华为云用户手册

  • ArgMin算子优化 ArgMin在CANN 6.3 RC2 版本上 算子下发到 AICPU执行,在 CANN 7.0RC1上下发到AI_CORE 上边执行。出现此类情形建议升级 CANN 包版本。 在 shape 大小是 (1024, 1024) 的 tensor 上测试,结果如下: CANN 6.3.RC2上,单算子执行时间 2.603 ms。 图5 单算子执行时间(CANN 6.3.RC2) CANN7.0 RC1上,单算子执行时间 223.516 us。 图6 单算子执行时间(CANN7.0 RC1)
  • 配置ROI ROI即Region of Interest,表示算法的检测区域。部分算法要求必须填入表示检测区域的JSON格式的字符串,例如:{"polygons":[{"data":[[84,389],[1840,349],[1824,526],[78,526]]}]},其中[84,389]这类结构表示的是横纵坐标,{"data":[...]}表示由这些坐标点连线构成的一个图形,"polygons":[...]}表示复数个{"data":[...]}图形都为多边形区域。示例的整个字符串表示由这四个坐标点构成的多边形区域。同理{"lines":[{"data":[[238,481],[1309,481]]}]}表示由两个坐标点构成的线段。 除了直接填入表示区域的字符串外还可直接通过手工绘制的方式配置ROI,平台将根据绘制的结果自动生成对应的表示区域的JSON格式字符串。 配置ROI 绘画直线段时,单击,在图中画出期望的直线段。 图1 绘画直线段 绘画多边形时,单击,在图中画出期望的检测区域,最后一条线段不需要绘画,双击鼠标表示绘画多边形结束,区域将自动闭合。 图2 绘画多边形 绘画多边形区域时,线段不能交叉。 可在图中绘画多个多边形区域。 可以在绘制区域按钮中自定义名称和颜色。 保存ROI模板 绘制好需要的ROI之后,输入ROI名称,单击保存,将所绘的ROI保存到模板中。 图3 保存ROI模板 选择ROI模板 单击选中需要的ROI模板,则可在当前任务中使用。 图4 ROI模板 除了在新建任务过程中可以增加ROI模板外,也可以单击视频源详情进行ROI模板的绘制。 图5 ROI管理 父主题: 参考信息
  • 从AI Gallery订阅的Workflow如何使用 登录AI Gallery的Workflow案例库。 从AI Gallery的Workflow资产页面,选择并订阅一个Workflow,勾选“我已阅读 《数据安全与隐私风险承担条款》和《华为云AI Gallery服务协议》”后,单击“继续订阅”。 订阅完成后,单击“运行”后跳转到ModelArts控制台界面,选择资产版本、Workflow名称、云服务区域以及工作空间,单击“导入”,进入该Workflow的详情页面。 图1 从AI Gallery导入工作流 单击右上角的“配置”后进入配置页面,根据您所订阅的工作流,配置Workflow需要的部分输入项和参数,参考表1,参数配置完成后,单击右上角的“保存配置”。 保存成功后,单击右上角的“启动”,启动Workflow。 Workflow进入运行页面,等待Workflow运行。 每一个节点运行状况页面的“状态”为此节点的运行状态,运行成功会自动执行下一个节点的运行,直至所有节点运行成功,代表Workflow完成运行。 图2 完成运行 父主题: 如何使用Workflow
  • 部分运行 针对大型、复杂的Workflow,为节省重复运行消耗的时间,在运行业务场景时,用户可以选择其中的部分节点作为业务场景运行,工作流在执行时将会按顺序执行部分运行节点。 创建 通过SDK创建工作流时,预先定义好部分运行场景,具体可参考部分运行。 配置 在配置工作流时,打开“部分运行”开关,选择需要执行的部分运行场景,并填写完善相关节点的参数。 启动 保存上一步的配置后,单击“启动”按钮即可启动部分运行场景。 父主题: 如何使用Workflow
  • 属性总览 您可以使用JobStep来构建作业类型节点,JobStep结构如下 表1 JobStep 属性 描述 是否必填 数据类型 name 作业节点的名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符,一个Workflow里的两个step名称不能重复 是 str algorithm 算法对象 是 BaseAlgorithm, Algorithm, AIGalleryAlgorithm spec 作业使用的资源规格相关配置 是 JobSpec inputs 作业节点的输入列表 是 JobInput或者JobInput的列表 outputs 作业节点的输出列表 是 JobOutput或者JobOutput的列表 title title信息,主要用于前端的名称展示 否 str description 作业节点的描述信息 否 str policy 节点执行的policy 否 StepPolicy depend_steps 依赖的节点列表 否 Step或者Step的列表 表2 JobInput 属性 描述 是否必填 数据类型 name 作业类型节点的输入名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符。同一个Step的输入名称不能重复 是 str data 作业类型节点的输入数据对象 是 数据集或OBS相关对象,当前仅支持Dataset,DatasetPlaceholder,DatasetConsumption,OBSPath,OBSConsumption,OBSPlaceholder,DataConsumptionSelector 表3 JobOutput 属性 描述 是否必填 数据类型 name 作业类型节点的输出名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符。同一个Step的输出名称不能重复 是 str obs_config 输出的OBS相关配置 否 OBSOutputConfig model_config 输出的模型相关配置 否 ModelConfig metrics_config metrics相关配置 否 MetricsConfig 表4 OBSOutputConfig 属性 描述 是否必填 数据类型 obs_path 已存在的OBS目录 是 str、Placeholder、Storage metric_file 存储metric信息的文件名称 否 str、Placeholder 表5 BaseAlgorithm 属性 描述 是否必填 数据类型 id 算法管理的算法ID 否 str subscription_id 订阅算法的订阅ID 否 str item_version_id 订阅算法的版本号 否 str code_dir 代码目录 否 str,Placeholder,Storage boot_file 启动文件 否 str,Placeholder,Storage command 启动命令 否 str,Placeholder parameters 算法超参 否 AlgorithmParameters的列表 engine 作业使用的镜像信息 否 JobEngine environments 环境变量 否 dict 表6 Algorithm 属性 描述 是否必填 数据类型 algorithm_id 算法管理的算法ID 是 str parameters 算法超参 否 AlgorithmParameters的列表 表7 AIGalleryAlgorithm 属性 描述 是否必填 数据类型 subscription_id 订阅算法的订阅ID 是 str item_version_id 订阅算法的版本号 是 str parameters 算法超参 否 AlgorithmParameters的列表 表8 AlgorithmParameters 属性 描述 是否必填 数据类型 name 算法超参的名称 是 str value 算法超参的值 是 int, bool, float, str, Placeholder, Storage 表9 JobEngine 属性 描述 是否必填 数据类型 engine_id 镜像ID 否 str,Placeholder engine_name 镜像名称 否 str,Placeholder engine_version 镜像版本 否 str,Placeholder image_url 镜像url 否 str,Placeholder 表10 JobSpec 属性 描述 是否必填 数据类型 resource 资源信息 是 JobResource log_export_path 日志输出路径 否 LogExportPath schedule_policy 作业调度配置策略 否 SchedulePolicy volumes 作业挂载的文件系统信息 否 list[Volume] 表11 JobResource 属性 描述 是否必填 数据类型 flavor 资源规格 是 Placeholder node_count 节点个数,默认为1,多节点表示支持分布式 否 int,Placeholder 表12 SchedulePolicy 属性 描述 是否必填 数据类型 priority 作业调度的优先级,仅支持配置为1、2、3,分别对应低、中、高三种优先级 是 int,Placeholder 表13 Volume 属性 描述 是否必填 数据类型 nfs NFS文件系统对象 否 NFS 表14 NFS 属性 描述 是否必填 数据类型 nfs_server_path NFS文件系统的服务地址 是 str,Placeholder local_path 挂载到容器里面的路径 是 str,Placeholder read_only 是否只读的方式挂载 否 bool,Placeholder 父主题: 作业类型节点
  • 查看Workflow运行记录 运行记录是展示某条工作流所有运行状态数据的地方。 在Workflow列表页,单击某条工作流的名称,进入该工作流的详情页面。 在工作流的详情页,左侧区域即为该条工作流的所有运行记录。 图1 查看运行记录 您可以对当前工作流的所有运行记录,进行删除、编辑以及重新运行的操作。 删除:若该条运行记录不再需要,您可以单击“删除”,在弹出的确认框中单击“确定”即可完成运行记录的删除。 编辑:若您想对您当前的工作流下的所有运行记录进行区分,您可以单击“编辑”,对每一条运行记录添加相应的标签予以区分。 重新运行:可以单击“重新运行”直接在某条记录上运行该工作流。 您可以对该条工作流的所有运行记录进行筛选和对比。 筛选:该功能支持您对所有运行记录按照“运行状态”和“运行标签”进行筛选。 图2 筛选 对比:针对某条工作流的所有运行记录,按照状态、运行记录、启动时间、运行时长、参数等进行对比。 图3 对比 当单击“启动”运行工作流时,运行记录列表会自动刷新,并更新至最新一条的执行记录数据,并与DAG图和总览数据面板双向联动更新数据。每次启动后都会新增一条运行记录。 用户可以单击Workflow详情页中任一节点查询节点运行状况。包括节点的属性(节点的运行状态、启动时间以及运行时长)、输入位置与输出位置以及参数(数据集的标注任务名称)。 父主题: 如何使用Workflow
  • Workflow Workflow是一个有向无环图(Directed Acyclic Graph,DAG),由节点和节点之间的关系描述组成。 节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序,示例中的工作流在启动后将从左往右顺序执行。DAG也支持多分支结构,用户可根据实际场景进行灵活设计,在多分支场景下,并行分支的节点支持并行运行。 表1 Workflow 属性 描述 是否必填 数据类型 name 工作流的名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64位字符 是 str desc 工作流的描述信息 是 str steps 工作流包含的节点列表 是 list[Step] storages 统一存储对象列表 否 Storage或者list[Storage] policy 工作流的配置策略,主要用于部分运行场景 否 Policy 父主题: 核心概念
  • 配置标签 在ModelArts管理控制台,左侧菜单栏单击“Workflow”。进入Workflow列表页。 在列表页根据Workflow工作流名称,找到需要打标签的工作流,单击工作流名称,进入工作流详情页。 在工作流详情页,单击左上角编辑按钮。 在弹出的编辑Workflow弹窗中,在标签框中输入相应的标签后,单击“新增标签”,新生成的标签会展示在标签行的下方,您可以同时增加多个标签。标签增加完成后,单击“确定”,标签即可生成。 图1 编辑 图2 新增标签
  • Step Step是组成Workflow的最小单元,体现在DAG中就是一个一个的节点,不同的Step类型承载了不同的服务能力,主要构成如下。 表1 Step 属性 描述 是否必填 数据类型 name 节点的名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符 是 str title 节点的标题信息,主要用于在DAG中的展示,如果该字段未填写,则默认使用name进行展示 否 str step_type 节点的类型,决定了节点的功能 是 enum inputs 节点的输入列表 否 AbstractInput或者list[AbstractInput] outputs 节点的输出列表 否 AbstractOutput或者list[AbstractOutput] properties 节点的属性信息 否 dict policy 节点的执行策略,主要包含节点调度运行的时间间隔、节点执行的超时时间、以及节点执行是否跳过的相关配置 否 StepPolicy depend_steps 依赖节点的列表,该字段决定了DAG的结构,也决定了节点执行的顺序 否 Step或者list[Step] 表2 StepPolicy 属性 描述 是否必填 数据类型 poll_interval_seconds 节点调度时间周期,默认为1秒 是 str max_execution_minutes 节点运行超时时间,默认为10080分钟,即7天 是 str skip_conditions 节点是否跳过的条件列表 否 Condition或者Condition列表 Step是节点的超类,主要用于概念上的承载,用户不直接使用。根据功能的不同,构建了不同类型的节点,主要包括CreateDatasetStep、LabelingStep、DatasetImportStep、ReleaseDatasetStep、JobStep、ModelStep、ServiceStep、ConditionStep等,详情请见节点类型。 父主题: 核心概念
  • 属性总览 您可以使用DatasetImportStep来构建数据集导入节点,DatasetImportStep结构如下。 表1 DatasetImportStep 属性 描述 是否必填 数据类型 name 数据集导入节点的名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符,一个Workflow里的两个step名称不能重复。 是 str inputs 数据集导入节点的输入列表。 是 DatasetImportInput或者DatasetImportInput的列表 outputs 数据集导入节点的输出列表。 是 DatasetImportOutput或者DatasetImportOutput的列表 properties 数据集导入相关的配置信息。 是 ImportDataInfo title title信息,主要用于前端的名称展示。 否 str description 数据集导入节点的描述信息。 否 str policy 节点执行的policy。 否 StepPolicy depend_steps 依赖的节点列表。 否 Step或者Step的列表 表2 DatasetImportInput 属性 描述 是否必填 数据类型 name 数据集导入节点的输入名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符。同一个Step的输入名称不能重复。 是 str data 数据集导入节点的输入数据对象。 是 数据集、OBS或标注任务相关对象,当前仅支持Dataset,DatasetConsumption,DatasetPlaceholder,OBSPath,OBSConsumption,OBSPlaceholder,LabelTask,LabelTaskPlaceholder,LabelTaskConsumption,DataConsumptionSelector 表3 DatasetImportOutput 属性 描述 是否必填 数据类型 name 数据集导入节点的输出名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符)。同一个Step的输出名称不能重复。 是 str 表4 ImportDataInfo 属性 描述 是否必填 数据类型 annotation_format_config 导入的标注格式的配置参数。 否 AnnotationFormatConfig excluded_labels 不导入包含指定标签的样本。 否 Label的列表 import_annotated 用于导入智能标注结果的任务,是否导入原数据集中已标注的样本到待确认,默认值为"false"即不导入原数据集中已标注的样本到待确认。可选值如下: true:导入原数据集中已标注的样本到待确认 false:不导入原数据集中已标注的样本到待确认 否 bool import_annotations 是否导入标签。可选值如下: true:导入标签(默认值) false:不导入标签 否 bool import_samples 是否导入样本。可选值如下: true:导入样本(默认值) false:不导入样本 否 bool import_type 导入方式。可选值如下: dir:目录导入 manifest:按manifest文件导入 否 ImportTypeEnum included_labels 导入包含指定标签的样本。 否 Label的列表 label_format 标签格式,此参数仅文本类数据集使用。 否 LabelFormat 表5 AnnotationFormatConfig 属性 描述 是否必填 数据类型 format_name 标注格式的名称。 否 AnnotationFormatEnum parameters 标注格式的高级参数。 否 AnnotationFormatParameters scene 标注场景,可选参数。 否 LabelTaskTypeEnum 表6 AnnotationFormatParameters 属性 描述 是否必填 数据类型 difficult_only 是否只导入难例。可选值如下: true:只导入难例样本 false:导入全部样本(默认值) 否 bool included_labels 导入包含指定标签的样本。 否 Label的列表 label_separator 标签与标签之间的分隔符,默认为逗号分隔,分隔符需转义。分隔符仅支持一个字符,必须为大小写字母,数字和“!@#$%^&*_=|?/':.;,”其中的某一字符。 否 str sample_label_separator 文本与标签之间的分隔符,默认为Tab键分隔,分隔符需转义。分隔符仅支持一个字符,必须为大小写字母,数字和“!@#$%^&*_=|?/':.;,”其中的某一字符。 否 str 父主题: 数据集导入节点
  • 从AI Gallery订阅的Workflow如何使用 登录AI Gallery的Workflow案例库。 从AI Gallery的Workflow资产页面,选择并订阅一个Workflow,勾选“我已阅读 《数据安全与隐私风险承担条款》 和 《华为云AI Gallery服务协议》”后,单击“继续订阅”。 订阅完成后,单击“运行”后跳转到ModelArts控制台界面,选择资产版本、Workflow名称、云服务区域以及工作空间,单击“导入”,进入该Workflow的详情页面。 图3 从AI Gallery导入工作流 单击右上角的“配置”后进入配置页面,根据您所订阅的工作流,配置Workflow需要的部分输入项和参数,参考表1,参数配置完成后,单击右上角的“保存配置”。 保存成功后,单击右上角的“启动”,启动Workflow。 Workflow进入运行页面,等待Workflow运行。 每一个节点运行状况页面的“状态”为此节点的运行状态,运行成功会自动执行下一个节点的运行,直至所有节点运行成功,代表Workflow完成运行。 图4 完成运行
  • 开发态-开发工作流 开发者结合实际业务的需求,通过Workflow提供的Python SDK,将ModelArts的能力封装成流水线中的一个个步骤。对于AI开发者来说是非常熟悉的开发模式,而且灵活度极高。Python SDK主要提供以下能力。 调测:部分运行、全部运行、debug。 发布:发布到运行态。 实验记录:实验的持久化及管理。 如何开发一条工作流请您参考入门教程开发第一条Workflow。
  • 使用JupyterLab打开Notebook实例准备环境 在Notebook列表中,选择2中创建好的实例,确保其状态为“运行中”,单击操作列的“打开”,进入JupyterLab页面。JupyterLab操作请参见JupyterLab简介及常用操作。 创建一个ipynb文件。 图2 创建一个ipynb文件 创建一个新的cell,运行如下命令,如果能成功导入,则表示环境已准备完成: from modelarts import workflow as wf 如果执行失败,可进行手动安装,具体操作见3。 在Notebook的第一个cell运行如下命令进行环境准备。 !rm modelarts*.whl !wget -N https://cn-north-4-training-test.obs.cn-north-4.myhuaweicloud.com/workflow-apps/v1.0.1/modelarts-1.4.18-py2.py3-none-any.whl !wget -N https://cn-north-4-training-test.obs.cn-north-4.myhuaweicloud.com/workflow-apps/v1.0.1/modelarts_workflow-1.0.1-py2.py3-none-any.whl !pip uninstall -y modelarts modelarts-workflow !pip install modelarts-1.4.18-py2.py3-none-any.whl !pip install modelarts_workflow-1.0.1-py2.py3-none-any.whl 环境安装成功验证: 创建一个新的cell,运行如下命令,如果能成功导入,则表示环境已安装成功: from modelarts import workflow as wf 如果导入失败,建议重新执行安装命令,或者重启kernel后再次执行安装命令。
  • 消息通知 Workflow使用了消息通知服务,支持用户在事件列表中选择需要监控的状态,并在事件发生时发送消息通知。如需订阅通知消息,则打开“订阅消息”开关。 打开开关后,需要先指定 SMN 主题名,如未创建主题名,需前往消息通知服务创建主题。 支持对Workflow中单个节点、多个节点以及工作流的相关事件进行订阅。订阅列表中,一行代表一个节点或者整条工作流的订阅。如需对多个节点的状态变化获取消息,则需增加多行订阅消息。 对每一个订阅对象,可以选择多个订阅事件,包含:“等待输入”、“运行成功”、“异常”三种事件。 父主题: 配置Workflow
  • 增量训练的操作步骤 登录ModelArts管理控制台,单击左侧导航栏的自动学习。 在自动学习项目管理页面,单击对应的项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据, 也需要检查是否需要增加新的标签。 在图片都标注完成后,单击右上角“开始训练”,在“训练设置”中,在“增量训练版本”中选择之前已完成的训练版本,在此版本基础上进行增量训练。其他参数请根据界面提示填写。 设置完成后,单击“确定”,即进行增量训练。系统将自动跳转至“模型训练”页面,待训练完成后,您可以在此页面中查看训练详情,如“训练精度”、“评估结果”、“训练参数”等。 图1 选择增量训练版本
  • 服务测试 您可以在“部署上线”页面,选择对应的服务类型,例如自动学习文本分类项目默认将服务部署为在线服务,进入“在线服务”页面,单击目标服务“操作”列的“预测”,进行服务测试,测试方法和下方陈述操作步骤一致。具体操作请参见测试服务。 您也可以通过调用代码对服务进行测试,根据部署服务类型的不同,具体操作详情参见访问在线服务、访问边缘服务。 下面的测试,是您在自动学习文本分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可添加文本进行测试。在“自动学习”页面,选择目标项目,进入“部署上线”界面,选择状态为“运行中”的服务版本,在“服务测试”区域的文本框中,输入需测试的文本。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签中添加数据并进行标注,重新进行模型训练及部署上线。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务,操作指导请参见“访问在线服务”。 图2 预测 表1 预测结果中的参数说明 参数 说明 predicted_label 该段文本的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了自动停止功能,服务将在指定时间后自动停止,不再产生费用。
  • 部署上线 部署上线操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“模型训练”页签中,待训练状态变为“运行成功”,单击版本管理区域中的“部署”,开始将模型部署上线为在线服务。 图1 部署操作 在弹出的“部署”对话框中,选择资源规格,同时设置自动停止功能,然后单击确定,启动部署。 “计算节点规格”:以控制台实际为准。 “计算节点个数”:默认为1,且不能修改。 “是否自动停止”:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、“6小时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 启动部署上线后,可以在“部署上线”界面查看模型部署上线的状态。 部署上线将耗费较多时间,请您耐心等待。当“部署上线”页签版本管理区域的状态由“部署中”变更为“运行中”,部署完成。 在自动学习界面中,仅支持将训练后的模型部署为在线服务,如果需要部署为“批量服务”或“边缘服务”,请参见自动学习生成的模型,存储在哪里?支持哪些其他操作?。
  • 数据上传至OBS 在本文档中,采用管理控制台上传数据至OBS。 执行如下操作,将数据导入到您的数据集中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。
  • 服务测试 您可以在“部署上线”页面,选择对应的服务类型,例如自动学习声音分类项目默认将服务部署为在线服务,进入“在线服务”页面,单击目标服务“操作”列的“预测”,进行服务测试,测试方法和下方陈述操作步骤一致。具体操作请参见测试服务。 您也可以通过调用代码对服务进行测试,根据部署服务类型的不同,具体操作详情参见访问在线服务、访问边缘服务。 下面的测试,是您在自动学习声音分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可添加音频文件进行测试。在“自动学习”页面,选择目标项目,进入“部署上线”界面,选择状态为“运行中”的服务版本,在“服务测试”区域单击“上传”,选择本地音频进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签中添加音频并进行标注,重新进行模型训练及部署上线。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务,操作指导请参见“访问在线服务”。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段音频的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了自动停止功能,服务将在指定时间后自动停止,不再产生费用。
  • 部署上线 部署上线操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“模型训练”页签中,待训练状态变为“运行成功”,单击版本管理区域中的“部署”,开始将模型部署上线为在线服务。 图1 部署操作 在弹出的“部署”对话框中,选择资源规格,同时设置自动停止功能,然后单击确定,启动部署。 “计算节点规格”:以控制台实际提供为准。 “计算节点个数”:默认为1,且不能修改。 “是否自动停止”:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、“6小时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 启动部署上线后,可以在“部署上线”界面查看模型部署上线的状态。 部署上线将耗费较多时间,请您耐心等待。当“部署上线”页签版本管理区域的状态由“部署中”变更为“运行中”,部署完成。 在自动学习界面中,仅支持将训练后的模型部署为在线服务,如果需要部署为“批量服务”或“边缘服务”,请参见自动学习生成的模型,存储在哪里?支持哪些其他操作?。
  • 操作步骤 在“自动学习”页面,单击创建成功的项目名称,进入“数据标注”页面,完成数据标注。 图1 完成数据标注 在“数据标注”页面,单击右上角的“开始训练”,然后在弹出的“训练设置”对话框中配置相关参数。参数说明请参见表1。请确保“训练验证比例”输入值的小数位数应在1~5之间。 表1 训练设置参数说明 参数 说明 默认值 数据集版本名称 此版本即数据管理中发布数据集时设置的版本。自动学习项目中,启动训练作业时,会基于前面的数据标注,将数据集发布为一个版本。 系统将自动给出一个版本号,您也可以根据实际情况进行填写。 系统随机给出 训练验证比例 训练验证比例表示将已标注样本随机分为训练集和验证集的比例,默认训练集比例为0.8,即训练集占0.8,验证集占0.2。manifest中的usage字段记录划分类别。取值范围为0~1。 0.8 增量训练版本 用户可以在之前训练成功的版本中,自主选择精度最高的版本进行再训练,可以加快模型收敛速度,提高训练精度。 无 最大训练时长(分钟) 即最大训练时长,在该时长内若训练还未完成,则保存模型停止训练。为防止模型未收敛就退出,建议使用较大值。输入值取值范围为6~6000。建议适当延长训练时间。 60 训练偏好 performance_first:性能优先,训练时间较短,模型较小 balance:平衡 accuracy_first:精度优先,训练时间较长,模型较大 balance 计算规格 选择训练使用的资源规格。 以控制台提供为准。 训练参数设置完成后,单击“下一步”进入配置页,确认规格后单击“提交”进行模型的自动训练,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 如果使用免费规格,还需仔细阅读界面提示,同时勾选“我已阅读并同意以上内容”。 在“模型训练”页签中,待训练状态由“运行中”变为“已完成”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以在界面中查看训练详情,如“准确率”、“评估结果”、“训练参数”、“分类统计表”等。评估结果参数说明请参见表2。 图3 模型训练结果 表2 评估结果参数说明 参数 说明 召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“V001(xxx)”,下一个版本为“V002(xxx)”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行部署上线的操作。
  • 数据集要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,建议训练数据集保证每类图片超过100张。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。
  • 数据上传至OBS 在本文档中,采用管理控制台上传数据至OBS。 执行如下操作,将数据导入到您的数据集中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。
  • 图片标注 在“数据标注”页面单击“未标注”页签,此页面展示所有未标注的图片数据。单击任意一张图片,进入图片标注界面。 用鼠标框选图片中的物体所在区域,然后在弹出的对话框中选择标签颜色,输入标签名称,例如此示例中的“yunbao”,按“Enter”键完成此标签的添加。标注完成后,左侧图片目录中此图片的状态将显示为“已标注”。 数据标注的更多说明: 您可以在图片上方或下方单击左右切换键,或者按键盘的左右方向键,选择其他图片,重复上述操作继续进行图片标注。如果一张图片有多个物体,您可以标注多处。 同一个物体检测自动学习项目内,可以增加多个标签,且标签可选择不同颜色,方便识别。使用鼠标完成物体框选后,在弹出的对话框中,选择新的颜色,输入新的标签名称,即可添加一个新的标签。 自动学习项目中,物体检测仅支持矩形标注框。在“数据管理”功能中,物体检测类型的数据集,支持更多类型的标注框。 在标注窗口中,您可以滚动鼠标,放大或缩小图片,方便您快速定位到物体位置。 图1 物体检测图片标注 当图片目录中所有图片都完成标注后,单击左上角“自动学习”,在弹出的对话框中单击“确定”保存标注信息。页面将进入数据标注页面,可以在“已标注”页签下查看已完成标注的图片,或者通过右侧的标签信息,了解当前已完成的标签名称和标签数量。
  • 修改标注 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 基于图片修改 在数据集详情页面,单击“已标注”页签,然后在图片列表中选中待修改的图片,单击该图片跳转到标注页面,在右侧“标注”信息区域中对图片信息进行修改。 修改标签:“标注”区域中,单击编辑按钮,在文本框中输入正确的标签名,然后单击按钮完成修改。标签颜色不支持修改。 删除标签:在“标注”区域中,单击删除按钮,即可删除此图片中的标签。 标签删除后,单击页面左上角的项目名称离开标注页面。该图片会重新回到“未标注”页签。 图4 编辑物体检测标签 基于标签修改 在数据集详情页面,单击“已标注”页签,在图片列表右侧,显示全部标签的信息。单击操作列的编辑按钮,然后在弹出的对话框中输入修改后的标签名,然后单击“确定”完成修改。修改后,之前添加了此标签的图片,都将被标注为新的标签名称。 图5 物体检测的全部标签
  • 操作步骤 选择“标签列”。在“数据标注”页面中,预览数据并选择训练目标。在“标签列”下拉框中选择需要设置为标签列的名称。 标签列是预测模型的输出。此处训练目标是鸢尾花的品种(即“attr_5”),该列目标结果是“离散值”。训练目标选择完成后,单击“训练”。 图1 预测分析数据标注界面 选择“标签列数据类型”。在“数据标注”页面中,“标签列数据类型”下选择合适的数据类型。 若标签列为枚举型数据,数据类型应选择“离散值”,预测分析将训练分类模型。 若标签列为数值型连续数据,数据类型应选择“连续数值”,预测分析将训练回归模型。 分类问题(离散值)在模型训练完成后,评估结果会展现召回率(Recall)、精确率(Precision)、准确率(Accuracy)及F1值(F1 Score)。 连续值在模型训练完成后,评估结果会展现平均绝对误差(Mean Absolute Error),均方误差(Mean Squared Error),均方根误差(Root Mean Squared Error)。
  • 部署上线 部署上线操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“模型训练”页签中,待训练状态变为“运行成功”,单击版本管理区域中的“部署”,开始将模型部署上线为在线服务。 图1 部署操作 在弹出的“部署”对话框中,选择资源规格,同时设置自动停止功能,然后单击确定,启动部署。 “计算节点规格”:以控制台实际提供为准。 “计算节点个数”:默认为1,且不能修改。 “是否自动停止”:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、“6小时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 启动部署上线后,可以在“部署上线”界面查看模型部署上线的状态。 部署上线将耗费较多时间,请您耐心等待。当“部署上线”页签版本管理区域的状态由“部署中”变更为“运行中”,部署完成。 在自动学习界面中,仅支持将训练后的模型部署为在线服务,如果需要部署为“批量服务”或“边缘服务”,请参见自动学习生成的模型,存储在哪里?支持哪些其他操作?。
  • 服务测试 您可以在“部署上线”页面,选择对应的服务类型,例如自动学习图像分类项目默认将服务部署为在线服务,进入“在线服务”页面,单击目标服务“操作”列的“预测”,进行服务测试,测试方法和下方陈述操作步骤一致。具体操作请参见测试服务。 您也可以通过调用代码对服务进行测试,根据部署服务类型的不同,具体操作详情参见访问在线服务、访问边缘服务。 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可添加图片进行测试。在“自动学习”页面,选择目标项目,进入“部署上线”界面,选择状态为“运行中”的服务版本,在“服务测试”区域单击“上传”,选择本地图片进行测试。 图2 上传图片 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及部署上线。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务,操作指导请参见“访问在线服务”。 目前只支持jpg、jpeg、bmp、png格式的图片。 图3 预测结果 表1 预测结果中的参数说明 参数 说明 predict_label 表示图片预测的标签。 scores 表示Top5标签的预测置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线服务的部署,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了自动停止功能,服务将在指定时间后自动停止,不再产生费用。
  • 操作步骤 在开始训练之前,需要设置训练参数,然后再开始模型的自动训练。 在自动学习页面,单击创建成功的项目名称,进入“数据标注”页面,完成数据标注。 图1 完成数据标注 在“数据标注”页面,单击右上角“开始训练”,然后在弹出的“训练设置”对话框中,参考表1填写相关参数,然后单击“确定”,开始进行模型训练。 表1 训练设置参数说明 参数 说明 默认值 数据集版本名称 此版本即数据管理中发布数据集时设置的版本。自动学习项目中,启动训练作业时,会基于前面的数据标注,将数据集发布为一个版本。 系统将自动给出一个版本号,您也可以根据实际情况进行填写。 系统随机给出 最大训练时长(分钟) 设置最大训练时长,在该时长内若训练还未完成,则强制退出。为防止训练中退出,建议使用较大值。输入取值范围为6~6000。 60 计算规格 选择训练使用的资源规格。 以控制台实际提供为准。 训练参数设置完成后,单击“下一步”进入配置页,确认规格后单击“提交”进行模型的自动训练,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“模型训练”页签中,待训练状态由“运行中”变为“已完成”,即完成模型的自动训练。 训练完成后,您可以在界面中查看训练详情,如“准确率”、“评估结果”、“训练参数”、“分类统计表”等。 图2 训练详情 表2 评估结果参数说明 参数 说明 召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“V001(xxx)”,下一个版本为“V002(xxx)”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行部署上线的操作。
  • 修改标签 针对文本分类的自动学习项目,项目创建成功后,您可以根据业务变化,修改用于标注的标签。支持添加、修改和删除标签。 添加标签 在“已标注”页签下,单击“全部标签”右侧的加号,在弹出“新增标签”对话框中,设置“标签名称”和“标签颜色”,然后单击“确定”完成标签添加。 修改标签 在“已标注”页签中“全部标签”的下方,选择需要修改的标签,单击操作列的编辑图标,在弹出“修改标签”对话框中,修改“标签名称”或“标签颜色”,然后单击“确定”完成标签修改。 删除标签 在“已标注”页签中“全部标签”的下方,选择需要删除的标签,单击操作列的删除图标,在弹出“删除”对话框中,选择“仅删除标签”或“删除标签及仅包含此标签的标注对象”,然后单击“确定”完成标签删除。 所有的删除操作均不可恢复,请谨慎操作。 图4 修改标签
共100000条