据节点上,在进行关联操作计算时避免了到别的数据节点上获取数据,大大降低网络带宽的占用。 在使用Colocation功能之前,建议用户对Colocation的内部机制有一定了解,包括: Colocation分配节点原理 扩容与Colocation分配 Colocation与数据节点容量 Colocation分配节点原理 Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的排在前面,优先选择排在前面的节点。每次选择一个节点后,计数加1,并重新排序,选择后续的节点。 扩容与Colocation分配 集群扩容之后,为了平衡地使用所有的数据节点,使新的数据节点的分配频率与旧的数据节点趋于一致,有如下两种策略可以选择,如表1所示。 表1 分配策略 编号 策略 说明 1 删除旧的locators,为集群中所有数据节点重新创建locators。 在未扩容之前分配的locators,平衡的使用了所有数据节点。当扩容后,新加入的数据节点并未分配到已经创建的locators中,所以使用Colocation来存储数据的时候,只会往旧的数据节点存储数据。 由于locators与特定数据节点相关,所以当集群进行扩容的时候,就需要对Colocation的locators分配进行重新规划。 2 创建一批新的locators,并重新规划数据存放方式。 旧的locators使用的是旧的数据节点,而新创建的locators偏重使用新的数据节点,所以需要根据实际业务对数据的使用需求,重新规划locators的使用。 一般的,建议用户在进行集群扩容之后采用策略一来重新分配locators,可以避免数据偏重使用新的数据节点。 Colocation与数据节点容量 由于使用Colocation进行存储数据的时候,会固定存储在指定的locator所对应的数据节点上面,所以如果不对locator进行规划,会造成数据节点容量不均衡。下面总结了保证数据节点容量均衡的两个主要的使用原则,如表2所示。 表2 使用原则 编号 使用原则 说明 1 所有的数据节点在locators中出现的频率一样。 如何保证频率一样:假如数据节点有N个,则创建locators的数量应为N的整数倍(N个、2N个……)。 2 对于所有locators的使用需要进行合理的数据存放规划,让数据均匀的分布在这些locators中。 无 HDFS的二次开发过程中,可以获取DFSColocationAdmin和DFSColocationClient实例,进行从location创建group、删除group、写文件和删除文件的操作。 使用Colocation功能,用户指定了DataNode,会造成某些节点上数据量很大。数据倾斜严重,导致HDFS写任务失败。 由于数据倾斜,导致MapReduce只会在某几个节点访问,造成这些节点上负载很大,而其他节点闲置。 针对单个应用程序任务,只能使用一次DFSColocationAdmin和DFSColocationClient实例。如果每次对文件系统操作都获取此实例,会创建过多HDFS链接,消耗HDFS资源。 Colocation提供了文件同分布的功能,执行集群Balancer或Mover操作时,会移动数据块,使Colocation功能失效。因此,使用Colocation功能时,建议将HDFS配置项dfs.datanode.block-pinning.enabled设置为true,此时执行集群Balancer或Mover操作时,使用Colocation写入的文件将不会被移动,从而保证了文件同分布。
  • 代码样例 如下是删除文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 删除文件 * * @throws java.io.IOException */private void delete() throws IOException { Path beDeletedPath = new Path(DEST_PATH + File.separator + FILE_NAME); if (fSystem.delete(beDeletedPath, true)) { LOG.info("success to delete the file " + DEST_PATH + File.separator + FILE_NAME); } else { LOG.warn("failed to delete the file " + DEST_PATH + File.separator + FILE_NAME); }}
  • 查看调测结果 查看运行结果获取应用运行情况 HdfsExample Linux样例程序运行结果如下所示。 0 [main] INFO org.apache.hadoop.security.UserGroupInformation - Login successful for user hdfsDevelop using keytab file user.keytab1 [main] INFO com.huawei.hadoop.security.LoginUtil - Login success!!!!!!!!!!!!!!568 [main] WARN org.apache.hadoop.util.NativeCodeLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable582 [main] WARN org.apache.hadoop.hdfs.shortcircuit.DomainSocketFactory - The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.793 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to create path /user/hdfs-examples969 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to write.1068 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to append.1191 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - result is : hi, I am bigdata. It is successful if you can see me.I append this content.1191 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to read.1202 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to delete the file /user/hdfs-examples/test.txt1210 [main] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to delete path /user/hdfs-examples1223 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to create path /user/hdfs-examples/hdfs_example_01224 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to create path /user/hdfs-examples/hdfs_example_11261 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to write.1264 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to write.2807 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to append.2810 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to append.2861 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - result is : hi, I am bigdata. It is successful if you can see me.I append this content.2861 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to read.2866 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to delete the file /user/hdfs-examples/hdfs_example_0/test.txt2874 [hdfs_example_0] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to delete path /user/hdfs-examples/hdfs_example_02874 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - result is : hi, I am bigdata. It is successful if you can see me.I append this content.2874 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to read.2879 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to delete the file /user/hdfs-examples/hdfs_example_1/test.txt2885 [hdfs_example_1] INFO com.huawei.bigdata.hdfs.examples.HdfsExample - success to delete path /user/hdfs-examples/hdfs_example_1 ColocationExample Linux样例程序运行结果如下所示。 0 [main] INFO com.huawei.hadoop.security.LoginUtil - JaasConfiguration loginContextName=Client principal=hdfsDevelop useTicketCache=false keytabFile=/opt/hdfsDemo/conf/user.keytab817 [main] INFO org.apache.hadoop.security.UserGroupInformation - Login successful for user hdfsDevelop using keytab file user.keytab817 [main] INFO com.huawei.hadoop.security.LoginUtil - Login success!!!!!!!!!!!!!!1380 [main] WARN org.apache.hadoop.util.NativeCodeLoader - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable...Create Group has finished.Put file is running...Put file has finished.Delete file is running...Delete file has finished.Delete Group is running...Delete Group has finished.... 查看HDFS日志获取应用运行情况 您可以查看HDFS的namenode日志了解应用运行情况,并根据日志信息调整应用程序。
  • 回答 bulkload是通过启动MapReduce任务直接生成HFile文件,再将HFile文件注册到HBase,因此错误的使用bulkload会因为启动MapReduce任务而占用更多的集群内存和CPU资源,也可能会生成大量很小的HFile文件频繁的触发Compaction,导致查询速度急剧下降。 错误的使用put,会造成数据加载慢,当分配给RegionServer内存不足时会造成RegionServer内存溢出从而导致进程退出。 下面给出bulkload和put适合的场景: bulkload适合的场景: 大量数据一次性加载到HBase。 对数据加载到HBase可靠性要求不高,不需要生成WAL文件。 使用put加载大量数据到HBase速度变慢,且查询速度变慢时。 加载到HBase新生成的单个HFile文件大小接近HDFS block大小。 put适合的场景: 每次加载到单个Region的数据大小小于HDFS block大小的一半。 数据需要实时加载。 加载数据过程不会造成用户查询速度急剧下降。
  • 未安装客户端时编译并运行程序 进入工程本地根目录,在Windows命令提示符窗口中执行下面命令进行打包。 mvn -s "{maven_setting_path}" clean package 上述打包命令中的{maven_setting_path}为本地Maven的“settings.xml”文件路径。 打包成功之后,在工程根目录的target子目录下获取打好的jar包。 将导出的Jar包上传至Linux运行环境的任意目录下,例如“/opt/client”。 将工程中的“lib”文件夹和“conf”文件夹上传至和Jar包相同的Linux运行环境目录下(其中“lib”目录汇总包含了工程中依赖的所有的Jar包,“conf”目录包含运行jar包所需的集群相关配置文件,请参考准备运行环境)。 执行如下命令运行Jar包。 java -cp HDFSTest-XXX.jar:conf/:lib/* com.huawei.bigdata.hdfs.examples.HdfsExample java -cp HDFSTest-XXX.jar:conf/:lib/* com.huawei.bigdata.hdfs.examples.ColocationExample 在运行“com.huawei.bigdata.hdfs.examples.ColocationExample”时,HDFS的配置项“fs.defaultFS”不能配置为“viewfs://ClusterX”。
  • 功能介绍 本小节介绍了如何使用HQL创建内部表、外部表的基本操作。创建表主要有以下三种方式: 自定义表结构,以关键字EXTERNAL区分创建内部表和外部表。 内部表,如果对数据的处理都由Hive完成,则应该使用内部表。在删除内部表时,元数据和数据一起被删除。 外部表,如果数据要被多种工具共同处理,则应该使用外部表,可避免对该数据的误操作。删除外部表时,只删除掉元数据。 根据已有表创建新表,使用CREATE LIKE句式,完全复制原有的表结构,包括表的存储格式。 根据查询结果创建新表,使用CREATE AS SELECT句式。 这种方式比较灵活,可以在复制原表表结构的同时指定要复制哪些字段,不包括表的存储格式。 在启用了安全服务的集群中执行如下操作,需要在数据库中CREATE权限,使用CREATE AS SELECT句式创建表,需要对SELECT查询的表具有SELECT权限。详情请参见Hive应用开发概述。 目前表名长度最长为128,字段名长度最长为128,字段注解长度最长为4000,WITH SERDEPROPERTIES 中key长度最长为256,value长度最长为4000。以上的长度均表示字节长度。
  • 已安装客户端时编译并运行程序 进入样例工程本地根目录,在Windows命令提示符窗口中执行下面命令进行打包。 mvn -s "{maven_setting_path}" clean package “{maven_setting_path}”为本地Maven的“settings.xml”文件路径,例如“C:\Users\Developer\settings.xml”。 打包成功之后,在工程根目录的“target”子目录下获取打好的jar包,例如“HDFSTest-XXX.jar”,jar包名称以实际打包结果为准。 将导出的Jar包上传至集群客户端运行环境的任意目录下,例如“/opt/client”,然后在该目录下创建“conf”目录,将需要的配置文件复制至“conf”目录,具体操作请参考准备运行环境。 配置环境变量: cd /opt/client source bigdata_env 执行如下命令,运行Jar包。 hadoop jar HDFSTest-XXX.jar com.huawei.bigdata.hdfs.examples.HdfsExample hadoop jar HDFSTest-XXX.jar com.huawei.bigdata.hdfs.examples.ColocationExample 在运行com.huawei.bigdata.hdfs.examples.ColocationExample时,HDFS的配置项“fs.defaultFS”不能配置为“viewfs://ClusterX”。
  • 前提条件 已安装客户端时: 已安装HDFS客户端。 当客户端所在主机不是集群中的节点时,需要在客户端所在节点的hosts文件中设置主机名和IP地址映射。主机名和IP地址请保持一一对应。 未安装客户端时: Linux环境已安装JDK,版本号需要和IDEA导出Jar包使用的JDK版本一致。 当Linux环境所在主机不是集群中的节点时,需要在Linux环境所在节点的hosts文件中设置主机名和IP地址映射。主机名和IP地址请保持一一对应。
  • 扩展使用 配置Hive中间过程的 数据加密 指定表的格式为RCFile(推荐使用)或SequenceFile,加密算法为ARC4Codec。SequenceFile是Hadoop特有的文件格式,RCFile是Hive优化的文件格式。RCFile优化了列存储,在对大表进行查询时,综合性能表现比SequenceFile更优。 set hive.exec.compress.output=true; set hive.exec.compress.intermediate=true; set hive.intermediate.compression.codec=org.apache.hadoop.io.encryption.arc4.ARC4Codec; 自定义函数,具体内容请参见创建Hive用户自定义函数。
  • 样例代码 -- 查看薪水支付币种为美元的雇员联系方式. SELECT a.name, b.tel_phone, b.email FROM employees_info a JOIN employees_contact b ON(a.id = b.id) WHERE usd_flag='D'; -- 查询入职时间为2014年的雇员编号、姓名等字段,并将查询结果加载进表employees_info_extended中的入职时间为2014的分区中. INSERT OVERWRITE TABLE employees_info_extended PARTITION (entrytime = '2014') SELECT a.id, a.name, a.usd_flag, a.salary, a.deductions, a.address, b.tel_phone, b.email FROM employees_info a JOIN employees_contact b ON (a.id = b.id) WHERE a.entrytime = '2014'; -- 使用Hive中已有的函数COUNT(),统计表employees_info中有多少条记录. SELECT COUNT(*) FROM employees_info; -- 查询使用以“cn”结尾的邮箱的员工信息. SELECT a.name, b.tel_phone FROM employees_info a JOIN employees_contact b ON (a.id = b.id) WHERE b.email like '%cn';
  • Hive简介 Hive是一个开源的,建立在Hadoop上的 数据仓库 框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、 CS V、TEXTFILE、RCFILE、ORCFILE、SEQUENCEFILE等存储格式,并支持自定义扩展。 多种客户端连接方式,支持JDBC接口。 Hive的主要应用于海量数据的离线分析(如 日志分析 ,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景下。 为保证Hive服务的高可用性、用户数据的安全及访问服务的可控制,在开源社区的Hive-3.1.0版本基础上,Hive新增如下特性: 基于Kerberos技术的安全认证机制。 数据文件加密机制。 完善的权限管理。 开源社区的Hive特性,请参见https://cwiki.apache.org/confluence/display/hive/designdocs。
  • MapReduce样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-security MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMapper实现数据分析、处理,并输出满足用户需要的数据信息。 相关样例介绍请参见MapReduce统计样例程序。 MapReduce作业访问多组件的应用开发示例: 以MapReduce访问HDFS、HBase、Hive为例,介绍如何编写MapReduce作业访问多个服务组件。帮助用户理解认证、配置加载等关键使用方式。 相关样例介绍请参见MapReduce访问多组件样例程序。 父主题: MapReduce开发指南(安全模式)
  • 样例代码 -- 查看薪水支付币种为美元的雇员联系方式. SELECT a.name, b.tel_phone, b.email FROM employees_info a JOIN employees_contact b ON(a.id = b.id) WHERE usd_flag='D'; -- 查询入职时间为2014年的雇员编号、姓名等字段,并将查询结果加载进表employees_info_extended中的入职时间为2014的分区中. INSERT OVERWRITE TABLE employees_info_extended PARTITION (entrytime = '2014') SELECT a.id, a.name, a.usd_flag, a.salary, a.deductions, a.address, b.tel_phone, b.email FROM employees_info a JOIN employees_contact b ON (a.id = b.id) WHERE a.entrytime = '2014'; -- 使用Impala中已有的函数COUNT(),统计表employees_info中有多少条记录. SELECT COUNT(*) FROM employees_info; -- 查询使用以“cn”结尾的邮箱的员工信息. SELECT a.name, b.tel_phone FROM employees_info a JOIN employees_contact b ON (a.id = b.id) WHERE b.email like '%cn';
  • 样例代码 -- 从本地文件系统/opt/impala_examples_data/目录下将employee_info.txt加载进employees_info表中. LOAD DATA LOCAL INPATH '/opt/impala_examples_data/employee_info.txt' OVERWRITE INTO TABLE employees_info;-- 从HDFS上/user/impala_examples_data/employee_info.txt加载进employees_info表中. LOAD DATA INPATH '/user/impala_examples_data/employee_info.txt' OVERWRITE INTO TABLE employees_info; 加载数据的实质是将数据复制到HDFS上指定表的目录下。 “LOAD DATA LOCAL INPATH”命令可以完成从本地文件系统加载文件到Impala的需求,但是当指定“LOCAL”时,这里的路径指的是当前连接的“Impalad”的本地文件系统的路径。
  • Impala应用开发简介 Impala直接对存储在HDFS、HBase或 对象存储服务 (OBS)中的Hadoop数据提供快速、交互式SQL查询。除了使用相同的统一存储平台之外,Impala还使用与Apache Hive相同的元数据、SQL语法(Hive SQL)、ODBC驱动程序和用户界面(Hue中的Impala查询UI)。这为实时或面向批处理的查询提供了一个熟悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92功能,包括SELECT,JOIN和聚合函数。 HDFS,HBase 和对象存储服务(OBS)存储,包括: HDFS文件格式:基于分隔符的text file,Parquet,Avro,SequenceFile和RCFile。 压缩编解码器:Snappy,GZIP,Deflate,BZIP。 常见的数据访问接口包括: JDBC驱动程序。 ODBC驱动程序。 Hue beeswax和Impala查询UI。 impala-shell命令行接口。 支持Kerberos身份认证。 Impala主要应用于实时查询数据的离线分析(如日志分析,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景。 父主题: Impala应用开发概述
  • MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备MapReduce开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接MRS集群,配置文件通常包括集群组件信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接MapReduce集群配置文件 配置并导入样例工程 MapReduce提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 导入并配置MapReduce样例工程 配置安全认证 如果您使用的是开启了Kerberos认证的MRS集群,需要进行安全认证。 配置MapReduce应用安全认证 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 开发MapReduce应用 编译并运行程序 将开发好的程序编译运行,用户可在本地Windows开发环境中进行程序调测运行,也可以将程序编译为Jar包后,提交到Linux节点上运行。 调测MapReduce应用 父主题: MapReduce开发指南(安全模式)
  • 操作场景 在程序代码完成开发后,您可以在Windows环境中运行应用。本地和集群业务平面网络互通时,您可以直接在本地进行调测。 MapReduce应用程序运行完成后,可通过如下方式查看应用程序的运行情况。 在IntelliJ IDEA中查看应用程序运行情况。 通过MapReduce日志获取应用程序运行情况。 登录MapReduce WebUI查看应用程序运行情况。 登录Yarn WebUI查看应用程序运行情况。 如果Windows运行环境中使用IBM JDK,不支持在Windows环境中直接运行应用程序。 在MapReduce任务运行过程中禁止重启HDFS服务,否则可能会导致任务失败。
  • 场景说明 该样例以MapReduce访问HDFS、HBase、Hive为例,介绍如何编写MapReduce作业访问多个服务组件。帮助用户理解认证、配置加载等关键使用方式。 该样例逻辑过程如下: 以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段: 获取Map输出中的最后一条数据。 将数据输出到HBase。 将数据保存到HDFS。
  • 操作步骤 客户端机器必须安装有Python,其版本不低于2.6.6,最高不能超过2.7.13。 在客户端机器的命令行终端输入python可查看Python版本号。如下显示Python版本为2.6.6。 Python 2.6.6 (r266:84292, Oct 12 2012, 14:23:48) [GCC 4.4.6 20120305 (Red Hat 4.4.6-4)] on linux2 Type "help", "copyright", "credits" or "license" for more information. 客户端机器必须安装有setuptools,其版本不低于5.0,最高不能超过36.8.0。可在https://pypi.org/project/setuptools/#files获取相应的安装包。 将下载的setuptools压缩文件复制到客户端机器上,解压后进入解压目录,在客户端机器的命令行终端执行以下命令: python setup.py install 如下内容表示安装setuptools的5.7版本成功: Finished processing dependencies for setuptools==5.7 安装Python客户端到客户端机器。 参考获取MRS应用开发样例工程,获取样例代码解压目录中“src\hive-examples”目录下的样例工程文件夹“python-examples”。 进入“python-examples”文件夹。 在命令行终端执行以下命令 python setup.py install 输出以下关键内容表示安装Python客户端成功: Finished processing dependencies for pyhs2==0.5.0 安装成功后,“python-examples/pyCLI_sec.py”为Python客户端样例代码,“python-examples/pyhs2/haconnection.py”为Python客户端接口API。 “python-examples/hive_python_client”脚本提供了直接执行SQL的功能,例如:sh hive_python_client 'show tables'。 该功能只适用于常规简单的SQL,并且需要依赖ZooKeeper的客户端。
  • 功能介绍 本小节介绍了如何使用HQL向已有的表employees_info中加载数据。从本节中可以掌握如何从本地文件系统、MRS集群中加载数据。以关键字LOCAL区分数据源是否来自本地。 在启用了安全服务的集群中执行如下操作,需要在数据库中具有UPDATE权限及对加载数据文件具有owner权限和读写权限,详情请参见Hive应用开发概述。 如果加载数据语句中有关键字LOCAL,表明从本地加载数据,除要求对相应表的UPDATE权限外,还要求该数据在当前连接的HiveServer节点上,加载用户对数据路径“PATH”具有读权限,且以omm用户能够访问该数据文件。 如果加载数据语句中有关键字OVERWRITE,表示加载的数据会覆盖表中原有的数据,否则加载的数据会追加到表中。
  • 样例数据 表employees_info的数据如下: 1,Wang,R,8000.01,person&personal^Btype&income^Btax&0.05,Country1:City1,20143,Tom,D,12000.02,person&personal^Btype&income^Btax&0.09,Country2:City2,20144,Jack,D,24000.03,person&personal^Btype&income^Btax&0.05,Country3:City3,20146,Linda,D,36000.04,person&personal^Btype&income^Btax&0.05,Country4:City4,20148,Zhang,R,9000.05,person&personal^Btype&income^Btax&0.05,Country5:City5,2014 表employees_contact的数据如下: 1,135 XXXX XXXX,xxxx@xx.com3,159 XXXX XXXX,xxxxx@xx.com.cn4,186 XXXX XXXX,xxxx@xx.org6,189 XXXX XXXX,xxxx@xxx.cn8,134 XXXX XXXX,xxxx@xxxx.cn 表employees_info_extended的数据如下: 1,Wang,135 XXXX XXXX,xxxx@xx.com,R,8000.01,person&personal^Btype&income^Btax&0.05,Country1:City1,20143,Tom,159 XXXX XXXX,xxxxx@xx.com.cn,D,12000.02,person&personal^Btype&income^Btax&0.09,Country2:City2,20144,Jack,186 XXXX XXXX,xxxx@xx.org,D,24000.03,person&personal^Btype&income^Btax&0.05,Country3:City3,20146,Linda,189 XXXX XXXX,xxxx@xxx.cn,D,36000.04,person&personal^Btype&income^Btax&0.05,Country4:City4,20148,Zhang,134 XXXX XXXX,xxxx@xxxx.cn,R,9000.05,person&personal^Btype&income^Btax&0.05,Country5:City5,2014
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全