华为云用户手册

  • 动态benchmark 本章节介绍如何进行动态benchmark验证。 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境。 cd /home/ma-user/AscendCloud/AscendCloud-LLM/llm_tools/llm_evaluation/benchmark_tools conda activate python-3.9.10 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 python benchmark_serving.py --backend openai --host 127.0.0.1 --port 8080 --dataset custom_datasets.json --dataset-type custom \ --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 \ --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 服务启动时如果配置了--num-scheduler-steps和--multi-step-stream-outputs=false,则需配置此参数与服务启动时--num-scheduler-steps一致。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图2 动态benchmark测试结果(示意图)
  • benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
  • per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在TensorRT-LLM/examples路径对应的模型文件夹下,例如:llama模型对应量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数。
  • 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1 llama2 llama2-7b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=2 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend 2 llama2-13b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 3 llama2-70b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 4 llama3 llama3-8b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 5 llama3-70b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 6 Qwen qwen-7b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 7 qwen-14b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend 8 qwen-72b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 9 Qwen1.5 qwen1.5-7b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend 10 qwen1.5-14b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 11 qwen1.5-32b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 4 2*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 1 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend 12 qwen1.5-72b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend 13 Yi yi-6b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend 14 yi-34b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=4 1 2*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=4 2 2*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend 15 ChatGLMv3 glm3-6b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 2 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend 16 Baichuan2 baichuan2-13b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 1 2*节点 & 8*Ascend 17 Qwen2 qwen2-0.5b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 18 qwen2-1.5b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 19 qwen2-7b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend 20 qwen2-72b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend 21 GLMv4 glm4-9b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=2 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 22 mistral mistral-7b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4 2 1*节点 & 8*Ascend 23 mixtral mixtral-8x7b pretrain/sft 4096 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=8 1 2*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=2 PP(pipeline model parallel size)=8 1 2*节点 & 8*Ascend 24 llama3.1 llama3.1-8b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 25 llama3.1-70b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 4 2*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend 26 Qwen2.5 qwen2.5-0.5b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 27 qwen2.5-7b pretrain/sft 4096 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=2 2 1*节点 & 8*Ascend 28 qwen2.5-14b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend lora TP(tensor model parallel size)=4 PP(pipeline model parallel size)=1 4 1*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=1 2 1*节点 & 8*Ascend 29 qwen2.5-32b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 4 2*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 1 2*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=2 2 2*节点 & 8*Ascend 30 qwen2.5-72b pretrain/sft 4096 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 1 4*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 4 4*节点 & 8*Ascend pretrain/sft 8192 TP(tensor model parallel size)=8 PP(pipeline model parallel size)=8 1 8*节点 & 8*Ascend lora TP(tensor model parallel size)=8 PP(pipeline model parallel size)=4 2 4*节点 & 8*Ascend 31 llama3.2 llama3.2-1b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend 32 llama3.2-3b pretrain/sft 4096 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 2 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 2 1*节点 & 4*Ascend pretrain/sft 8192 TP(tensor model parallel size)=1 PP(pipeline model parallel size)=2 1 1*节点 & 4*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=1 1 1*节点 & 4*Ascend
  • LLama-Factory微调数据集预处理参数说明 ModelLink开源仓已经支持LLama-Factory格式的数据预处理,目前仅支持sft全参微调,lora微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data) --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。可选项有['AlpacaStyleInstructionHandler SharegptStyleInstructionHandler']。 AlpacaStyleInstructionHandler :用于处理Alpaca风格的数据集。 SharegptStyleInstructionHandler:用于处理sharegpt风格的数据集。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b/
  • ModelLink微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data) --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。 GeneralInstructionHandler:用于sft、lora微调时的数据预处理过程中,会对数据集full_prompt中的user_prompt进行mask操作。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b/data/finetune/
  • 用户自定义执行数据处理脚本修改参数说明 同样以 llama2 为例,用户可直接编辑 scripts/llama2/1_preprocess_data.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 表1 数据预处理中的环境变量 环境变量 示例 参数说明 RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/llm_train/AscendSpeed/training_data/${用户自定义的数据集路径和名称} 原始数据集的存放路径。 TOKENIZER_PATH /home/ma-user/ws/llm_train/AscendSpeed/tokenizers/llama2-13b tokenizer的存放路径,与HF权重存放在一个文件夹下。请根据实际规划修改。 PRO CES SED_DATA_PREFIX /home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b/data 处理后的数据集保存路径+数据集前缀 TOKENIZER_TYPE PretrainedFromHF 可选项有:['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为 PretrainedFromHF 。 SEQ_LEN 4096 要处理的最大seq length。脚本会检测超出SEQ_LEN长度的数据,并打印log。
  • ModelLink预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/AscendSpeed/processed_for_input/llama2-13b/data/pretrain/
  • ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的tokenizer文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
  • Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError: Error(s) in loading state_dict for VocabParallelEmbedding: size mismatch for weight: copying a param with shape torch.Size([64000, 4096]) from checkpoint, the shape in current model is torch.Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件
  • 步骤三:启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如llamafactory。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。 #统一文件权限 chmod -R 777 ${work_dir} # ${work_dir}:/home/ma-user/ws 宿主机代码和数据目录 #例如: chmod -R 777 /home/ma-user/ws 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 使用ma-user用户安装依赖包。 #进入scripts目录 cd /home/ma-user/ws/llm_train/LLaMAFactory #执行安装命令,安装依赖包及/LLaMAFactory代码包 sh install.sh
  • 步骤一:检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_3_ascend:pytorch_2.3.1-cann_8.0.rc3-py_3.10-hce_2.0.2409-aarch64-snt9b-20241114095658-d7e26d8 表2 模型镜像版本 模型 版本 CANN cann_8.0.RC3 驱动 23.0.6 PyTorch 2.3.0
  • Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。
  • Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir ./llama-models/llama-7b-hf \ --output_dir ./llama-models/llama-7b-hf/int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。
  • 录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三:启动训练脚本 新加DO_PROFILER=1和PROF_SAVE_PATH=/save_path参数,单机启动举例说明: DO_PROFILER=1 PROF_SAVE_PATH=/save_path sh demo.sh localhost 1 0 PROF_SAVE_PATH:Profiling录制结果存放路径 DO_PROFILER:是否开启Profiling录制功能 父主题: 训练脚本说明
  • Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError: Error(s) in loading state_dict for VocabParallelEmbedding: size mismatch for weight: copying a param with shape torch.Size([64000, 4096]) from checkpoint, the shape in current model is torch.Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件
  • ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的tokenizer文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
  • 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools 多模态模型脚本相对路径是llm_tools/llm_evaluation/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer \ --epochs 5 \ --parallel-num 1 4 8 16 32 \ --prompt-tokens 1024 2048 \ --output-tokens 128 256 \ --height ${height} \ --width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。
  • benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools |--- modal_benchmark |--- modal_benchmark_parallel.py # modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
  • Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 export GLOO_SOCKET_IFNAME=enp67s0f5 # 多机之间使用gloo通信时需要指定网口名称, export TP_SOCKET_IFNAME=enp67s0f5 # 多机之间使用TP通信时需要指定网口名称 export HCCL_SOCKET_IFNAME=enp67s0f5 # 多机之间使用HCCL通信时需要指定网口名称 关于环境变量的解释可以参考:Distributed communication package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
  • ppo_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/llama3-8b reward_model: /home/ma-user/ws/saves/rm/llama3-8b/lora ### method stage: ppo do_train: true # 全参 # finetuning_type: full # reward_model_type: full # lora finetuning_type: lora lora_target: all deepspeed: examples/deepspeed/ds_z0_config.json ### dataset dataset: identity,alpaca_en_demo template: llama3 cutoff_len: 4096 max_samples: 50000 overwrite_cache: true preprocessing_num_workers: 16 packing: true ### output output_dir: /home/ma-user/ws/saves/ppo/llama3-8b/lora logging_steps: 1 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-5 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0 bf16: true ddp_timeout: 180000000 flash_attn: sdpa include_tokens_per_second: true include_num_input_tokens_seen: true ### generate max_new_tokens: 512 top_k: 0 top_p: 0.9
  • tune_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: sft do_train: true # 全参 finetuning_type: full # lora # finetuning_type: lora # lora_target: all deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: identity,alpaca_en_demo dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data template: qwen cutoff_len: 4096 packing: true max_samples: 100000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: /home/ma-user/ws/saves/tune/Qwen2-72B/sft logging_steps: 2 save_steps: 5000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 2.0e-5 num_train_epochs: 10.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true flash_attn: sdpa ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • dpo_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/Qwen2-72B ### method stage: dpo do_train: true # lora finetuning_type: lora lora_target: all pref_beta: 0.1 pref_loss: sigmoid deepspeed: examples/deepspeed/ds_z3_config.json ### dataset dataset: dpo_en_demo dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data template: qwen cutoff_len: 4096 packing: true max_samples: 50000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: /home/ma-user/ws/saves/dpo/llama3-8b/lora logging_steps: 2 save_steps: 5000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 5.0e-6 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true flash_attn: sdpa ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • rm_yaml样例模板 ### model model_name_or_path: /home/ma-user/ws/tokenizers/llama3-8b ### method stage: rm do_train: true # 全参 # finetuning_type: full # lora finetuning_type: lora lora_target: all deepspeed: examples/deepspeed/ds_z0_config.json ### dataset dataset: dpo_en_demo template: llama3 cutoff_len: 4096 max_samples: 50000 overwrite_cache: true preprocessing_num_workers: 16 packing: true ### output output_dir: /home/ma-user/ws/saves/rm/llama3-8b/lora logging_steps: 1 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0 bf16: true ddp_timeout: 180000000 include_tokens_per_second: true include_num_input_tokens_seen: true
  • ds_z1_config.json样例模板 { "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "zero_allow_untested_optimizer": true, "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "zero_optimization": { "stage": 1, "allgather_partitions": true, "allgather_bucket_size": 5e8, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 5e8, "contiguous_gradients": true, "round_robin_gradients": true } }
  • 步骤二:修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。 指令监督微调,复制tune_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo.yaml文件内容。 PPO强化训练,先进行RM奖励训练任务后,复制ppo_yaml样例模板内容覆盖demo.yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持llama3-70B,存在已知的内存OOM问题,待社区版本修复。 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type: lora lora_target: all lora+,目前仅支持qwen1.5-7B指令监督微调;配置如下: finetuning_type: lora lora_target: all loraplus_lr_ratio: 16.0 修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配 dataset 指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据集存放于dataset_info.json同目录下。 dataset_dir /home/ma-user/ws/LLaMAFactory/LLaMA-Factory/data 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。 ZeRO-0,配置以下参数 deepspeed: examples/deepspeed/ds_z0_config.json ZeRO-1,配置以下参数,并复制ds_z1_config.json样例模板至工作目录/home/ma-user/LLaMAFactory/LLaMA-Factory/examples/deepspeed deepspeed: examples/deepspeed/ds_z1_config.json ZeRO-2,配置以下参数 deepspeed: examples/deepspeed/ds_z2_config.json ZeRO-2-Offload,配置以下参数 deepspeed: examples/deepspeed/ds_z2_offload_config.json ZeRO-3,配置以下参数 deepspeed: examples/deepspeed/ds_z3_config.json ZeRO-3-Offload,配置以下参数 deepspeed: examples/deepspeed/ds_z3_offload_config.json 否,默认选用Accelerate加速深度学习训练框架,注释掉deepspeed参数。 是否开启NPU FlashAttention融合算子,具体约束详见NPU_Flash_Attn融合算子约束 是,配置以下参数。 flash_attn: sdpa 否,配置以下参数关闭。 flash_attn: disabled 是否使用固定句长。 是,配置以下参数 packing: true 否,默认使用动态句长,注释掉packing参数。 选用数据精度格式bf16或fp16二者选一,两者区别可查看BF16和FP16说明。 bf16,配置以下参数。 bf16: true fp16,相比bf16还需配置loss scale参数,配置如下。 设置fp16为True。 fp16: true 修改deepspeed的"loss_scale"参数,配置如下。 修改ZeRO优化器配置文件,如ZeRO2命令如下。 cd /home/ma-user/LLaMAFactory/LLaMA-Factory/examples/deepspeed vim ds_z2_config.json 使用fp16容易出现数值溢出,因此配置loss scale建议配置4096或4096以上: "loss_scale": 4096, 是否使用自定义数据集。 是,参考准备数据(可选),以指令监督微调数据集为例,配置以下参数:参考表1dataset_dir和dataset参数说明;如alpaca_gpt4_data.json数据集前缀则为alpaca_gpt4_data。 dataset: alpaca_gpt4_data dataset_dir: /home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data 否,使用代码包自带数据集,注释掉dataset_dir参数,配置参数如下。 指令监督微调/PPO数据集 dataset: identity,alpaca_en_demo 多模态数据集,如qwen2_vl系列模型 dataset: mllm_demo,identity RM/DPO,目前仅支持llama3系列模型 dataset: dpo_en_demo 是否使用falcon-11b、qwen2_vl系列、glm4-9b模型。 是,更新配置或命令。 falcon-11b,参考falcon-11B模型替换文件。 glm4-9b,参考glm4-9b模型修改文件内容。 qwen2_vl系列,数据集为多模态数据集,如果前面步骤已配置请忽略。具体配置如下: 数据集dataset配置: dataset: mllm_demo,identity 否,忽略此步骤,执行下一步。 如需其他配置参数,可参考表1按照实际需求修改。
  • 基础镜像的使用 用户通过E CS 获取和上传基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过使用基础镜像、ECS中构建新镜像的方式(二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 注意:训练作业的资源池以及ECS都需要联通外网,否则会安装和下载失败。
  • 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b CANN:cann_8.0.rc3 PyTorch:2.1.0
共100000条