华为云用户手册

  • SFS Turbo模式下执行流程 SFS Turbo作为完全托管的共享文件存储系统,在本方案中作为主要的存储介质应用于训练作业。因此,后续需要准备的原始数据集、原始Hugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至E CS 服务器后,可直接访问SFS Turbo。通过CloudShell远程登录ECS并将代码包上传至SFS Turbo中。 在表1获取基础镜像,随后通过准备镜像中的步骤执行代码包中llm_train/AscendSpeed/Dockerfile文件,构建新的镜像,并上传至SWR中。 新构建的镜像中,包含有ModelLink、MindSpeed、Megatron-LM等代码,在集群中启动容器即可通过/home/ma-user/AscendSpeed路径访问。 在ModelArts中创建训练作业如:预训练,执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank_0节点进行数据预处理,权重转换等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下)
  • 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统前提条件: 创建SFS Turbo文件系统前,确认已有可用的VPC。 需要由 IAM 用户设置SFS Turbo FullAccess权限,用于授权ModelArts云服务使用SFS Turbo。 详细操作指导请参考创建SFS Turbo文件系统。 图1 创建SFS Turbo 其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用 6.0~10.8TB ,以存储更多模型文件。 图2 SFS类型和容量选择
  • ModelArts网络关联SFS Turbo OBS-SFS Turbo联动方案涉及VPC、SFS Turbo HPC型文件系统、OBS 对象存储服务 和ModelArts资源池。如果要使用训练作业挂载SFS Turbo功能,则需要配置ModelArts和SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 如果ModelArts网络关联SFS Turbo失败,则需要授权ModelArts云服务使用SFS Turbo,具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图5 ModelArts网络关联SFS Turbo
  • 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。具体过程请参考创建OBS桶,例如桶名:standard-llama2-13b。 由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。
  • ECS服务器挂载SFS Turbo ECS服务器中手动挂载SFS Turbo步骤如下: 用户可通过CloudShell或SSH等方式登录并访问ECS服务器,进入ECS终端界面。创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。 图4 SFS Turbo基本信息
  • 创建ECS服务器 弹性云服务器(Elastic Cloud Server,ECS)是由CPU、内存、操作系统、云硬盘组成的一种可随时获取、弹性可扩展的云服务器。具体过程请参考ECS文档购买一个Linux弹性云服务器。创建完成后,单击“远程登录”,可直接访问ECS服务器。 注意:CPU架构必须选择鲲鹏计算;镜像推荐选择EulerOS;ECS服务器确保可以访问公网,用于获取镜像和构建镜像。 图3 购买ECS
  • 步骤二 获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 containerd 容器引擎有命名空间的概念。Kubernetes 下使用的 containerd 默认命名空间是 k8s.io。所以在导入镜像时需要指定命令空间为 k8s.io,否则使用 crictl images 无法查询到。以下命令可选其一进行镜像拉取: 使用 containerd 自带的工具 ctr 进行镜像拉取。 ctr -n k8s.io pull {image_url} 使用nerdctl工具拉取镜像。 nerdctl --namespace k8s.io pull {image_url} 集群有多个节点,要确保每个节点都拥有镜像。 镜像获取完成后可通过如下其中一个命令进行查看: # ctr 工具查看 ctr -n k8s.io image list # 或 crictl image # nerdctl 工具查看 nerdctl --namespace k8s.io image list
  • 步骤六 编写Config.yaml文件 k8s有两种方式来管理对象: 命令式,即通过Kubectl指令直接操作对象。 声明式,通过定义资源YAML格式的文件来操作对象。 首先给出单个节点训练的config.yaml文件模板,用于配置pod。而在训练中,需要按照参数说明修改${}中的参数值。该模板使用SFS Turbo挂载方案。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: # data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vcjob # job名字,需要和configmap中名字保持联系 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 schedulerName: volcano # 保持不动 policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 5 queue: default tasks: - name: main replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure 双个节点训练的config.yaml文件模板,用于实现双机分布式训练。 apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-vcjob # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: #data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: vcjob # job名字,需要和configmap中名字保持联系 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 schedulerName: volcano # 保持不动 policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 5 queue: default tasks: - name: main replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure - name: work replicas: 1 template: metadata: name: training labels: app: ascendspeed ring-controller.cce: ascend-1980 # 保持不动 spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - vcjob topologyKey: kubernetes.io/hostname hostNetwork: true # 采用宿主机网络模式 containers: - image: ${image_name} # 镜像地址 imagePullPolicy: IfNotPresent # IfNotPresent:默认值,镜像在宿主机上不存在时才拉取;Always:每次创建Pod都会重新拉取一次镜像;Never:Pod永远不会主动拉取这个镜像 name: ${container_name} securityContext: # 容器内 root 权限 allowPrivilegeEscalation: false runAsUser: 0 env: - name: name valueFrom: fieldRef: fieldPath: metadata.name - name: ip valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "PyTorch" command: ["/bin/sh", "-c"] args: - ${command} resources: requests: huawei.com/ascend-1980: "8" # 需求卡数,key保持不变. memory: ${requests_memory} # 容器请求的最小内存 cpu: ${requests_cpu} # 容器请求的最小 CPU limits: huawei.com/ascend-1980: "8" # 限制卡数,key保持不变。 memory: ${limits_memory} # 容器可使用的最大内存 cpu: ${limits_cpu} # 容器可使用的最大 CPU volumeMounts: # 容器内部映射路径 - name: shared-memory-volume mountPath: /dev/shm - name: ascend-driver # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons # 驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn # 驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi # npu-smi mountPath: /usr/local/sbin/npu-smi - name: ascend-install mountPath: /etc/ascend_install.info - name: log mountPath: /var/log/npu/ - name: sfs-volume mountPath: /mnt/sfs_turbo nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: # 物理机外部路径 - name: shared-memory-volume # 共享内存 emptyDir: medium: Memory sizeLimit: "200Gi" - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: ascend-install hostPath: path: /etc/ascend_install.info - name: log hostPath: path: /usr/slog - name: sfs-volume persistentVolumeClaim: claimName: ${pvc_name} #已创建的PVC名称 restartPolicy: OnFailure 参数说明: ${container_name} 容器名称,此处可以自己定义一个容器名称,例如ascendspeed。 ${image_name} 为步骤五 修改并上传镜像中,上传至SWR上的镜像链接。 ${command} 使用config.yaml文件创建pod后,在容器内自动运行的命令。在进行训练任务中会给出替换命令。 /mnt/sfs_turbo 为宿主机中默认挂载SFS Turbo的工作目录,目录下存放着训练所需代码、数据等文件。 同样,/mnt/sfs_turbo 也可以映射至容器中,作为容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。为方便访问两个地址可以相同。 ${pvc_name} 为在CCE集群关联SFS Turbo步骤中创建的PVC名称。 在设置容器中需要的CPU与内存大小时,可通过运行以下命令查看申请的节点机器中具体的CPU与内存信息。 kubectl describe node ${requests_cpu} 指在容器中请求的最小CPU核心数量,可使用Requests中的值,例如2650m。 ${requests_memory} 指在容器中请求的最小内存空间大小,可使用Requests中的值,例如3200Mi。 ${limits_cpu} 指在容器中可使用的最大CPU核心数量,例如192。 ${limits_memory} 指在容器中可使用的最大内存空间大小,例如换算成1500Gi。
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0
  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。 以llama2-13b为例,NPU卡显存为32GB时,至少需要2张卡运行推理业务,2张卡运行的情况下,推荐的最大序列max-model-len长度最大是16K,此处的单位K是1024,即16*1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存 64GB显存 最小卡数 最大序列(K) max-model-len 最小卡数 最大序列(K) max-model-len 1 llama-7b 1 16 1 32 2 llama-13b 2 16 1 16 3 llama-65b 8 16 4 16 4 llama2-7b 1 16 1 32 5 llama2-13b 2 16 1 16 6 llama2-70b 8 32 4 64 7 llama3-8b 1 32 1 128 8 llama3.1-8b 1 32 1 128 9 llama3-70b 8 32 4 64 10 llama3.1-70b 8 32 4 64 11 llama3.2-1b 1 128 1 128 12 llama3.2-3b 1 128 1 128 13 qwen-7b 1 8 1 32 14 qwen-14b 2 16 1 16 15 qwen-72b 8 8 4 16 16 qwen1.5-0.5b 1 128 1 256 17 qwen1.5-7b 1 8 1 32 18 qwen1.5-1.8b 1 64 1 128 19 qwen1.5-14b 2 16 1 16 20 qwen1.5-32b 4 32 2 64 21 qwen1.5-72b 8 8 4 16 22 qwen1.5-110b - - 8 128 23 qwen2-0.5b 1 128 1 256 24 qwen2-1.5b 1 64 1 128 25 qwen2-7b 1 8 1 32 26 qwen2-72b 8 32 4 64 27 qwen2.5-0.5b 1 32 1 32 28 qwen2.5-1.5b 1 32 1 32 29 qwen2.5-3b 1 32 1 32 30 qwen2.5-7b 1 32 1 32 31 qwen2.5-14b 2 32 1 32 32 qwen2.5-32b 4 32 2 64 33 qwen2.5-72b 8 32 4 32 34 chatglm2-6b 1 64 1 128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64 41 yi-34b 4 32 2 64 42 deepseek-llm-7b 1 16 1 32 43 deepseek-coder-33b-instruct 4 32 2 64 44 deepseek-llm-67b 8 32 4 64 45 mistral-7b 1 32 1 128 46 mixtral-8x7b 4 8 2 32 47 gemma-2b 1 64 1 128 48 gemma-7b 1 8 1 32 49 falcon-11b 1 8 1 64 50 llava-1.5-7b 1 16 1 32 51 llava-1.5-13b 1 8 1 16 52 llava-v1.6-7b 1 16 1 32 53 llava-v1.6-13b 1 8 1 16 54 llava-v1.6-34b 4 32 2 64 55 internvl2-8b 1 16` 1 32 56 internvl2-26b 2 8 1 8 57 internvl2-40b - - 2 32 58 internVL2-Llama3-76B - - 4 8 59 MiniCPM-v2.6 - - 1 8 60 llama-3.1-405B-AWQ - - 8 32 61 qwen2-57b-a14b - - 2 16 62 deepseek-v2-lite-16b 2 4 1 4 63 deepseek-v2-236b - - 8 4 64 qwen2-vl-2B 1 8 1 8 65 qwen2-vl-7B 1 8 1 32 66 qwen2-vl-72B - - 4 32 67 qwen-vl 1 64 1 64 68 qwen-vl-chat 1 64 1 64 69 MiniCPM-v2 2 16 1 16 “-”表示不支持。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
  • benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 执行性能测试脚本前,需先安装相关依赖。 conda activate python-3.9.10 pip install -r requirements.txt
  • 动态benchmark 获取测试数据集。 动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 使用generate_dataset.py脚本生成数据集方法: generate_datasets.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools python benchmark_serving.py --backend openai --host 127.0.0.1 --port 8080 --dataset custom_dataset.json --dataset-type custom --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv 生产环境中进行测试: python benchmark_serving.py --backend openai --url xxx --app-code xxx --dataset custom_dataset.json --dataset-type custom --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图3 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是huggingface的权重路径。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm.sh中的${model_path}。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --num-scheduler-steps: 服务启动时如果配置了--num-scheduler-steps和--multi-step-stream-outputs=false,则需配置此参数与服务启动时--num-scheduler-steps一致。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图4 动态benchmark测试结果(示意图)
  • 约束限制 创建在线服务时,每秒服务流量限制默认为100次,如果静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。 同步请求时,平台每次请求预测的时间不能超过60秒。例如输出数据比较大的调用请求(例如输出大于1k),请求预测会超过60秒导致调用失败,可提交工单设置请求超时时间。
  • 静态benchmark 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools python benchmark_parallel.py --backend openai --host 127.0.0.1 --port 8080 \ --tokenizer /path/to/tokenizer --epochs 10 --parallel-num 1 2 4 8 --output-tokens 256 256 --prompt-tokens 1024 2048 --benchmark-csv benchmark_parallel.csv 生产环境中进行测试: python benchmark_parallel.py --backend openai --url xxx --app-code xxx \ --tokenizer /path/to/tokenizer --epochs 10 --parallel-num 1 2 4 8 --output-tokens 256 256 --prompt-tokens 1024 2048 --benchmark-csv benchmark_parallel.csv 参数说明: --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingFace的权重路径。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为服务启动脚本run_vllm.sh中的${model_path}。 --epochs:测试轮数,默认取值为5。 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --num-scheduler-steps: 服务启动时如果配置了--num-scheduler-steps和--multi-step-stream-outputs=false,则需配置此参数与服务启动时--num-scheduler-steps一致。 --enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 --prefix-caching-num:构造的prompt的公共前缀的序列长度,prefix-caching-num值需小于prompt-tokens。 --use-spec-decode:是否使用投机推理进行输出统计,不输入默认为false。当使用投机推理时必须开启,否则会导致输出token数量统计不正确。注:由于投机推理的性能测试使用随机输入意义不大,建议开启--dataset-type、--dataset-path,并选择性开启--use-real-dataset-output-tokens使用真实数据集进行测试。 --dataset-type:当使用投机推理时开启,benchmark使用的数据类型,当前支持random、sharegpt、human-eval三种输入。random表示构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅当--dataset-type为sharegpt或者human-eval的时候生效。 --use-real-dataset-output-tokens:当使用投机推理时开启,设置输出长度是否使用数据集的真实长度,不输入默认为false。当使用该选项时,测试数据的输出长度为数据集的真实长度,--output-tokens的值会被忽略。 --num-speculative-tokens:仅当开启--use-spec-decode时生效,需和服务启动时配置的--num-speculative-tokens一致。默认为-1。当该值大于等于0时,会基于该值计算投机推理的接受率指标。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图2 静态benchmark测试结果(示意图)
  • 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/alpaca_gpt4_data.json 必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/ws/tokenizers/llama2-13B 该参数为tokenizer文件的存放地址。默认与ORIGINAL_HF_WEIGHT路径相同。如果用户需要将Hugging Face权重与tokenizer文件分开存放时,则需要修改参数。 INPUT_PRO CES SED_DIR /home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b 该路径下保存“数据转换”和“权重转换”的结果。示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、P LOG 、LOG 文件。示例中,默认统一保存在“saved_dir_for_output”文件夹下。如果用户需要修改,可添加并自定义该变量。 CKPT_SAVE_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/saved_models/llama2-13b 保存训练生成的模型 CKPT 文件。示例中,默认保存在“saved_dir_for_output/saved_models”文件夹下。如果用户需要修改,可添加并自定义该变量。 LOG_SAVE_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/saved_models/llama2-13b/log 保存训练过程记录的日志 LOG 文件。示例中,默认保存在“saved_models/llama2-13b/log”文件夹下。如果用户需要修改,可添加并自定义该变量。 ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。示例中,默认保存在“saved_dir_for_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
  • 使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像
  • 步骤五 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /etc/ascend_install.info:/etc/ascend_install.info \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。
  • 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx.zip到主机中,包获取路径请参见表2。 将权重文件上传到DevServer机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下。 df -h
  • 步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx.zip,并执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 unzip AscendCloud-*.zip -d ./AscendCloud && cd ./AscendCloud && unzip AscendCloud-OPP-*.zip && unzip AscendCloud-OPP-*-torch-2.1.0*.zip -d ./AscendCloud-OPP && cd .. && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./AscendCloud/AscendCloud-LLM && cd ./AscendCloud/AscendCloud-LLM/llm_inference/ascend_vllm/ && sh build_image.sh --base-image=${base_image} --image-name=${image_name} 参数说明: ${base_image}为基础镜像地址。 ${image_name}为推理镜像名称,可自行指定。 运行完后,会生成推理所需镜像。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本./AscendCloud/AscendCloud-LLM/llm_inference/ascend_vllm/Dockfile中。内容如下: git clone https://gitee.com/ascend/vision.git vision_npu cd vision_npu git checkout v0.16.0-6.0.rc3 # 安装依赖库 pip3 install -r requirement.txt # 编包 python setup.py bdist_wheel # 安装 cd dist pip install torchvision_npu-0.16.*.whl
  • 步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数,用来确认对应卡数已经挂载 npu-smi info -t board -i 1 | egrep -i "software|firmware" #查看驱动和固件版本 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError: Error(s) in loading state_dict for VocabParallelEmbedding: size mismatch for weight: copying a param with shape torch.Size([64000, 4096]) from checkpoint, the shape in current model is torch.Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件
  • ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的tokenizer文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
  • 准备权重 获取对应模型的权重文件,获取链接参考支持的模型列表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。 ├── config.json ├── generation_config.json ├── gitattributes.txt ├── LICENSE.txt ├── Notice.txt ├── pytorch_model-00001-of-00003.bin ├── pytorch_model-00002-of-00003.bin ├── pytorch_model-00003-of-00003.bin ├── pytorch_model.bin.index.json ├── README.md ├── special_tokens_map.json ├── tokenizer_config.json ├── tokenizer.json ├── tokenizer.model └── USE_POLICY.md └── ... 父主题: 准备工作
  • 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train #解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能代码包 |──scripts/ # 各模型训练需要的启动脚本,训练脚本以分类的方式集中在scripts文件夹中。 # 自动生成数据目录结构 |── processed_for_input #目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |── lora # lora微调输出权重 |── sft # 增量训练输出权重 |── pretrain # 预训练输出权重 |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data #原始数据目录,需要用户手动创建,后续操作步骤中会提示 |── train-00000-of-00001-a09b74b3ef9c3b56.parquet #原始数据文件 |── alpaca_gpt4_data.json #微调数据文件
  • 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录Server。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.911中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹 |──qwen1.5 # Qwen1.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.911-xxx.zip软件包中的AscendCloud-AIGC-6.3.911-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一: swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b 从SWR拉取。
  • 步骤三:启动容器镜像 启动容器镜像。启动前请先按照参数说明修改${}中的参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称或ID" // 启动一个容器去运行镜像 docker run -itd --net=bridge \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ --shm-size=32g \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_name} \ /bin/bash 参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 ${image_name}:容器镜像的名称。 --device=/dev/davinci0 :挂载对应卡到容器,当需要挂载多卡,请依次添加多项该配置 通过容器名称进入容器中。默认使用ma-user用户,后续所有操作步骤都在ma-user用户下执行。 docker exec -it ${container_name} bash
  • 步骤一:准备环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
共100000条