华为云用户手册
-
限速标志牌前限速(Speed Limit Sign)检测 限速标志牌前限速检测的目的是判断主车在行驶过程中遇到限速标志牌时, 速度是否符合要求。 限速标志牌分为最高限速和最低限速两种。 最高限速是指主车速度不能高于对应的限速数值, 并且不能低于最高限速的75%。 最低限速是指主车速度不能低于对应的限速数值。 当主车距离限速标志牌在道路方向的距离小于某一阈值(本设计取车辆最前端超过限速标志), 并且主车所在车道是限速标志牌的有效范围, 当主车速度高于最高限速标志数值或低于最低限速标志数值时, 限速标志牌限速检测不通过。 该指标关联的内置可视化时间序列数据为:暂无。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
绿灯通行(Drive Through Green Light)检测 绿灯通行检测的目的是判断主车在接近十字路口后, 如果是绿灯, 主车是否直接通行而没有停止。 另外,当交通灯由红灯变为绿灯后, 主车重新启动的时间是否太大。 本设计认为在绿灯状态下, 如果前方没有行人和引导车的情况下, 主车在停止线前20m范围内发生停车行为, 则绿灯前直接通行不通过。 当交通灯由红灯变为绿灯后, 如果主车重新启动的时间大于一定阈值(本设计取3s), 则绿灯后重新启动时间太大。 该指标关联的内置可视化时间序列数据为:暂无。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
压实线(Onto Solid line)检测 压实线检测的目的是判断主车行驶过程中是否压到实线。 当主车与距离最近的车道线的小于主车宽度的一半时,并且该车道线的类型为OSI定义的osi3.LaneBoundary.classification.type.TYPESOLI DLI NE,则认为主车的轮胎已经压到实线。 该指标关联的内置可视化时间序列数据为:暂无。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
车头时距(Time Headway)检测 车头时距检测的目的是判断主车行驶过程中与其他交通车的车头时距是否台小。 车头时距是主车与引导车的相对距离除以主车的速度。 即使主车未发生碰撞, 当车头时距过小时(该阈值可用户自定义,本设计默认取2s), 发生碰撞的风险太大, 这样也是不合理的。 车头时距和碰撞时间两者都是描述碰撞风险大小的。 车头时距适合判断主车和引导车速度都很高, 但相对速度比较小的情况。 碰撞时间适合主车和引导车相对速度比较大的情况。 该指标关联的内置可视化时间序列数据为:暂无。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
碰撞时间(Time to Collision)检测 碰撞时间检测的目的是判断主车在行驶中与其他交通车的碰撞时间是否过小。 碰撞时间是指主车与引导车的相对距离除以主车与引导车的相对速度。 即使主车未发生碰撞,当碰撞时间过小时,发生碰撞的风险太大,这样也是不合理的。 当碰撞时间小于某一阈值(该阈值可用户自定义,本设计默认取1.5s),则判定碰撞时间检测不通过。 该指标关联的内置可视化时间序列数据为:暂无。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
车道保持(Lane Keeping)检测 车道保持检测的目的是判断主车在行驶过程中能否很好地沿车道中心线行驶。 车道保持检测分为两个指标: 偏移车道中心线距离检测 偏移车道中心线横摆角检测 偏移车道中心线距离检测是指主车的质心相对于车道中心线的垂直距离,当该偏移距离大于某一阈值时(本设计取0.3m,该阈值可以用户自定义),则偏移车道中心线距离检测不通过。 偏移车道中心线横摆角检测是指主车行驶时速度方向与车道中心线的夹角,当该夹角大于某一阈值时(本设计取0.05rad,该阈值可以用户自定义),则偏移车道中心线横摆角检测不通过。 车道保持检测需要排除主车进行了换道操作,对于换道期间进行偏移车道中心线距离检测和偏移车道中心线横摆角检测,将会出现假阳性的结果。 当主车所在的road id保持不变,在某一时刻,其lane id发生变化,在该时刻的前后一定时间内(本设计取2s)发生换道。 车头横摆角偏离检测关联的内置可视化时间序列数据为:relativeYaw。横向偏移距离检测关联的内置可视化时间序列数据为:lateralOffset。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
蛇行(Snake Driving)检测 自动驾驶车辆在行驶过程中,当车道的曲率发生较大变化时,可能会出现横向控制效果不佳导致的长时间车辆横向振荡。 蛇行检测的目的是判断车辆是否出现横向振荡,利用车辆的横向加速度的正负变化来判断蛇行是否发生。 正值大于和负值小于的比例都大于该时间段的10%时,则判断此时间段发生蛇行。 在及少数的连续S型弯道情况下,可能会出现假阳性结果,这会在评测报告中进行体现。 该指标关联的内置可视化时间序列数据为:accY。 该指标的异常时间点记录类型为:POINT_TYPE_REGION。 父主题: 内置评测指标说明
-
平顺性(Ride Comfort)检测 平顺性检测通常指汽车的垂向平顺性。平顺性用加速度均方根值来衡量。 加速度均方根值计算公式如下所示。 表示变量的均方根值,表示第个值,表示值的个数。 汽车的垂向平顺性是由悬架系统决定的,自动驾驶算法对垂向平顺性几乎没有影响,其影响的是车辆的纵向和侧向平顺性。 因此,本设计平顺性检测从纵向平顺性和侧向平顺性进行考量。 平顺性检测考虑的是整个仿真时间段的加速度均方根值。当纵向或侧向加速度均方根值大于,则认为对应的纵向/侧向平顺性检测不通过。 纵向平顺性关联的内置可视化时间序列数据为:accX。横向平顺性关联的内置可视化时间序列数据为:accY。 该指标的异常时间点记录类型为:POINT_TYPE_ALL。 父主题: 内置评测指标说明
-
平稳起步(Gentle Start)检测 汽车起步时加速度太大会给人带来不舒适的感受。平稳起步检测的目的是判断自动驾驶车辆起步过程中加速度是否过大。 起步过程的判定是指车辆当前速度为0,并在0.5s后速度大于,这个0.5s内的时间段为起步过程。 起步过程中如果加速度大于一定阈值(本设计取),则判定起步加速度过大,起步不平稳。 该指标关联的内置可视化时间序列数据为:speedX,accX。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
急刹(Emergency Braking)检测 自动驾驶车辆急刹有两个典型阈值:ACC(Adaptive Cruise Control)的最大减速度,和AEB(Autonomous Emergency Braking)的最大减速度。 急刹检测的目的是判断主车在行驶过程中是否达到ACC和AEB的最大减速度。 ACC的最大减速度通常为。 AEB的最大减速度通常为。 该两项子指标关联的内置可视化时间序列数据均为:accX。 该指标的异常时间点记录类型为:POINT_TYPE_POINT。 父主题: 内置评测指标说明
-
加载场景 Octopus平台支持用户在仿真器中加载场景库中的场景,在线编辑、运行并回放。 单击进入在线仿真页面,单击页面右上方的“加载场景”。 选择加载场景方式。 选择需要加载的场景、泛化场景或测试用例。 图2 加载场景 如果场景数量多,用户也可根据场景的标签进行过滤,并选择需要加载的场景。 图3 标签筛选 在搜索框中输入搜索内容,单击搜索,并在筛选出的场景、测试用例或泛化场景列表中勾选中需要加载的场景。 多项搜索:可根据需要决定是否启用多项搜索,输入多个关键字,中间用“;”隔开,可搜索多个关键字。 单击“确认”,仿真场景加载成功。 查看加载场景过程文件。 使用仿真器在线加载场景后,会在“/home/{user}/workspace/Data/Project/Current/Scenarios/”目录下出现加载过的场景文件,打开指定日期的场景文件夹。 图4 场景文件 单击打开该场景文件夹下的“.xml”文件,即可查看下载下来的“osgb”以及“xodr”文件所在路径。 图5 文件所在路径
-
仿真服务简介 Octopus仿真服务支持多种功能操作。包括用户在云上以类似操作远程桌面方式操作图形化界面的仿真软件的在线仿真服务,基于OpenSCENARIO等标准格式的仿真场景管理。泛化大量仿真场景,规控算法工程管理,多场景并行高速运行的批量仿真服务。用户可通过仿真服务完成在线仿真、仿真场景,创建仿真评测任务等。仿真服务开发流程如下。 图1 仿真服务开发流程 仿真服务操作引导如下: 在线仿真:提供类似本地开发的体验,支持客户直接使用线上仿真器开发,并无痛对接云端的场景管理:包含加载、绘制、保存等操作。 算法管理:用于对接客户的上云算法,并支持算法的版本级管理,并可自动化触发关联的批量算法。 评测管理:支持内置评测配置和自定义评测镜像,对仿真任务中的算法展开评测。 场景管理:包含场景、场景库、逻辑场景、逻辑场景库、测试用例、测试套件等。支持页面上传、泛化、在线仿真编辑等场景录入方式,支持地图、场景的在线预览,并支持场景标签等功能。 任务管理:选择仿真算法和仿真场景创建仿真任务,从行车安全、驾驶行为、乘员舒适性等角度衡量仿真算法控制效果,支持可视化仿真结果。 父主题: 仿真服务
-
绘制对象 单击点云标注任务,单击任意一帧,进入人工标注。 选择标注工具。 单击左侧工具栏“AI标注”(快捷键b)。 图1 选择标注工具 选择标注类别。 标注下拉列表页选择一标注名,进入标注状态。 图2 选择标注类别 框选标注物。 图3 框选标注物 调整三视图。 依据标注规范要求,结合下方真实图片中对应标注物大小,调整点云图像中标注物三视图中标注框。 图4 调整三视图 调整2D框(只适用于联合标注)。 单击2D图片。 开启联合按钮。 图5 开启联合 针对点云框对应的2D框进行调整大小。 图6 调整2D框 修改标注类别。 右键单击目标图形,可进入选择类别的跳出框,即可修改类别。 图7 修改标注类别 修改额外属性。 右键单击目标图形,如果目标含有额外属性,单击即可选择属性。 修改对象ID。 右键单击目标图形,可以在对象ID栏手动输入数值来修改ID。 重复以上标注步骤,直至全部标注完成,切换下一张。 打开追踪双屏显示。 图8 打开追踪双屏显示 使用追踪快捷键F。 图9 追踪快捷键 调整点云框三视图,使其能完整包裹点云。 右击目标图形,修改对象ID,保证同一辆车在前后帧ID一致。
-
Octopus 目录 标注文件目录结构 +--- 1628568066600 | +--- 1628568066600.jpg | +--- 1628568066600.json +--- 1628654064999 | +--- 1628654064999.jpg | +--- 1628654064999.json 推理文件目录结构 +--- 1628568066600 | +--- 1628568066600.json +--- 1628654064999 | +--- 1628654064999.json 示例标注/推理文件 分类-Octopus.json { "label_meta_name": "Car", # 推理文件包含得分 "score": 0.85 }
-
作业输入输出规范 运行resim容器时,Octopus平台向容器中注入以下环境变量: rosbag_path: 作为输入的rosbag存放路径,例如/tmp/data/20220620.bag output_dir: resim作业的运行结果输出的目录,例如/tmp/output tmp_dir: 供resim作业存放临时文件的目录,例如/tmp/workspace 用户的resim作业需要输出的文件类似如下结构: |--- /tmp/output 环境变量output_dir指定的输出目录 |--- opendata_to_platform.yaml 输出描述文件,详情见下文 |--- _SUC CES S 作业完成后输出的标识文件,内容可为空 |--- planning 以下各文件夹为resim算法输出内容,按照topic分隔,命名可自定义,与opendata_to_platform.yaml内一致即可,尽量用常见字符 |--- planning.pb |--- perception |--- perception.pb |--- prediction |--- prediction.pb |--- … opendata_to_platform.yaml内容描述输出的文件夹内的输出内容分别对应哪种数据类型,内容示例如下: folders: - folder: planning # 与实际输出的目录名一致 sensor_type: planning_trajectory # 路径规划类型 - folder: perception # 与实际输出的目录名一致 sensor_type: object_array_vision # 感知类型 - folder: prediction # 与实际输出的目录名一致 sensor_type: predicted_objects # 感知物预测类型 当前resim作业支持的输出类型为planning_trajectory 、object_array_vision 、predicted_objects 3种,Proto格式定义分别如下: 父主题: Resim作业(回放仿真)
-
查看和下载任务日志 标注任务运行的过程中生成任务日志,平台提供了日志的查看以及下载功能。单击任务名称,在该任务的详情页面,单击"日志",可查看该任务日志列表及日志详情。支持下载至本地。如果日志较多,可在搜索框中输入关键字,查找指定日志内容。搜索内容为当前已加载内容 ,最多为1M(首次加载时)。如图,在日志服务页面中的日志列表部分详细展示了该任务包含的日志文件的大小以及最近写入时间。单击文件后的"查看",该文件的详细执行过程则在日志详情部分展示。也可在日志文件后的"操作"栏,单击"下载",即可将该日志文件下载到本地查看。 图1 任务日志
-
与数据包同名的yaml配置文件说明 数据包中必须含有与数据包同名的yaml配置文件主要包括车辆名称、传感器信息和标定ID等信息,详情参考如下: # 华为八爪鱼自动驾驶云服务数据采集说明 project: '项目名称' module: '感知' cardrive: collect_time: 2020-11-01T08:00:00+08:00 #数据包采集日期,精确到小时即可 station: '腾飞' #选填 数据采集地点名称,站点名称 car: vehicle_name: 'test' #车辆名称,仅支持在八爪鱼平台创建的车辆 route: 'shuttlebus_30km' #选填 车辆行驶路线 speed:10km/h #选填 车速 mode: 'auto' #选填 路线驾驶意图, auto代表自动驾驶, manual代表人工驾驶采集 tags: ['主车直行','主车倒车'] #选填 标签,标签个数不超过50个 例:沙尘天,正向设计,驾驶模式 description: '强风沙天,车辆空载在排土区自动驾驶到接土区前等待长坡道' #选填 车载情况 segments: #选填 数据包场景片段 - tags: ['晴天','直行'] time: 2021-08-27T11:43:07~2021-08-27T11:43:47 data_type: Rosbag #必填 数据类型 map_id: MAP1134 #选填,高精地图ID,字符串类型,配备后才可在回放数据界面展示高精地图信息。 preprocessor: #转OpenData算子信息 id: 10105 # 算子id resource_spec: X86_4Core_8GiB # 资源规格
-
标注模板相关操作 在标注模板列表,还可以进行以下操作。 表1 标注模板相关操作 任务 操作步骤 编辑标注模板 单击操作栏内的“编辑”,即可修改标注模板信息。 删除标注模板 选择单个标注模板,单击操作栏的“删除”,删除单个标注模板。 勾选多个标注模板,单击列表上方的“删除”,可批量删除标注模板。 查询标注模板 在搜索框内输入搜索条件,可进行模糊查找。 查看标注模板详情 单击标注模板名称,即可查看该模板包含的标注物列表。
-
Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054.jpg | +--- 1599625740054.json 推理文件目录结构 +--- 1599625710056 | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054.json 示例标注/推理文件 2D语义分割-Octopus.json { "image_meta_info": { "size": { "height": 1024, "width": 2048 } }, "labels": [ { "shape_type": "polygon", "label_meta_name": "road", "serial_number": 1, "label_meta_id": 0, "polygon": {"size": 3, "points": [{"xpoint": 1706, "ypoint": 1023}, {"xpoint": 1709, "ypoint": 1023}, {"xpoint": 1709, "ypoint": 1020}]} }, { "shape_type": "polygon", "label_meta_name": "bicycle", "serial_number": 25, "label_meta_id": 18, "polygon": {"size": 20, "points": [{"xpoint": 1006, "ypoint": 476}, {"xpoint": 1002, "ypoint": 476}, {"xpoint": 997, "ypoint": 479}, {"xpoint": 994, "ypoint": 483}, {"xpoint": 994, "ypoint": 491}, {"xpoint": 990, "ypoint": 497}, {"xpoint": 989, "ypoint": 500}, {"xpoint": 988, "ypoint": 502}, {"xpoint": 979, "ypoint": 503}, {"xpoint": 971, "ypoint": 507}, {"xpoint": 971, "ypoint": 524}, {"xpoint": 979, "ypoint": 533}, {"xpoint": 992, "ypoint": 534}, {"xpoint": 1004, "ypoint": 530}, {"xpoint": 1009, "ypoint": 525}, {"xpoint": 1009, "ypoint": 514}, {"xpoint": 1007, "ypoint": 497}, {"xpoint": 1007, "ypoint": 490}, {"xpoint": 1011, "ypoint": 483}, {"xpoint": 1008, "ypoint": 478}]} } ] }
-
Palette 目录 标注文件目录结构 +--- images | +--- 000000.png | +--- 000001.png | +--- 000002.png +--- labels | +--- 000000.png | +--- 000001.png | +--- 000002.png 推理文件目录结构 +--- 000000.png +--- 000001.png +--- 000002.png 示例标注/推理文件 2D语义分割-palette.png
-
Octopus 目录 标注文件目录结构 +--- 1611801018801 | +--- 1611801018801.json | +--- 1611801018801.pcd +--- 1611801024401 | +--- 1611801024401.json | +--- 1611801024401.pcd 推理文件目录结构 +--- 1611801018801 | +--- 1611801018801.json +--- 1611801024401 | +--- 1611801024401.json 示例标注文件 3D目标追踪-Octopus标注.json { "frame_id": 0, "labels": [ { "cube_3d": { "location": { "z": -0.010374438202406334, "y": 54.14756705529089, "x": 3.386641177177716 }, "serial_number": 0, "dimensions": { "height": 2.6135754585266113, "width": 2.7737574577331543, "length": 5.917389392852783 }, "rotation": {"x": 0, "y": 0, "z": 4.729842272904634} }, "serial_number": 0, "shape_type": "cube_3d", "label_meta_name": "厢式货车", "label_meta_id": 598 }, { "cube_3d": { "location": { "z": 1.1376991421138332, "y": 40.2855870175903, "x": -3.224063568250358 }, "serial_number": 1, "dimensions": { "height": 2.3640241622924805, "width": 1.4068853855133057, "length": 11.719782829284668 }, "rotation": {"x": 0, "y": 0, "z": 4.71238898038469} }, "serial_number": 0, "shape_type": "cube_3d", "label_meta_name": "大型车", "label_meta_id": 493 } ] } 示例推理文件 3D目标检测-Octopus推理.json { "frame_id": 0, "labels": [ { "label_meta_name": "厢式货车", "cube_3d": { "serial_number": 1, "location": { "x": 3.38, "y": 54.14, "z": -0.010 }, "dimensions": { "length": 5.91, "width": 2.77, "height": 2.61 }, "rotation": { "x": 0, "y": 0, "z": 4.72 } }, "score": 0.89 }, { "label_meta_name": "厢式货车", "cube_3d": { "serial_number": 1, "location": { "z": 0.07, "y": -12.98, "x": 3.84 }, "dimensions": { "height": 3.23, "width": 2.64, "length": 6.50 }, "rotation": { "x": 0, "y": 0, "z": 4.71 } }, "score": 0.82 } ] }
-
作业输入输出规范 用户完成自定义场景挖掘镜像上传后,在运行作业容器时,Octopus平台会向作业容器中注入以下环境变量: rosbag_path: 作为数据源的rosbag存放路径,例如/tmp/data/20220620.bag output_dir: 场景挖掘作业运行结果输出目录,例如/tmp/output 用户的作业容器的作用是解析Rosbag,并将场景挖掘结果以csv格式输出到output_dir指定的目录,并以“segments.csv”作为文件名,文件完整路径示例:/tmp/output/segments.csv。csv文件内容示例如下: Csv文件表头固定为“tag_name,start,end”,指定该表的四列数据分别为“标签名”、“开始时间戳”、“结束时间戳”。 tag_name:标签名对应Octopus平台标签管理模块内的标签,没有预先创建的标签会自动创建。 start,end:开始和结束时间戳指定该打标片段的时间范围。 folder:目录名指示OpenData数据包内的特定数据目录,对应为某个传感器。如果需要在相同时间片段上对多个传感器打标,需要为每个传感器输出一行打标信息。 输出结果完成后,作业容器需要在output目录创建一个名为“_SUCCESS”的标识文件,用于通知系统作业已完成。如果作业主动捕获到异常并失败退出,可在output目录创建一个名为“_FAILURE”的标识文件,用于通知系统作业已失败。 运行完成并上传的挖掘结果可以在“数据场景”模块进行检索、查看。选中一个场景片段后可以通过“回放”按键跳转到数据包的对应时间点进行回放,长度在10秒到99秒之间的场景片段可以生成仿真场景。选中片段后的预览样本图根据挖掘片段所对应的传感器类型选择相应的传感器样本来进行展示。 父主题: 场景挖掘作业(数据标记)
-
KITTI 目录 标注文件目录结构 +--- label_2 | +--- 000000.txt | +--- 000001.txt | +--- 000002.txt +--- velodyne | +--- 000000.bin | +--- 000001.bin | +--- 000002.bin 推理文件目录结构 +--- 000000.txt +--- 000001.txt +--- 000002.txt 示例标注/推理文件 3D目标检测-KITTI.txt 厢式货车 0.00 0 -1.57 0. 0. 0. 0. 2.61 2.77 5.92 3.39 54.15 -0.01 -1.55 0. 大型车 0.00 0 -1.57 0. 0. 0. 0. 2.36 1.41 11.72 -3.22 40.29 1.14 -1.57 0. 大型车 0.00 0 -1.57 0. 0. 0. 0. 1.138 2.723 10.583 -0.636 40.702 0.747 -1.57 0. 小型车 0.00 0 -1.57 0. 0. 0. 0. 1.32 1.14 3.78 2.43 37.73 -1.08 -1.57 0. 厢式货车 0.00 0 -1.57 0. 0. 0. 0. 1.61 0.75 5.70 -3.11 28.20 0.63 -1.59 0. 小型车 0.00 0 -1.57 0. 0. 0. 0. 1.75 1.96 3.75 -7.57 12.66 -0.67 -1.54 0.
-
Octopus 目录 标注文件目录结构 +--- 1611801018801 | +--- 1611801018801.json | +--- 1611801018801.pcd +--- 1611801024401 | +--- 1611801024401.json | +--- 1611801024401.pcd 推理文件目录结构 +--- 1611801018801 | +--- 1611801018801.json +--- 1611801024401 | +--- 1611801024401.json
-
必须字段样例 数据集可视化 “.json”文件中必须包含label_counts和labels字段信息。 创建标注任务 “.json”文件中必须包含label_counts和labels字段信息。如果需要json文件中已有的标注信息在平台上直接展示,则label_counts里面的标注物名称、描述、形状、额外属性需要和创建任务使用的平台标签信息保持一致。示例如下: {"label_counts" : [ #标注对象类型的个数统计 { "label_meta_id" : 1846, #标注物ID "label_num" : 1, #标注物个数 "label_meta_name" : "框0504", #标注物名称 "label_meta_desc" : "框0504", #标注物描述 "label_meta_attr" : "{\"优先级\":\"0,1\"}", #标注物额外属性 "label_meta_shape" : "bndbox", #标注物形状:矩形框 "label_meta_color" : "#f8e71c" #标注物颜色信息 } ], "labels" : [ { "label_meta_id" : 1846, "bndbox" : { "ymin" : 545.4334, "xmin" : 1158.3188, "ymax" : 705.71844, "xmax" : 1436.3274 }, "name" : "框0504", "shape_type" : "bndbox", "serial_number" : 2, #该帧中标注物唯一自增id "label_object_id" : 2, #标注物合成对象的唯一自增id,如果标注物之间没有合成则与serial_number保持一致,追踪任务中同一物体在不同帧中此字段相同 "attribute" : "{\"优先级\":\"1\"}", "label_meta_name" : "框0504" } ] }
-
Octopus格式文件基本要求(图片标注) 上传的Octopus格式数据集需包含以下文件。 ├─ 时间戳1 ├─时间戳1.jpg #时间戳1对应的已标注图片 ├─时间戳1.json #时间戳1内该标注图片的所有标注信息 ├─ 时间戳2 ├─时间戳2.jpg #时间戳2对应的已标注图片 ├─时间戳2.json #时间戳2内该标注图片的所有标注信息
-
标注数据.json文件说明 数据集中必含“.json”文件,用于集合该时间戳已标注图片的所有标注数据信息,包括该图片所在的项目id、数据包id、图片上所有标注框信息等。上传数据集前请保证“.json”文件内容正确。“.json”文件编写的参考样例如下: { "frame_id" : 1, #帧序号 "batch_task_id" : 922, #批次任务ID "project_id" : "ca8aabb5a94840ea92f0f57369e3a7fe", #资源域ID "label_mode" : "manual", #标注类型:auto和manual两种 "status" : "labeled", #标注任务状态:unlabeled、labeled、unconfirmed、confirmed、all五种 "sample_type" : "IMAGE", #样本类型:包含“IMAGE”、“POINT_CLOUD” 、“AUDIO”(音频)、“TEXT”(文本) "des_order" : "", #此份数据对应的原始数据包描述 "tag_names" : [], #标签名称 "valid" : true, #是否有效,包含“true”和“false”两种 "create_time" : 1683185878405, #标注的创建时间 "difficult" : false, #是否难例,包含“true”难例和“false”非难例 "label_counts" : [{ #各类标注物的个数统计 "label_meta_id" : 1848, #标注物使用的标签ID "label_num" : 1, #标注物个数 "label_meta_name" : "V3D0504", #标注物名称 "label_meta_desc" : "V3D0504", #标注物描述 "label_meta_attr" : "{\"优先级\":\"0,1\"}", #标注物额外属性 "label_meta_shape" : "multiBox", #标注物形状,包含“bndbox、line、circle、polygon、points、dashed、cube_3d、multiBox、polygon_3d_v2、audio、text、line_3d、dash_3d、line_dash_3d、dash_line_3d、double_line_3d、double_dash_3d” "label_meta_color" : "#7ed321", #标注物颜色信息 "level" : 0 }, { "label_meta_id" : 1849, "label_num" : 1, "label_meta_name" : "圆0504", "label_meta_desc" : "圆0504", "label_meta_attr" : "{\"优先级\":\"0,1\"}", "label_meta_shape" : "circle", "label_meta_color" : "#417505", "level" : 0 }, { "label_meta_id" : 1845, "label_num" : 3, "label_meta_name" : "线0504", "label_meta_desc" : "线0504", "label_meta_attr" : "{\"优先级\":\"0,1\"}", "label_meta_shape" : "line", "label_meta_color" : "#f5a623", "level" : 0 }, { "label_meta_id" : 1844, "label_num" : 1, "label_meta_name" : "点0504", "label_meta_desc" : "点0504", "label_meta_attr" : "{}", "label_meta_shape" : "points", "label_meta_color" : "#d0021b", "level" : 0 }, { "label_meta_id" : 1846, "label_num" : 1, "label_meta_name" : "框0504", "label_meta_desc" : "框0504", "label_meta_attr" : "{\"优先级\":\"0,1\"}", "label_meta_shape" : "bndbox", "label_meta_color" : "#f8e71c", "level" : 0 }, { "label_meta_id" : 1847, "label_num" : 1, "label_meta_name" : "多边形0504", "label_meta_desc" : "多边形0504", "label_meta_attr" : "{\"优先级\":\"0,1\"}", "label_meta_shape" : "polygon", "label_meta_color" : "#8b572a", "level" : 0 } ], "image_meta_info" : { #图片信息 "id" : "c7686eab-0a38-4b60-a594-67252c0323de", "name" : "hash0-1590980980006.jpg", #图片名称 "source" : "https://octopus-raw-ca8aabb5a94840ea92f0f57369e3a7fe.obs.cn-east-212.hdmap.myhuaweicloud.com/label-data/task-922/data/hash0-1590980980006/hash0-1590980980006.jpg", #图片源的obs路径url "sensor" : "default_camera", #传感器类型 "timestamp" : 1683185878405, #时间戳 "calibration_item_id" : 0, #标定项ID "size" : { #图片尺寸 "width" : 1920, "depth" : 3, "height" : 1080 } }, "label_task_id" : 21376, #批次子任务ID "partitionId" : 20220826, "label_update_time" : 1683187695480, #标注最近更新时间 "prefix_folder" : "hash0-1590980980006", "image_id" : "9f853814-f40e-4b73-80e1-df67696f8f46", #图片id "inspection" : 0, "labels" : [ #标注物信息 { "label_meta_id" : 1844, #标注物对应的标签ID "create_time" : 1683187362541, "name" : "点0504", #标注物名称 "shape_type" : "points", #标注物形状:点 "serial_number" : 0, #该帧中标注物唯一自增id "label_object_id" : 0, #标注物合成对象的唯一自增id,如果标注物之间没有合成则与 serial_number保持一致,追踪任务中同一物体在不同帧中此字段相同 "attribute" : "", #标注物属性 "label_meta_name" : "点0504", "points" : { #点的坐标信息 "size" : 1, "points" : [{ "xpoint" : 1233.4807, "ypoint" : 689.4183 } ] } }, { "label_meta_id" : 1845, "create_time" : 1683187374024, "line" : { #线的坐标信息 "size" : 4, "points" : [{ "xpoint" : 901.138, "ypoint" : 553.583 }, { "xpoint" : 731.36, "ypoint" : 630.367 }, { "xpoint" : 618.153, "ypoint" : 681.566 }, { "xpoint" : 360.516, "ypoint" : 798.086 } ] }, "name" : "线0504", "shape_type" : "line", #标注物形状:线 "serial_number" : 1, "label_object_id" : 1, "attribute" : "{\"优先级\":\"1\"}", "label_meta_name" : "线0504" }, { "label_meta_id" : 1846, "create_time" : 1683187387330, "bndbox" : { #矩形框坐标信息 "ymin" : 545.4334, "xmin" : 1158.3188, "ymax" : 705.71844, "xmax" : 1436.3274 }, "name" : "框0504", "shape_type" : "bndbox", #标注物形状:矩形框 "serial_number" : 2, "label_object_id" : 2, "attribute" : "{\"优先级\":\"1\"}", "label_meta_name" : "框0504" }, { "label_meta_id" : 1847, "create_time" : 1683187417245, "polygon" : { #多边形的坐标信息 "size" : 3, "points" : [{ "xpoint" : 135.03, "ypoint" : 482.94937 }, { "xpoint" : 84.318344, "ypoint" : 554.4891 }, { "xpoint" : 135.03, "ypoint" : 482.94937 } ] }, "name" : "多边形0504", "shape_type" : "polygon", #标注物形状:多边形 "serial_number" : 3, "label_object_id" : 3, "attribute" : "{\"优先级\":\"1\"}", "label_meta_name" : "多边形0504" }, { "label_meta_id" : 1848, "create_time" : 1683187426497, "multiBox" : { #2.5D框的坐标信息 "size" : 10, "points" : [{ "xpoint" : 475.06976, "ypoint" : 645.49835 }, { "xpoint" : 602.3017, "ypoint" : 645.49835 }, { "xpoint" : 602.3017, "ypoint" : 537.2833 }, { "xpoint" : 475.06976, "ypoint" : 537.2833 }, { "xpoint" : 475.06976, "ypoint" : 645.49835 }, { "xpoint" : 664.7857, "ypoint" : 632.3677 }, { "xpoint" : 664.7857, "ypoint" : 537.2833 }, { "xpoint" : 602.3017, "ypoint" : 537.2833 }, { "xpoint" : 602.3017, "ypoint" : 645.49835 }, { "xpoint" : 664.7857, "ypoint" : 632.3677 } ] }, "name" : "V3D0504", "shape_type" : "multiBox", #标注物形状:2.5D "serial_number" : 4, "label_object_id" : 4, "attribute" : "{\"优先级\":\"1\"}", "label_meta_name" : "V3D0504" }, { "label_meta_id" : 1849, "create_time" : 1683187565067, "name" : "圆0504", "shape_type" : "circle", #标注物形状:圆 "serial_number" : 5, "label_object_id" : 5, "attribute" : "{\"优先级\":\"1\"}", "label_meta_name" : "圆0504", "circle" : { #圆的坐标信息 "xcenter" : 795.6399, "ycenter" : 554.03625, "radius" : 31.255125 } } ] }
-
Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054.jpg | +--- 1599625740054.json 推理文件目录结构 +--- 1599625710056 | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054.json
-
KITTI 目录 标注文件目录结构 +--- image_2 | +--- 000000.png | +--- 000001.png | +--- 000002.png +--- label_2 | +--- 000000.txt | +--- 000001.txt | +--- 000002.txt 推理文件目录结构 +--- 000000.txt +--- 000001.txt +--- 000002.txt 示例标注/推理文件 2D目标检测-KITTI.txt Car 0.00 0 -1.57 956 503 980 524 2.61 2.77 5.92 3.39 54.15 -0.01 -1.55 0. Car 0.00 0 -1.57 904 508 931 531 2.36 1.41 11.72 -3.22 40.29 1.14 -1.57 0. Car 0.00 0 -1.57 1118 514 1149 538 1.138 2.723 10.583 -0.636 40.702 0.747 -1.57 0. Car 0.00 0 -1.57 1018 497 1038 520 1.32 1.14 3.78 2.43 37.73 -1.08 -1.57 0. Car 0.00 0 -1.57 1048 508 1078 536 1.61 0.75 5.70 -3.11 28.20 0.63 -1.59 0. Car 0.00 0 -1.57 1175 517 1235 557 1.75 1.96 3.75 -7.57 12.66 -0.67 -1.54 0. Car 0.00 0 -1.57 756 517 802 552 2.61 2.77 5.92 3.39 54.15 -0.01 -1.55 0. Car 0.00 0 -1.57 304 533 446 612 2.36 1.41 11.72 -3.22 40.29 1.14 -1.57 0. Car 0.00 0 -1.57 0 491 310 766 1.138 2.723 10.583 -0.636 40.702 0.747 -1.57 0. Truck 0.00 0 -1.57 510 442 697 601 1.32 1.14 3.78 2.43 37.73 -1.08 -1.57 0. Car 0.00 0 -1.57 879 516 917 546 1.61 0.75 5.70 -3.11 28.20 0.63 -1.59 0. Car 0.00 0 -1.57 986 506 1056 577 1.75 1.96 3.75 -7.57 12.66 -0.67 -1.54 0. Car 0.00 0 -1.57 1072 494 1124 552 1.75 1.96 3.75 -7.57 12.66 -0.67 -1.54 0.
-
乘员舒适性(Driving Comfort)检测 乘员舒适性检测关注的是自动驾驶车辆行驶过程中,驾驶员感受到的舒适程度。 舒适程度通常可以利用整个行驶过程中的速度方差来进行客观反映,而变异系数是可以对不同速度区间舒适程度进行比较。 变异系数的公式如下所示。 表示变异系数,表示标准差,表示均值。 本设计当主车速度的变异系数大于0.15时,判定乘员舒适性检测不通过。 该指标关联的内置可视化时间序列数据为:speedX。 该指标的异常时间点记录类型为:POINT_TYPE_ALL。 父主题: 内置评测指标说明
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- ...
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章