华为云用户手册

  • 生产作业操作 打开D2M执行终端。 图21 D2M执行终端首页 选择“任务”页签,进入任务管理页面。 单击“签到”按钮,扫描工牌或填写工号后单击确认,进行签到操作。 图22 D2M执行终端任务页签 图23 签到 单击相应生产任务的“开始”按钮,系统进行生产系统的标准验证,校验无误后单击“进入加工”完成任务开启操作。 图24 开启任务按钮 图25 生产系统校验 进入生产界面,单击“上料”按钮并扫描物料条码完成上料。 图26 生产界面上料 加工完成后,单击“打码”按钮并填写完工数量,单击“确认”按钮完成报工打码操作。 图27 生产界面报工打码
  • 配置描述 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。 ResourceManager Restart特性配置如下。 表1 ResourceManager Restart参数配置 参数 描述 默认值 yarn.resourcemanager.recovery.enabled 设置是否让ResourceManager在启动后恢复状态。如果设置为true,那yarn.resourcemanager.store.class也必须设置。 true yarn.resourcemanager.store.class 指定用于保存应用程序和任务状态以及证书内容的state-store类。 MRS 3.x之前的版本集群:org.apache.hadoop.yarn.server.resourcemanager.recovery.ZK RMS tateStore MRS 3.x及后续版本集群: org.apache.hadoop.yarn.server.resourcemanager.recovery.AsyncZKRMStateStore yarn.resourcemanager.zk-state-store.parent-path ZKRMStateStore在ZooKeeper上的保存目录。 /rmstore yarn.resourcemanager.work-preserving-recovery.enabled 启用ResourceManager Work preserving功能。该配置仅用于YARN特性验证。 true yarn.resourcemanager.state-store.async.load 对已完成的application采用ResourceManager异步恢复方式。 MRS 3.x之前的版本集群:false MRS 3.x及后续版本集群:true yarn.resourcemanager.zk-state-store.num-fetch-threads 启用异步恢复功能,增加工作线程的数量可以加快恢复ZK中保存的任务信息的速度,取值范围大于0。 MRS 3.x之前的版本集群:1 MRS 3.x及后续版本集群:20 NodeManager Restart特性配置如下。 表2 NodeManager Restart参数配置 参数 描述 默认值 yarn.nodemanager.recovery.enabled 当Nodemanager重启时是否启用日志失败收集功能,是否恢复未完成的Application。 true yarn.nodemanager.recovery.dir NodeManager用于保存container状态的本地目录。适用于MRS 3.x及后续版本集群。 ${SRV_HOME}/tmp/yarn-nm-recovery yarn.nodemanager.recovery.supervised NodeManager是否在监控下运行。开启此特性后NodeManager在退出后不会清理containers,NodeManager会假设自己会立即重启和恢复containers。 true
  • 配置场景 YARN Restart特性包含两部分内容:ResourceManager Restart和NodeManager Restart。 当启用ResourceManager Restart时,升主后的ResourceManager就可以通过加载之前的主ResourceManager的状态信息,并通过接收所有NodeManager上container的状态信息,重构运行状态继续执行。这样应用程序通过定期执行检查点操作保存当前状态信息,就可以避免工作内容的丢失。 当启用NodeManager Restart时,NodeManager在本地保存当前节点上运行的container信息,重启NodeManager服务后通过恢复此前保存的状态信息,就不会丢失在此节点上运行的container进度。
  • 配置描述 参数入口: 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称“mapreduce.job.am.memory.policy”。 配置说明: 配置项的默认值为空,此时不会启动自动调整的策略,ApplicationMaster的内存仍受“yarn.app.mapreduce.am.resource.mb”配置项的影响。 配置参数的值由5个数值组成,中间使用“:”与“,”分隔,格式为:baseTaskCount:taskStep:memoryStep,minMemory:maxMemory,在键入时会严格校验格式。 表1 配置数值说明 数值名称 描述 设定要求 baseTaskCount 任务总量基数,只有当应用的task总数(map端与reduce端之和)不小于该值时配置才会起作用。 不能为空且大于零。 taskStep 任务增量步进,与memoryStep共同决定内存调整量。 不能为空且大于零。 memoryStep 内存增量步进,在“yarn.app.mapreduce.am.resource.mb”配置的基础上对内存向上调整。 不能为空且大于零,单位:MB。 minMemory 内存自动调整下限,若调整后的内存不大于该值,仍保持“yarn.app.mapreduce.am.resource.mb”的配置。 不能为空且大于零,且不大于maxMemory的设定值。 单位:MB maxMemory 内存自动调整上限,若调整后的内存超过该值,则使用该值作为最终调整值。 不能为空且大于零,且不小于minMemory的设定值。 单位:MB
  • 操作场景 集群的资源竞争场景如下: 提交两个低优先级的应用Job 1和Job 2。 正在运行中的Job 1和Job 2有部分task处于running状态,但由于集群或队列资源容量有限,仍有部分task未得到资源而处于pending状态。 提交一个较高优先级的应用Job 3,此时会出现如下资源分配情况:当Job 1和Job 2中running状态的task运行结束并释放资源后,Job 3中处于pending状态的task将优先得到这部分新释放的资源。 Job 3完成后,资源释放给Job 1、Job 2继续执行。 用户可以在YARN中配置任务的优先级。任务优先级是通过ResourceManager的调度器实现的。
  • 操作场景 Slow Start特性指定Map任务完成度为多少时Reduce任务可以启动,过早启动Reduce任务会导致资源占用,影响任务运行效率,但适当的提早启动Reduce任务会提高Shuffle阶段的资源利用率,提高任务运行效率。例如:某集群可启动10个Map任务,MapReduce作业共15个Map任务,那么在一轮Map任务执行完成后只剩5个Map任务,集群还有剩余资源,在这种场景下,配置Slow Start参数值小于1,比如0.8,则Reduce就可以利用集群剩余资源。
  • 操作步骤 原则一:充分利用集群资源。 Job运行时,会让所有的节点都有任务处理,且处于繁忙状态,这样才能保证资源充分利用,任务的并发度达到最大。可以通过调整处理的数据量大小,以及调整map和reduce个数来实现。 reduce个数的控制使用“mapreduce.job.reduces”。 map个数取决于使用了哪种InputFormat,以及待处理的数据文件是否可分割。默认的TextFileInputFormat将根据block的个数来分配map数(一个block一个map)。通过如下配置参数进行调整。 参数入口: 进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。具体操作请参考修改集群服务配置参数章节。 表1 参数配置-1 参数 描述 默认值 mapreduce.input.fileinputformat.split.maxsize map输入信息应被拆分成的数据块的最大大小。 由用户定义的分片大小的设置及每个文件block大小的设置,可以计算分片的大小。计算公式如下: splitSize = Math.max(minSize, Math.min(maxSize, blockSize)) 如果maxSize设置大于blockSize,那么每个block就是一个分片,否则就会将一个block文件分隔为多个分片,如果block中剩下的一小段数据量小于splitSize,还是认为它是独立的分片。 - mapreduce.input.fileinputformat.split.minsize 可以设置数据分片的数据最小值。 0 原则二:控制reduce阶段在一轮中完成。 避免以下两种场景: 大部分的reduce在第一轮运行完后,剩下唯一一个reduce继续运行。这种情况下,这个reduce的执行时间将极大影响这个job的运行时间。因此需要将reduce个数减少。 所有的map运行完后,只有个别节点有reduce在运行。这时候集群资源没有得到充分利用,需要增加reduce的个数以便每个节点都有任务处理。 原则三:每个task的执行时间要合理。 如果一个job,每个map或reduce的执行时间只有几秒钟,就意味着这个job的大部分时间都消耗在task的调度和进程启停阶段,因此需要增加每个task处理的数据大小。建议一个task处理时间为1分钟。 控制单个task处理时间的大小,可以通过如下配置来调整。 参数入口: 进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。具体操作请参考修改集群服务配置参数章节。 表2 参数配置-2 参数 描述 默认值 mapreduce.input.fileinputformat.split.maxsize map输入信息应被拆分成的数据块的最大大小。 由用户定义的分片大小的设置及每个文件block大小的设置,可以计算分片的大小。计算公式如下: splitSize = Math.max(minSize, Math.min(maxSize, blockSize)) 如果maxSize设置大于blockSize,那么每个block就是一个分片,否则就会将一个block文件分隔为多个分片,如果block中剩下的一小段数据量小于splitSize,还是认为它是独立的分片。 - mapreduce.input.fileinputformat.split.minsize 可以设置数据分片的数据最小值。 0
  • 配置描述 进入Mapreduce服务参数“全部配置”界面,在搜索框中输入参数名称。具体操作请参考修改集群服务配置参数章节。 表1 参数描述 参数 描述 默认值 mapreduce.cluster.acls.enabled 是否开启对Job History Server权限控制的开关。 true mapreduce.cluster.administrators 用于指定MapReduce集群管理员列表,可以配置用户和用户组,用户或者用户组之间用逗号间隔,用户和用户组之间用空格间隔,举例:userA,userB groupA,groupB。当配置为*时表示所有用户或用户组。 MRS 3.x之前版本:mapred MRS 3.x及之后版本: mapred supergroup,System_administrator_186
  • 操作步骤 参数入口: 进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。具体操作请参考修改集群服务配置参数章节。 参数 描述 默认值 mapreduce.map.speculative 设置是否并行执行某些映射任务的多个实例。true表示开启。 false mapreduce.reduce.speculative 设置是否并行执行某些reduce任务的多个实例。true表示开启。 false
  • 配置描述 参数入口: 请参考修改集群服务配置参数,进入HDFS的“全部配置”页面,在搜索框中输入参数名称。 表1 参数说明 参数 描述 默认值 fs.trash.interval 以分钟为单位的垃圾回收时间,垃圾站中数据超过此时间,会被删除。取值范围:1440~259200。 1440 fs.trash.checkpoint.interval 垃圾检查点间的间隔。单位:分钟。应小于等于“fs.trash.interval”的值。检查点程序每次运行时都会创建一个新的检查点并会移除fs.trash.interval分钟前创建的检查点。例如,系统每10分钟检测是否存在老化文件,如果发现有老化文件,则删除。对于未老化文件,则会存储在checkpoint列表中,等待下一次检查。 如果此参数的值设置为0,则表示系统不会检查老化文件,所有老化文件会被保存在系统中。 取值范围:0~fs.trash.interval。 说明: 不推荐将此参数值设置为0,这样系统的老化文件会一直存储下去,导致集群的磁盘空间不足。 60
  • 配置HDFS文件和目录的权限 HDFS支持用户进行文件和目录默认权限的修改。HDFS默认用户创建文件和目录的权限的掩码为“022”,如果默认权限满足不了用户的需求,可以通过配置项进行默认权限的修改。 参数入口: 请参考修改集群服务配置参数,进入HDFS的“全部配置”页面,在搜索框中输入参数名称。 表1 参数说明 参数 描述 默认值 fs.permissions.umask-mode 当客户端在HDFS上创建文件和目录时使用此umask值(用户掩码)。类似于linux上的文件权限掩码。 可以使用八进制数字也可以使用符号,例如:“022” (八进制,等同于以符号表示的u=rwx,g=r-x,o=r-x),或者“u=rwx,g=rwx,o=”(符号法,等同于八进制的“007”)。 说明: 8进制的掩码,和实际权限设置值正好相反,建议使用符号表示法,描述更清晰。 022
  • 配置描述 在客户端的“mapred-site.xml”配置文件中进行如下配置。“mapred-site.xml”配置文件在客户端安装路径的config目录下,例如“/opt/client/Yarn/config”。 表1 参数说明 参数 描述 默认值 mapreduce.app-submission.cross-platform 支持在Windows上提交到Linux上运行MR任务的配置项。当该参数的值设为“true”时,表示支持。当该参数的值设为“false”时,表示不支持。 true
  • 日志级别 DBService中提供了如表2所示的日志级别。日志级别优先级从高到低分别是ERROR、WARN、INFO、DEBUG。程序会打印高于或等于所设置级别的日志,设置的日志等级越高,打印出来的日志就越少。 表2 日志级别 级别 描述 ERROR ERROR表示当前时间处理存在错误信息。 WARN WARN表示当前事件处理存在异常信息。 INFO INFO表示记录系统及各事件正常运行状态信息。 DEBUG DEBUG表示记录系统及系统的调试信息。
  • 使用Alluxio Shell Alluxio shell包含多种与Alluxio交互的命令行操作。 要查看文件系统操作命令列表。 alluxio fs 使用ls命令列出Alluxio里的文件。例如列出根目录下所有文件。 alluxio fs ls / 使用copyFromLocal命令可以复制本地文件到Alluxio中。 alluxio fs copyFromLocal /home/test_input.txt /test_input.txt 命令执行后回显: Copied file:///home/test_input.txt to /test_input.txt 再次使用ls命令列出Alluxio中的文件,可以看到刚刚拷贝的test_input.txt文件。 alluxio fs ls / 命令执行后回显: 12 PERSISTED 11-28-2019 17:10:17:449 100% /test_input.txt 输出显示test_input.txt文件在Alluxio中,各参数含义为文件的大小、是否被持久化、创建日期、Alluxio中这个文件的缓存占比、文件名。 使用cat命令打印文件的内容。 alluxio fs cat /test_input.txt 命令执行后回显: Test Alluxio
  • Alluxio中的挂载功能 Alluxio通过统一命名空间的特性统一了对存储系统的访问。详情请参考:https://docs.alluxio.io/os/user/2.0/cn/advanced/Namespace-Management.html 这个特性允许用户挂载不同的存储系统到Alluxio命名空间中并且通过Alluxio命名空间无缝地跨存储系统访问文件。 在Alluxio中创建一个目录作为挂载点。 alluxio fs mkdir /mnt Successfully created directory /mnt 挂载一个已有的OBS文件系统到Alluxio(前提:给集群配置有OBS OperateAccess权限的委托,具体请参见配置存算分离集群(委托方式))。此处以obs-mrstest文件系统为例,请根据实际情况替换文件系统名。 alluxio fs mount /mnt/obs obs://obs-mrstest/data Mounted obs://obs-mrstest/data at /mnt/obs 通过Alluxio命名空间列出OBS文件系统中的文件。使用ls命令列出OBS挂载目录下的文件。 alluxio fs ls /mnt/obs 38 PERSISTED 11-28-2019 17:42:54:554 0% /mnt/obs/hive_load.txt12 PERSISTED 11-28-2019 17:43:07:743 0% /mnt/obs/test_input.txt 新挂载的文件和目录也可以通过Alluxio WebUI查看。 挂载完成后,通过Alluxio统一命名空间,可以无缝地从不同存储系统中交互数据。例如,使用ls -R命令,递归地列举出一个目录下的所有文件。 alluxio fs ls -R / 0 PERSISTED 11-28-2019 11:15:19:719 DIR /app-logs 1 PERSISTED 11-28-2019 11:18:36:885 DIR /apps 1 PERSISTED 11-28-2019 11:18:40:209 DIR /apps/templeton239440292 PERSISTED 11-28-2019 11:18:40:209 0% /apps/templeton/hive.tar.gz..... 1 PERSISTED 11-28-2019 19:00:23:879 DIR /mnt 2 PERSISTED 11-28-2019 19:00:23:879 DIR /mnt/obs 38 PERSISTED 11-28-2019 17:42:54:554 0% /mnt/obs/hive_load.txt 12 PERSISTED 11-28-2019 17:43:07:743 0% /mnt/obs/test_input.txt..... 输出显示了Alluxio文件系统根目录(默认值是HDFS的根目录,即hdfs://hacluster/)中来源于挂载存储系统的所有文件。/app-logs和/apps目录在HDFS文件系统中,/mnt/obs/目录在OBS中。
  • 用Alluxio加速数据访问 由于Alluxio利用内存存储数据,它可以加速数据的访问。例如: 上传一个文件test_data.csv(文件是一份记录了食谱的样本)到obs-mrstest文件系统的/data目录下。通过ls命令显示文件状态: alluxio fs ls /mnt/obs/test_data.csv 294520189 PERSISTED 11-28-2019 19:38:55:000 0% /mnt/obs/test_data.csv 输出显示了该文件在Alluxio中缓存占比为0%,即不在Alluxio内存中。 统计该文件中单词"milk"出现的次数,并计算耗时。 time alluxio fs cat /mnt/obs/test_data.csv | grep -c milk 52180real 0m10.765suser 0m5.540ssys 0m0.696s 第一次读取数据后会将数据放在内存中,Alluxio再次读取时可以提高访问该数据的速度。例如:在通过cat命令获取文件后,用ls命令再查看文件的状态。 alluxio fs ls /mnt/obs/test_data.csv 294520189 PERSISTED 11-28-2019 19:38:55:000 100% /mnt/obs/test_data.csv 输出显示文件已经100%被加载到Alluxio中。 再次访问该文件,统计单词“eggs”出现的次数,并计算耗时。 time alluxio fs cat /mnt/obs/test_data.csv | grep -c eggs 59510real 0m5.777suser 0m5.992ssys 0m0.592s 对比两次耗时可以看出存储在Alluxio内存中的数据,数据访问耗时明显缩短。
  • 背景信息 假定用户开发一个应用程序,用于管理企业中的使用A业务的用户信息,使用Impala客户端实现A业务操作流程如下: 普通表的操作: 创建用户信息表user_info。 在用户信息中新增用户的学历、职称信息。 根据用户编号查询用户姓名和地址。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 A 男 19 A城市 12005000202 B 女 23 B城市 12005000203 C 男 26 C城市 12005000204 D 男 18 D城市 12005000205 E 女 21 E城市 12005000206 F 男 32 F城市 12005000207 G 女 29 G城市 12005000208 H 女 30 H城市 12005000209 I 男 26 I城市 12005000210 J 女 25 J城市
  • 日志级别 Flink中提供了如表3所示的日志级别。日志级别优先级从高到低分别是ERROR、WARN、INFO、DEBUG。程序会打印高于或等于所设置级别的日志,设置的日志等级越高,打印出来的日志就越少。 表3 日志级别 级别 描述 ERROR ERROR表示当前时间处理存在错误信息。 WARN WARN表示当前事件处理存在异常信息。 INFO INFO表示记录系统及各事件正常运行状态信息。 DEBUG DEBUG表示记录系统及系统的调试信息。 如果您需要修改日志级别,请执行如下操作: 请参考修改集群服务配置参数,进入Flink的“全部配置”页面。 左边菜单栏中选择所需修改的角色所对应的日志菜单。 选择所需修改的日志级别。 保存配置,在弹出窗口中单击“确定”使配置生效。 配置完成后不需要重启服务,重新下载客户端使配置生效。 也可以直接修改客户端“客户端安装目录/Flink/flink/conf/”中log4j-cli.properties、log4j.properties、log4j-session.properties文件中对应的日志级别配置项。 通过客户端提交作业时会在客户端log文件夹中生成相应日志文件,由于系统默认umask值是0022,所以日志默认权限为644;如果需要修改文件权限,需要修改umask值;例如修改omm用户umask值: 在“/home/omm/.baskrc”文件末尾添加“umask 0026”; 执行命令source /home/omm/.baskrc使文件权限生效。
  • 日志描述 日志存储路径: Flink作业运行日志:“${BIGDATA_DATA_HOME}/hadoop/data${i}/nm/containerlogs/application_${appid}/container_{$contid}”。 运行中的任务日志存储在以上路径中,运行结束后会基于Yarn的配置确定是否汇聚到HDFS目录中。 FlinkResource运行日志:“/var/log/Bigdata/flink/flinkResource”。 日志归档规则: FlinkResource运行日志: 服务日志默认20MB滚动存储一次,最多保留20个文件,不压缩。 针对MRS 3.x之前版本,Executor日志默认30MB滚动存储一次,最多保留20个文件,不压缩。 日志大小和压缩文件保留个数可以在Manager界面中配置或者修改客户端“客户端安装目录/Flink/flink/conf/”中的log4j-cli.properties、log4j.properties、log4j-session.properties中对应的配置项。 表1 FlinkResource日志列表 日志类型 日志文件名 描述 FlinkResource运行日志 checkService.log 健康检查日志。 kinit.log 初始化日志。 postinstall.log 服务安装日志。 prestart.log prestart脚本日志。 start.log 启动日志。 FlinkServer服务日志、审计日志。 FlinkServer服务日志、审计日志默认100MB滚动存储一次,服务日志最多保留30天,审计日志最多保留90天。 日志大小和压缩文件保留个数可以在Manager界面中配置或者修改客户端“客户端安装目录/Flink/flink/conf/”中的log4j-cli.properties、log4j.properties、log4j-session.properties中对应的配置项。 表2 FlinkServer日志列表 日志类型 日志文件名 描述 FlinkServer运行日志 checkService.log 健康检查日志。 checkFlinkServer.log FlinkServer健康检查日志。 localhost_access_log..yyyy-mm-dd.txt FlinkServer访问URL日志。 start_thrift_server.out thrift server启动日志。 thrift_server_thriftServer_xxx.log.last cleanup.log 安装卸载实例时的清理日志。 flink-omm-client-IP.log 作业启动日志。 flinkserver_yyyymmdd-x.log.gz 业务归档日志。 flinkserver.log 业务日志。 flinkserver---pidxxxx-gc.log.x.current GC日志。 kinit.log 初始化日志。 postinstall.log 服务安装日志。 prestart.log prestart脚本日志。 start.log 启动日志。 stop.log 停止日志。 catalina.yyyy-mm-dd.log tomcat运行日志.。 catalina.out host-manager.yyyy-mm-dd.log localhost.yyyy-mm-dd.log manager.yyyy-mm-dd.log FlinkServer审计日志 flinkserver_audit_yyyymmdd-x.log.gz 审计归档日志。 flinkserver_audit.log 审计日志。
  • 操作场景 该任务指导用户使用Flume客户端从本地采集静态日志保存到HBase表:flume_test。该场景介绍的是多级agent串联操作。 本章节适用于MRS 3.x及之后版本。 本配置默认集群网络环境是安全的,数据传输过程不需要启用SSL认证。如需使用加密方式,请参考配置Flume加密传输数据采集任务。该配置可以只用一个Flume场景,例如Server:Spooldir Source+File Channel+HBase Sink。
  • 日志级别 HBase中提供了如表2所示的日志级别。日志级别优先级从高到低分别是FATAL、ERROR、WARN、INFO、DEBUG。程序会打印高于或等于所设置级别的日志,设置的日志等级越高,打印出来的日志就越少。 表2 日志级别 级别 描述 FATAL FATAL表示当前事件处理出现严重错误信息,可能导致系统崩溃。 ERROR ERROR表示当前事件处理出现错误信息,系统运行出错。 WARN WARN表示当前事件处理存在异常信息,但认为是正常范围,不会导致系统出错。 INFO INFO表示记录系统及各事件正常运行状态信息 DEBUG DEBUG表示记录系统及系统的调试信息。 如果您需要修改日志级别,请执行如下操作: 进入HBase服务参数“全部配置”界面,具体操作请参考修改集群服务配置参数。 左边菜单栏中选择所需修改的角色所对应的日志菜单。 选择所需修改的日志级别。 保存配置,在弹出窗口中单击“确定”使配置生效。 配置完成后立即生效,不需要重启服务。
  • JVM调优 当应用程序需要处理大量数据从而占用更多的内存时,存在worker内存大于2GB的情况,推荐使用G1垃圾回收算法。 表2 调优参数 配置参数 缺省值 调优场景 WORKER_GC_OPTS -Xms1G -Xmx1G -XX:+UseG1GC -XX:+PrintGCDetails -Xloggc:artifacts/gc.log -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=1M -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=artifacts/heapdump 应用程序内存中需要保存大量数据,worker进程使用的内存大于2G,那么建议使用G1垃圾回收算法,可修改参数值为“-Xms2G -Xmx5G -XX:+UseG1GC”。
  • 拓扑调优 当需要提升Storm数据量处理性能时,可以通过拓扑调优的操作提高效率。建议在可靠性要求不高的场景下进行优化。 表1 调优参数 配置参数 默认值 调优场景 topology.acker.executors null Acker的执行器数量。当业务应用对可靠性要求较低,允许不处理部分数据,可设置参数值为“null”或“0”,以关闭Acker的执行器,减少流控制,不统计消息时延,提高性能。 topology.max.spout.pending null Spout消息缓存数,仅在Acker不为0或者不为null的情况下生效。Spout将发送到下游Bolt的每条消息加入到pending队列,待下游Bolt处理完成并确认后,再从pending队列移除,当pending队列占满时Spout暂停消息发送。增加pending值可提高Spout的每秒消息吞吐量,提高性能,但延时同步增加。 topology.transfer.buffer.size 32 每个worker进程Distuptor消息队列大小,建议在4到32之间,增大消息队列可以提升吞吐量,但延时可能会增加。 RES_CPUSET_PERCENTAGE 80 设置各个节点上的Supervisor角色实例(包含其启动并管理的Worker进程)所使用的物理CPU百分比。根据Supervisor所在节点业务量需求,适当调整参数值,优化CPU使用率。
  • 对系统的影响 配置高可用、高性能的影响: 配置高可用、高性能模式后,数据可靠性会降低。在磁盘故障、节点故障等场景下存在数据丢失风险。 配置高可靠性的影响: 性能降低: 在生产数据时,配置了高可靠参数ack=-1之后,需要多个副本均写入成功之后才认为是写入成功。这样会导致单条消息时延增加,客户端处理能力下降。具体性能以现场实际测试数据为准。 可用性降低: 不允许不在ISR中的副本被选举为Leader。如果Leader下线时,其他副本均不在ISR列表中,那么该分区将保持不可用,直到Leader节点恢复。当分区的一个副本所在节点故障时,无法满足最小写入成功的副本数,那么将会导致业务写入失败。 参数配置项为服务级配置需要重启Kafka,建议在变更窗口做服务级配置修改。
  • 配置建议 请根据以下业务场景对可靠性和性能要求进行评估,采用合理参数配置。 对于价值数据,这两种场景下建议Kafka数据目录磁盘配置raid1或者raid5,从而提高单个磁盘故障情况下数据可靠性。 参数配置项均为Topic级别可修改的参数,默认采用服务级配置。 可针对不同Topic可靠性要求对Topic进行单独配置。以root用户登录Kafka客户端节点,在客户端安装目录下配置Topic名称为test的可靠性参数命令: cd Kafka/kafka/bin kafka-topics.sh --zookeeper 192.168.1.205:2181/kafka --alter --topic test --config unclean.leader.election.enable=false --config min.insync.replicas=2 其中192.168.1.205为ZooKeeper业务IP地址。 参数配置项为服务级配置需要重启Kafka,建议在变更窗口做服务级配置修改。
  • 操作场景 本章节内容适用于MRS 3.x及后续版本。 增加Broker的存储目录时,MRS集群管理员需要在 FusionInsight Manager中修改Broker的存储目录,以保证Kafka正常工作,新创建的主题分区将在分区最少的目录中生成。适用于以下场景: 由于Kafka不感知磁盘容量,建议各Broker实例配置的磁盘个数和容量保持一致。 更改Broker角色的存储目录,所有Broker实例的存储目录将同步修改。 更改Broker单个实例的存储目录,只对单个实例生效,其他节点Broker实例存储目录不变。
  • 针对不同的Topic访问场景,Kafka中API使用说明 场景一:访问设置了ACL的Topic 使用的API 用户属组 客户端参数 服务端参数 访问的端口 API 用户需满足以下条件之一即可: 加入System_administrator角色 属于kafkaadmin组 属于kafkasuperuser组 被授权的kafka组的用户 security.inter.broker.protocol=SASL_PLAINTEXT sasl.kerberos.service.name = kafka - sasl.port(默认21007) security.protocol=SASL_SSL sasl.kerberos.service.name = kafka “ssl.mode.enable”配置为true sasl-ssl.port(默认21009) 场景二:访问未设置ACL的Topic 使用的API 用户属组 客户端参数 服务端参数 访问的端口 API 用户需满足以下条件之一: 加入System_administrator角色 属于kafkaadmin组 属于kafkasuperuser组 security.protocol=SASL_PLAINTEXT sasl.kerberos.service.name = kafka - sasl.port(默认21007) 用户属于kafka组 “allow.everyone.if.no.acl.found”配置为true 说明: 普通集群下不涉及服务端参数“allow.everyone.if.no.acl.found”的修改 sasl.port(默认21007) 用户需满足以下条件之一: 加入System_administrator角色 属于kafkaadmin组 kafkasuperuser组用户 security.protocol=SASL_SSL sasl.kerberos.service.name = kafka “ssl.mode.enable”配置为“true” sasl-ssl.port(默认21009) 用户属于kafka组 “allow.everyone.if.no.acl.found”配置为“true” “ssl.mode.enable”配置为“true” sasl-ssl.port(默认21009) - security.protocol=PLAINTEXT “allow.everyone.if.no.acl.found”配置为“true” port(默认9092) - security.protocol=SSL “allow.everyone.if.no.acl.found”配置为“true” “ssl.mode.enable”配置为“true” ssl.port(默认9063)
  • Kafka API简单说明 Producer API 指org.apache.kafka.clients.producer.KafkaProducer中定义的接口,在使用“kafka-console-producer.sh”时,默认使用此API。 Consumer API 指org.apache.kafka.clients.consumer.KafkaConsumer中定义的接口,在使用“kafka-console-consumer.sh”时,默认会调用此API。 MRS 3.x后,Kafka不支持旧Producer API和旧Consumer API。
  • Kafka访问协议说明 请参考修改集群服务配置参数查看或配置参数。 Kafka当前支持四种协议类型的访问:PLAINTEXT、SSL、SASL_PLAINTEXT、SASL_SSL。 Kafka服务启动时,默认会启动PLAINTEXT和SASL_PLAINTEXT两种协议类型的安全认证。可通过设置Kafka服务配置“ssl.mode.enable”为“true”,来启动SSL和SASL_SSL两种协议类型的安全认证。下表是四种协议类型的简单说明: 协议类型 说明 默认端口 PLAINTEXT 支持无认证的明文访问 获取参数“port”的值,默认为9092 SASL_PLAINTEXT 支持Kerberos认证的明文访问 获取参数“sasl.port”的值,默认为21007 SSL 支持无认证的SSL加密访问 获取参数“ssl.port”的值,默认为9093 SASL_SSL 支持Kerberos认证的SSL加密访问 获取参数“sasl-ssl.port”的值,默认为21009
  • 操作场景 HDFS Colocation(同分布)是HDFS提供的数据分布控制功能,利用HDFS Colocation接口,可以将存在关联关系或者可能进行关联操作的数据存放在相同的存储节点上。Hive支持HDFS的Colocation功能,即在创建Hive表时,设置表文件分布的locator信息,当使用insert语句向该表中插入数据时会将该表的数据文件存放在相同的存储节点上(不支持其他数据导入方式),从而使后续的多表关联的数据计算更加方便和高效。表格式只支持TextFile和RCFile。 本章节适用于MRS 3.x及后续版本。
共100000条