华为云用户手册

  • Spark Streaming常用接口 Spark Streaming中常见的类有: StreamingContext:是Spark Streaming功能的主入口,负责提供创建DStreams的方法,入参中需要设置批次的时间间隔。 dstream.DStream:是一种代表RDDs连续序列的数据类型,代表连续数据流。 dstream.PariDStreamFunctions:键值对的DStream,常见的操作如groupByKey和reduceByKey。 对应的Spark Streaming的JAVA API是JavaStreamingContext,JavaDStream和JavaPairDStream。 Spark Streaming的常见方法与Spark Core类似,下表罗列了Spark Streaming特有的一些方法。 表4 Spark Streaming方法介绍 方法 说明 socketTextStream(hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2): ReceiverInputDStream[String] 从TCP源主机:端口创建一个输入流。 start():Unit 启动Spark Streaming计算。 awaitTermination(timeout: long):Unit 当前进程等待终止,如Ctrl+C等。 stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit 终止Spark Streaming计算。 transform[T](dstreams: Seq[DStream[_]], transformFunc: (Seq[RDD[_]], Time) ? RDD[T])(implicit arg0: ClassTag[T]): DStream[T] 对每一个RDD应用function操作得到一个新的DStream。 UpdateStateByKey(func) 更新DStream的状态。使用此方法,需要定义状态和状态更新函数。 window(windowLength, slideInterval) 根据源DStream的窗口批次计算得到一个新的DStream。 countByWindow(windowLength, slideInterval) 返回流中滑动窗口元素的个数。 reduceByWindow(func, windowLength, slideInterval) 当调用在DStream的KV对上,返回一个新的DStream的KV对,其中每个Key的Value根据滑动窗口中批次的reduce函数聚合得到。 join(otherStream, [numTasks]) 实现不同的Spark Streaming之间做合并操作。 DStreamKafkaWriter.writeToKafka() 支持将DStream中的数据批量写入到Kafka。 DStreamKafkaWriter.writeToKafkaBySingle() 支持将DStream中的数据逐条写入到Kafka。 表5 Spark Streaming增强特性接口 方法 说明 DStreamKafkaWriter.writeToKafka() 支持将DStream中的数据批量写入到Kafka。 DStreamKafkaWriter.writeToKafkaBySingle() 支持将DStream中的数据逐条写入到Kafka。
  • SparkSQL常用接口 Spark SQL中常用的类有: SQLContext:是Spark SQL功能和DataFrame的主入口。 DataFrame:是一个以命名列方式组织的分布式数据集。 HiveContext:获取存储在Hive中数据的主入口。 表6 常用的Actions方法 方法 说明 collect(): Array[Row] 返回一个数组,包含DataFrame的所有列。 count(): Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int, truncate: Boolean): Unit 用表格形式显示DataFrame。 take(n:Int): Array[Row] 返回DataFrame中的前n行。 表7 基本的DataFrame Functions 方法 说明 explain(): Unit 打印出SQL语句的逻辑计划和物理计划。 printSchema(): Unit 打印schema信息到控制台。 registerTempTable(tableName: String): Unit 将DataFrame注册为一张临时表,其周期和SQLContext绑定在一起。 toDF(colNames: String*): DataFrame 返回一个列重命名的DataFrame。
  • 回答 由于checkpoint中包含了spark应用的对象序列化信息、task执行状态信息、配置信息等,因此,当存在以下问题时,从checkpoint恢复spark应用将会失败。 业务代码变更且变更类未明确指定SerialVersionUID。 spark内部类变更,且变更类未明确指定SerialVersionUID。 另外,由于checkpoint保存了部分配置项,因此可能导致业务修改了部分配置项后,从checkpoint恢复时,配置项依然保持为旧值的情况。当前只有以下部分配置会在从checkpoint恢复时重新加载。 "spark.yarn.app.id", "spark.yarn.app.attemptId", "spark.driver.host", "spark.driver.bindAddress", "spark.driver.port", "spark.master", "spark.yarn.jars", "spark.yarn.keytab", "spark.yarn.principal", "spark.yarn.credentials.file", "spark.yarn.credentials.renewalTime", "spark.yarn.credentials.updateTime", "spark.ui.filters", "spark.mesos.driver.frameworkId", "spark.yarn.jars"
  • 简介 Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高 保证无数据丢失 容错性好 多语言 易于构建和操控
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt” )下。
  • 场景说明 假定一个广告业务,存在广告请求事件、广告展示事件、广告点击事件,广告主需要实时统计有效的广告展示和广告点击数据。 已知: 终端用户每次请求一个广告后,会生成广告请求事件,保存到kafka的adRequest topic中。 请求一个广告后,可能用于多次展示,每次展示,会生成广告展示事件,保存到kafka的adShow topic中。 每个广告展示,可能会产生多次点击,每次点击,会生成广告点击事件,保存到kafka的adClick topic中。 广告有效展示的定义如下: 请求到展示的时长超过A分钟算无效展示。 A分钟内多次展示,每次展示事件为有效展示。 广告有效点击的定义如下: 展示到点击时长超过B分钟算无效点击。 B分钟内多次点击,仅首次点击事件为有效点击。 基于此业务场景,模拟简单的数据结构如下: 广告请求事件 数据结构:adID^reqTime 广告展示事件 数据结构:adID^showID^showTime 广告点击事件 数据结构:adID^showID^clickTime 数据关联关系如下: 广告请求事件与广告展示事件通过adID关联。 广告展示事件与广告点击事件通过adID+showID关联。 数据要求: 数据从产生到到达流处理引擎的延迟时间不超过2小时 广告请求事件、广告展示事件、广告点击事件到达流处理引擎的时间不能保证有序和时间对齐
  • 数据规划 在kafka中生成模拟数据(需要有Kafka权限用户)。 java -cp $SPARK_HOME/conf:$SPARK_HOME/jars/*:$SPARK_HOME/jars/streamingClient010/*:{ClassPath} com.huawei.bigdata.spark.examples.KafkaADEventProducer {BrokerList} {timeOfProduceReqEvent} {eventTimeBeforeCurrentTime} {reqTopic} {reqEventCount} {showTopic} {showEventMaxDelay} {clickTopic} {clickEventMaxDelay} 确保集群安装完成,包括HDFS、Yarn、Spark2x和Kafka。 将Kafka的Broker配置参数“allow.everyone.if.no.acl.found”的值修改为“true”。 启动Kafka的Producer,向Kafka发送数据。 {ClassPath}表示工程jar包的存放路径,详细路径由用户指定,可参考在Linux环境中编包并运行Spark程序章节中导出jar包的操作步骤。 命令举例: java -cp /opt/client/Spark2x/spark/conf:/opt/StructuredStreamingADScalaExample-1.0.jar:/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/* com.huawei.bigdata.spark.examples.KafkaADEventProducer 10.132.190.170:21005,10.132.190.165:21005 2h 1h req 10000000 show 5m click 5m 此命令将在kafka上创建3个topic:req、show、click,在2h内生成1千万条请求事件数据,请求事件的时间取值范围为{当前时间-1h 至 当前时间},并为每条请求事件随机生成0-5条展示事件,展示事件的时间取值范围为{请求事件时间 至请求事件时间+5m },为每条展示事件随机生成0-5条点击事件,点击事件的时间取值范围为{展示事件时间 至展示事件时间+5m }
  • 操作场景 在程序代码完成开发后,您可以上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Spark客户端的运行步骤是一样的。 使用Python开发的Spark应用程序无需打包成jar,只需将样例工程复制到编译机器上即可。 用户需保证worker和driver的Python版本一致,否则将报错:"Python in worker has different version %s than that in driver %s."。 用户需保证Maven已配置华为镜像站中SDK的Maven镜像仓库,具体可参考配置华为开源镜像仓
  • Flink常用接口 Flink主要使用到如下这几个类: StreamExecutionEnvironment:是Flink流处理的基础,提供了程序的执行环境。 DataStream:Flink用类DataStream来表示程序中的流式数据。用户可以认为它们是含有重复数据的不可修改的集合(collection),DataStream中元素的数量是无限的。 KeyedStream:DataStream通过keyBy分组操作生成流,通过设置的key值对数据进行分组。 WindowedStream:KeyedStream通过window窗口函数生成的流,设置窗口类型并且定义窗口触发条件,然后在窗口数据上进行一些操作。 AllWindowedStream:DataStream通过window窗口函数生成的流,设置窗口类型并且定义窗口触发条件,然后在窗口数据上进行一些操作。 ConnectedStreams:将两条DataStream流连接起来并且保持原有流数据的类型,然后进行map或者flatMap操作。 JoinedStreams:在窗口上对数据进行等值join操作(等值就是判断两个值相同的join,比如a.id = b.id),join操作是coGroup操作的一种特殊场景。 CoGroupedStreams:在窗口上对数据进行coGroup操作,可以实现流的各种join类型。 图1 Flink Stream的各种流类型转换
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上(文件上传的路径需要和生成的jar包路径一致)。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中HBaseDistributedScanExample文件: # -*- coding:utf-8 -*-# -*- coding:utf-8 -*-"""【说明】(1)由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现(2)如果使用yarn-client模式运行,请确认Spark2x客户端Spark2x/spark/conf/spark-defaults.conf中 spark.yarn.security.credentials.hbase.enabled参数配置为true"""from py4j.java_gateway import java_importfrom pyspark.sql import SparkSession# 创建SparkSessionspark = SparkSession\ .builder\ .appName("JavaHBaseDistributedScan")\ .getOrCreate()# 向sc._jvm中导入要运行的类java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseDistributedScanExample')# 创建类实例并调用方法,传递sc._jsc参数spark._jvm.JavaHBaseDistributedScan().execute(spark._jsc, sys.argv)# 停止SparkSessionspark.stop()
  • 提交命令 假设用例代码打包后的jar包名为spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行,Java接口对应的类名前有Java字样,请参考具体样例代码进行书写。 yarn-client模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseDistributedScanExample SparkOnHbaseJavaExample.jar ExampleAvrotable python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode client --jars SparkOnHbaseJavaExample.jar HBaseDistributedScanExample.py ExampleAvrotable yarn-cluster模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseDistributedScanExample --files /opt/user.keytab,/opt/krb5.conf SparkOnHbaseJavaExample.jar ExampleAvrotable python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode cluster --files /opt/user.keytab,/opt/krb5.conf --jars SparkOnHbaseJavaExample.jar HBaseDistributedScanExample.py ExampleAvrotable
  • 数据规划 在客户端执行hbase shell,进入HBase命令行,使用下面的命令创建样例代码中要使用的HBase表: create 'ExampleAvrotable','rowkey','cf1' (如果表已经存在,则每次执行提交命令前需清空表里的数据:truncate 'ExampleAvrotable') create 'ExampleAvrotableInsert','rowkey','cf1' (如果表已经存在,则每次执行提交命令前需清空表里的数据:truncate 'ExampleAvrotable')
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上(文件上传的路径需要和生成的jar包路径一致)。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中的AvroSource文件: # -*- coding:utf-8 -*-"""【说明】(1)由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现(2)如果使用yarn-client模式运行,请确认Spark2x客户端Spark2x/spark/conf/spark-defaults.conf中 spark.yarn.security.credentials.hbase.enabled参数配置为true"""from py4j.java_gateway import java_importfrom pyspark.sql import SparkSession# 创建SparkSessionspark = SparkSession\ .builder\ .appName("AvroSourceExample")\ .getOrCreate()# 向sc._jvm中导入要运行的类java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.datasources.AvroSource')# 创建类实例并调用方法,传递sc._jsc参数spark._jvm.AvroSource().execute(spark._jsc)# 停止SparkSessionspark.stop()
  • 提交命令 假设用例代码打包后的jar包名为spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行。 yarn-client模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --jars /opt/female/protobuf-java-2.5.0.jar --conf spark.yarn.user.classpath.first=true --class com.huawei.bigdata.spark.examples.datasources.AvroSource SparkOnHbaseJavaExample.jar python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode client --conf spark.yarn.user.classpath.first=true --jars SparkOnHbaseJavaExample.jar,/opt/female/protobuf-java-2.5.0.jar AvroSource.py yarn-cluster模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --jars /opt/female/protobuf-java-2.5.0.jar --conf spark.yarn.user.classpath.first=true --class com.huawei.bigdata.spark.examples.datasources.AvroSource --files /opt/user.keytab,/opt/krb5.conf SparkOnHbaseJavaExample.jar python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode cluster --files /opt/user.keytab,/opt/krb5.conf --conf spark.yarn.user.classpath.first=true --jars SparkOnHbaseJavaExample.jar,/opt/female/protobuf-java-2.5.0.jar AvroSource.py
  • 样例代码 nameNode=hdfs://haclusterresourceManager=10.1.130.10:26004queueName=QueueAdataLoadRoot=examplesoozie.coord.application.path=${nameNode}/user/oozie_cli/${dataLoadRoot}/apps/dataLoadstart=2013-04-02T00:00Zend=2014-04-02T00:00ZworkflowAppUri=${nameNode}/user/oozie_cli/${dataLoadRoot}/apps/dataLoad
  • 参数解释 “job.properties”文件中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 nameNode HDFS NameNode集群地址 resourceManager Yarn ResourceManager地址 queueName 流程任务处理时使用的MapReduce队列名 dataLoadRoot 流程任务所在目录名 oozie.coord.application.path Coordinator流程任务在HDFS上的存放路径 start 定时流程任务启动时间 end 定时流程任务终止时间 workflowAppUri Workflow流程任务在HDFS上的存放路径 可以根据业务需要,以“key=values”的格式自定义参数及值。
  • Flink应用程序开发流程 Flink开发流程参考如下步骤: 图1 Flink应用程序开发流程 表1 Flink应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Flink的基本概念。 基本概念 准备开发和运行环境 Flink的应用程序支持使用Scala、Java两种语言进行开发。推荐使用IDEA工具,请根据指导完成不同语言的开发环境配置。Flink的运行环境即Flink客户端,请根据指导完成客户端的安装和配置。 准备本地应用开发环境 准备工程 Flink提供了样例程序,您可以导入样例工程进行程序学习。或者您可以根据指导,新建一个Flink工程。 导入并配置Flink样例工程 根据场景开发工程 提供了Scala、Java两种不同语言的样例工程,帮助用户快速了解Flink各部件的编程接口。 开发Flink应用 编译并运行程序 指导用户将开发好的程序编译并提交运行。 编译并调测Flink应用 查看程序运行结果 程序运行结果会写在用户指定的路径下,用户还可以通过UI查看应用运行情况。 查看Flink应用调测结果 调优程序 您可以根据程序运行情况,对程序进行调优,使其性能满足业务场景需求。 调优完成后,请重新进行编译和运行。 组件操作指南中的“Flink性能调优”
  • Structured Streaming不支持的功能 不支持多个流聚合。 不支持limit、first、take这些取N条Row的操作。 不支持Distinct。 只有当output mode为complete时才支持排序操作。 有条件地支持流和静态数据集之间的外连接。 不支持部分DataSet上立即运行查询并返回结果的操作: count():无法从流式Dataset返回单个计数,而是使用ds.groupBy().count()返回一个包含运行计数的streaming Dataset。 foreach():使用ds.writeStream.foreach(...)代替。 show():使用输出console sink代替。
  • Structured Streaming可靠性说明 Structured Streaming通过checkpoint和WAL机制,对可重放的sources,以及支持重复处理的幂等性sinks,可以提供端到端的exactly-once容错语义。 用户可在程序中设置option("checkpointLocation", "checkpoint路径")启用checkpoint。 从checkpoint恢复时,应用程序或者配置可能发生变更,有部分变更会导致从checkpoint恢复失败,具体限制如下: 不允许source的个数或者类型发生变化。 source的参数变化,这种情况是否能被支持,取决于source类型和查询语句,例如: 速率控制相关参数的添加、删除和修改,此种情况能被支持,如:spark.readStream.format("kafka").option("subscribe", "topic")变更为spark.readStream.format("kafka").option("subscribe", "topic").option("maxOffsetsPerTrigger", ...) 修改消费的topic/files可能会出现不可预知的问题,如:spark.readStream.format("kafka").option("subscribe", "topic")变更为spark.readStream.format("kafka").option("subscribe", "newTopic") sink的类型发生变化:允许特定的几个sink的组合,具体场景需要验证确认,例如: File sink允许变更为kafka sink,kafka中只处理新数据。 kafka sink不允许变更为file sink。 kafka sink允许变更为foreach sink,反之亦然。 sink的参数变化,这种情况是否能被支持,取决于sink类型和查询语句,例如: 不允许file sink的输出路径发生变更。 允许Kafka sink的输出topic发生变更。 允许foreach sink中的自定义算子代码发生变更,但是变更结果取决于用户代码。 Projection、filter和map-like操作变更,局部场景下能够支持,例如: 支持Filter的添加和删除,如:sdf.selectExpr("a")变更为sdf.where(...).selectExpr("a").filter(...) Output schema相同时,projections允许变更,如:sdf.selectExpr("stringColumn AS json").writeStream变更为sdf.select(to_json(...).as("json")).writeStream Output schema不相同时,projections在部分条件下允许变更,如:sdf.selectExpr("a").writeStream变更为sdf.selectExpr("b").writeStream,只有当sink支持“a”到“b”的schema转换时才不会出错。 状态操作的变更,在部分场景下会导致状态恢复失败: Streaming aggregation:如sdf.groupBy("a").agg(...)操作中,不允许分组键或聚合键的类型或者数量发生变化。 Streaming deduplication:如:sdf.dropDuplicates("a")操作中,不允许分组键或聚合键的类型或者数量发生变化。 Stream-stream join:如sdf1.join(sdf2, ...)操作中,关联键的schema不允许发生变化,join类型不允许发生变化,其他join条件的变更可能导致不确定性结果。 任意状态计算:如sdf.groupByKey(...).mapGroupsWithState(...)或者sdf.groupByKey(...).flatMapGroupsWithState(...)操作中,用户自定义状态的schema或者超时类型都不允许发生变化;允许用户自定义state-mapping函数变化,但是变更结果取决于用户代码;如果需要支持schema变更,用户可以将状态数据编码/解码成二进制数据以支持schema迁移。 Source的容错性支持列表 Sources 支持的Options 容错支持 说明 File source path:必填,文件路径 maxFilesPerTrigger:每次trigger最大文件数(默认无限大) latestFirst:是否有限处理新文件(默认值: false) fileNameOnly:是否以文件名作为新文件校验,而不是使用完整路径进行判断(默认值: false) 支持 支持通配符路径,但不支持以逗号分隔的多个路径。 文件必须以原子方式放置在给定的目录中,这在大多数文件系统中可以通过文件移动操作实现。 Socket Source host:连接的节点ip,必填 port:连接的端口,必填 不支持 - Rate Source rowsPerSecond:每秒产生的行数,默认值1 rampUpTime:在达到rowsPerSecond速度之前的上升时间 numPartitions:生成数据行的并行度 支持 - Kafka Source 参见https://archive.apache.org/dist/spark/docs/3.3.1/structured-streaming-kafka-integration.html 支持 - Sink的容错性支持列表 Sinks 支持的output模式 支持Options 容错性 说明 File Sink Append Path:必须指定 指定的文件格式,参见DataFrameWriter中的相关接口 exactly-once 支持写入分区表,按时间分区用处较大 Kafka Sink Append, Update, Complete 参见:https://archive.apache.org/dist/spark/docs/3.3.1/structured-streaming-kafka-integration.html at-least-once 参见https://archive.apache.org/dist/spark/docs/3.3.1/structured-streaming-kafka-integration.html Foreach Sink Append, Update, Complete None 依赖于ForeachWriter实现 参见https://archive.apache.org/dist/spark/docs/3.3.1/structured-streaming-programming-guide.html#using-foreach ForeachBatch Sink Append, Update, Complete None 依赖于算子实现 参见https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#using-foreach-and-foreachbatch Console Sink Append, Update, Complete numRows:每轮打印的行数,默认20 truncate:输出太长时是否清空,默认true 不支持容错 - Memory Sink Append, Complete None 不支持容错,在complete模式下,重启query会重建整个表 -
  • Structured Streaming支持的功能 支持对流式数据的ETL操作。 支持流式DataFrames或Datasets的schema推断和分区。 流式DataFrames或Datasets上的操作:包括无类型,类似SQL的操作(比如select、where、groupBy),以及有类型的RDD操作(比如map、filter、flatMap)。 支持基于Event Time的聚合计算,支持对迟到数据的处理。 支持对流式数据的去除重复数据操作。 支持状态计算。 支持对流处理任务的监控。 支持批流join,流流join。 当前JOIN操作支持列表如下: 左表 右表 支持的Join类型 说明 Static Static 全部类型 即使在流处理中,不涉及流数据的join操作也能全部支持 Stream Static Inner 支持,但是无状态 Left Outer 支持,但是无状态 Right Outer 不支持 Full Outer 不支持 Stream Stream Inner 支持,左右表可选择使用watermark或者时间范围进行状态清理 Left Outer 有条件的支持,左表可选择使用watermark进行状态清理,右表必须使用watermark+时间范围 Right Outer 有条件的支持,右表可选择使用watermark进行状态清理,左表必须使用watermark+时间范围 Full Outer 不支持
  • 准备开发环境 在进行二次开发时,要准备的开发和运行环境如表1所示: 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持自带的OpenJDK,版本为1.8.0_272,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的。 X86客户端: Oracle JDK:支持1.8版本 IBM JDK:支持1.8.5.11版本 TaiShan客户端: OpenJDK:支持1.8.0_272版本 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情参见https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 安装和配置IntelliJ IDEA 用于开发Storm应用程序的工具。版本要求:JDK使用1.8版本,IntelliJ IDEA使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 安装Maven 开发环境的基本配置。用于项目管理,贯穿软件开发生命周期。 准备开发用户 参考准备 MRS 应用开发用户进行操作,准备用于应用开发的集群用户并授予相应权限。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。
  • 回答 第三方jar包(例如自定义udf)区分x86和TaiShan版本时,混合使用方案: 进入到服务端Spark2x SparkResource的安装目录(集群安装时,SparkResource可能会安装在多个节点上,登录任意一个SparkResource节点,进入到SparkResource的安装目录)。 准备好自己的jar包,例如xx.jar的x86版本和TaiShan版本。将x86版本和TaiShan版本的xx.jar分别复制到当前目录的x86文件夹和TaiShan文件夹里面。 在当前目录下执行以下命令将jar包打包: zip -qDj spark-archive-2x-x86.zip x86/* zip -qDj spark-archive-2x-arm.zip arm/* 执行以下命令查看hdfs上的spark2x依赖的jar包: hdfs dfs -ls /user/spark2x/jars/8.1.0.1 8.1.0.1是版本号,不同版本不同。 执行以下命令移动hdfs上旧的jar包文件到其他目录,例如移动到“tmp”目录。 hdfs dfs -mv /user/spark2x/jars/8.1.0.1/spark-archive-2x-arm.zip /tmp hdfs dfs -mv /user/spark2x/jars/8.1.0.1/spark-archive-2x-x86.zip /tmp 上传3中打包的spark-archive-2x-arm.zip和spark-archive-2x-x86.zip到hdfs的/user/spark2x/jars/8.1.0.1目录下,上传命令如下: hdfs dfs -put spark-archive-2x-arm.zip /user/spark2x/jars/8.1.0.1/ hdfs dfs -put spark-archive-2x-x86.zip /user/spark2x/jars/8.1.0.1/ 上传完毕后删除本地的spark-archive-2x-arm.zip,spark-archive-2x-x86.zip文件。 对其他的sparkResource安装节点执行1~2。 进入webUI重启spark2x的jdbcServer实例。 重启后,需要更新客户端配置。按照客户端所在的机器类型(x86、TaiShan)复制xx.jar的相应版本到客户端的Spark2x安装目录“${install_home}/Spark2x/spark/jars”文件夹中。${install_home}是用户的客户端安装路径,用户需要填写实际的安装目录;若本地的安装目录为“/opt/hadoopclient”,那么就复制相应版本xx.jar到“/opt/hadoopclient/Spark2x/spark/jars”文件夹里。
  • 部署运行及结果查看 导出本地jar包,请参见打包Storm样例工程应用。 将1导出的本地Jar包,5中获取的配置文件和6中获取的jar包合并统一打出完整的业务jar包,请参见打包Storm业务。 执行命令提交拓扑。 keytab方式下,若用户修改了keytab文件名,如修改为“huawei.keytab”,则需要在命令中增加第二个参数进行说明,提交命令示例(拓扑名为hdfs-test): storm jar /opt/jartarget/source.jar com.huawei.storm.example.hdfs.SimpleHDFSTopology hdfs-test huawei.keytab 安全模式下在提交source.jar之前,请确保已经进行kerberos安全登录,并且keytab方式下,登录用户和所上传keytab所属用户必须是同一个用户。 拓扑提交成功后请登录HDFS集群查看。 如果使用票据登录,则需要使用命令行定期上传票据,具体周期由票据刷新截止时间而定,步骤如下: 在安装好的storm客户端目录的“Storm/storm-1.2.1/conf/storm.yaml”文件尾部新起一行添加如下内容: topology.auto-credentials: - org.apache.storm.security.auth.kerberos.AutoTGT 执行命令:./storm upload-credentials hdfs-test
  • 代码样例 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。 下面代码片段仅为演示,具体代码参见SparkHivetoHbasePythonExample: # -*- coding:utf-8 -*-from py4j.java_gateway import java_importfrom pyspark.sql import SparkSession# 创建SparkSessionspark = SparkSession\ .builder\ .appName("SparkHivetoHbase") \ .getOrCreate()# 向sc._jvm中导入要运行的类java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.SparkHivetoHbase')# 创建类实例并调用方法spark._jvm.SparkHivetoHbase().hivetohbase(spark._jsc)# 停止SparkSessionspark.stop()
  • 提交命令 假设用例代码打包后的jar包名为 、spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行,Java接口对应的类名前有Java字样,请参考具体样例代码进行书写。 yarn-client模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseMapPartitionExample SparkOnHbaseJavaExample.jar table2 python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode client --jars SparkOnHbaseJavaExample.jar HBaseMapPartitionExample.py table2 yarn-cluster模式: java/scala版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseMapPartitionExample --files /opt/user.keytab,/opt/krb5.conf SparkOnHbaseJavaExample.jar table2 python版本(文件名等请与实际保持一致,此处仅为示例),假设对应的Java代码打包后包名为SparkOnHbaseJavaExample.jar,且放在当前提交目录。 bin/spark-submit --master yarn --deploy-mode cluster --files /opt/user.keytab,/opt/krb5.conf --jars SparkOnHbaseJavaExample.jar HBaseMapPartitionExample.py table2
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上(文件上传的路径需要和生成的jar包路径一致)。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中HBaseMapPartitionExample文件: # -*- coding:utf-8 -*-"""【说明】(1)由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现(2)如果使用yarn-client模式运行,请确认Spark2x客户端Spark2x/spark/conf/spark-defaults.conf中 spark.yarn.security.credentials.hbase.enabled参数配置为true"""from py4j.java_gateway import java_importfrom pyspark.sql import SparkSession# 创建SparkSessionspark = SparkSession\ .builder\ .appName("JavaHBaseMapPartitionExample")\ .getOrCreate()# 向sc._jvm中导入要运行的类java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseMapPartitionExample')# 创建类实例并调用方法,传递sc._jsc参数spark._jvm.JavaHBaseMapPartitionExample().execute(spark._jsc, sys.argv)# 停止SparkSessionspark.stop()
  • 回答 Spark部署时,如下jar包存放在客户端的“${SPARK_HOME}/jars/streamingClient010”目录以及服务端的“${BIGDATA_HOME}/ FusionInsight _Spark2x_8.1.0.1/install/FusionInsight-Spark2x-3.1.1/spark/jars/streamingClient010”目录: kafka-clients-xxx.jar kafka_2.12-xxx.jar spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar spark-token-provider-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 由于“$SPARK_HOME/jars/streamingClient010/*”默认没有添加到classpath,所以需要手动配置。 在提交应用程序运行时,在命令中添加如下参数即可,详细示例可参考在Linux环境中编包并运行Spark程序。 --jars $SPARK_CLIENT_HOME/jars/streamingClient010/kafka-client-2.4.0.jar,$SPARK_CLIENT_HOME/jars/streamingClient010/kafka_2.12-*.jar,$SPARK_CLIENT_HOME/jars/streamingClient010/spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 用户自己开发的应用程序以及样例工程都可使用上述命令提交。 但是Spark开源社区提供的KafkaWordCount等样例程序,不仅需要添加--jars参数,还需要配置其他,否则会报“ClassNotFoundException”错误,yarn-client和yarn-cluster模式下稍有不同。 yarn-client模式下 在除--jars参数外,在客户端“spark-defaults.conf”配置文件中,将“spark.driver.extraClassPath”参数值中添加客户端依赖包路径,如“$SPARK_HOME/jars/streamingClient010/*”。 yarn-cluster模式下 除--jars参数外,还需要配置其他,有三种方法任选其一即可,具体如下: 在客户端spark-defaults.conf配置文件中,在“spark.yarn.cluster.driver.extraClassPath”参数值中添加服务端的依赖包路径,如“${BIGDATA_HOME}/FusionInsight_Spark2x_8.1.0.1/install/FusionInsight-Spark2x-3.1.1/spark/jars/streamingClient010/*”。 将各服务端节点的“original-spark-examples_2.12-3.1.1-xxx.jar”包删除。 在客户端“spark-defaults.conf”配置文件中,修改或增加配置选项“spark.driver.userClassPathFirst” = “true”。
共100000条
提示

您即将访问非华为云网站,请注意账号财产安全