华为云用户手册

  • 人工标注 对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。 语音分割:对语音进行分段标注。 文本 文本分类:对文本的内容按照标签进行分类处理。 命名实体:针对文本中的实体片段进行标注,如“时间”、“地点”等。 文本三元组:针对文本中的实体片段和实体之间的关系进行标注。 视频 视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。
  • 不同类型数据集支持的功能列表 其中,不同类型的数据集,支持不同的功能,详细信息请参见表1。 表1 不同类型数据集支持的功能 数据集类型 标注类型 人工标注 智能标注 团队标注 图片 图像分类 支持 支持 支持 物体检测 支持 支持 支持 图像分割 支持 - - 音频 声音分类 支持 - - 语音内容 支持 - - 语音分割 支持 - 支持 文本 文本分类 支持 - 支持 命名实体 支持 - 支持 文本三元组 支持 - 支持 视频 视频标注 支持 - - 自由格式 - - - - 表格 - - - -
  • 文件型数据标注状态 数据标注状态分为“未标注”和“已标注”。 未标注:仅导入标注对象(指待标注的图片,文本等),不导入标注内容(指标注结果信息)。 已标注:同时导入标注对象和标注内容,当前“自由格式”的数据集不支持导入标注内容。 为了确保能够正确读取标注内容,要求用户严格按照规范存放数据: 导入方式选择目录时,需要用户选择“标注格式”,并按照标注格式的要求存放数据,详细规范请参见标注格式章节。 导入方式选择manifest时,需要满足manifest文件的规范。 数据标注状态选择“已标注”,您需要保证目录或manifest文件满足相应的格式规范,否则可能存在导入失败的情况。 导入已标注的文件,导入完成后,请检查您导入的数据是否为已标注状态。
  • 表格数据集从OBS导入操作 ModelArts支持从OBS导入表格数据,即csv文件。 表格数据集导入说明: 导入成功的前提是,数据源的schema需要与创建数据集指定的schema保持一致。其中schema指表格的列名和类型,创建数据集时一旦指定,不支持修改。 从OBS导入csv文件,不会校验数据类型,但是列数需要跟数据集的schema保持一致。如果数据格式不合法,会将数据置为null,详见表4。 导入的csv文件要求如下:需要选择文件所在目录,其中csv文件的列数需要跟数据集schema一致。支持自动获取csv文件的schema。 ├─dataset-import-example │ table_import_1.csv │ table_import_2.csv │ table_import_3.csv │ table_import_4.csv
  • 查看训练日志 查看训练日志有2种方式,在OBS查看和在PyCharm ToolKit工具中查看。 在OBS查看训练日志 提交训练作业时,系统将自动在您配置的OBS Path中,使用作业名称创建一个新的文件夹,用于存储训练输出的模型、日志和代码。 例如“train-job-01”作业,提交作业时会在“test-modelarts2”桶下创建一个命名为“train-job-01”的文件夹,且此文件夹下分别新建了三个文件夹“output”、“log”、“code”,分别用于存储输出模型、日志和训练代码。“output”文件夹还会根据您的训练作业版本再创建子文件夹,结构示例如下。 test-modelarts2 |---train-job-01 |---output |---log |---code
  • 创建算法 进入ModelArts控制台,参考创建算法操作指导,创建自定义算法。镜像应该满足pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64或tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64引擎。 对于用户希望优化的超参,需在“超参”设置中定义,可以给定名称、类型、默认值、约束等,具体设置方法可以参考定义超参。 单击勾选“自动搜索”,为算法设置算法搜索功能。自动搜索作业运行过程中,ModelArts后台通过指标正则表达式获取搜索指标参数,朝指定的优化方向进行超参优化。用户需要在代码中打印搜索参数并在控制台配置以下参数。 图1 设置算法搜索功能 搜索指标 搜索指标为目标函数的值,通常可以设置为loss、accuracy等。通过优化搜索指标的目标值超优化方向收敛,找到最契合的超参,提高模型精度和收敛速度。 表1 搜索指标参数 参数 说明 名称 搜索指标的名称。需要与您在代码中打印的搜索指标参数保持一致。 优化方向 可选“最大化”或者“最小化”。 指标正则 填入正则表达式。您可以单击智能生成功能自动获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。 搜索算法配置 ModelArts内置三种超参搜索算法,用户可以根据实际情况选择对应的算法,支持多选。对应的算法和参数解析请参考以下: bayes_opt_search:贝叶斯优化(SMAC) tpe_search:TPE算法 anneal_search:模拟退火算法(Anneal) 提交创建算法完成后即可执行下一步,创建训练作业。
  • 准备工作 数据已完成准备:已在ModelArts中创建可用的数据集,或者您已将用于训练的数据集上传至OBS目录。 请准备好训练脚本,并上传至OBS目录。训练脚本开发指导参见开发用于预置框架训练的代码。 在训练代码中,用户需打印搜索指标参数。 已在OBS创建至少1个空的文件夹,用于存储训练输出的内容。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的OBS目录与ModelArts在同一区域。
  • 配置Lite Cluster存储 如果没有挂载任何外部存储,此时可用存储空间根据dockerBaseSize的配置来决定,可访问的存储空间比较小,因此建议通过挂载外部存储空间解决存储空间受限问题。 容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,详情如表1所示。容器存储的基础知识了解请参见存储基础知识,有助您理解本章节内容。您可查看数据盘空间分配说明,了解节点数据盘空间分配的情况,以便您根据业务实际情况配置数据盘大小。 表1 容器挂载存储的方式及差异 容器挂载存储的方式 使用场景 特点 挂载操作参考 EmptyDir 适用于训练缓存场景。 Kubernetes的临时存储卷,临时卷会遵从Pod的生命周期,与Pod一起创建和删除。 使用临时存储路径 HostPath 适用于以下场景: 容器工作负载程序生成的日志文件需要永久保存。 需要访问宿主机上Docker引擎内部数据结构的容器工作负载。 节点存储。多个容器可能会共享这一个存储,会存在写冲突的问题。 Pod删除后,存储不会清理。 使用主机路径 OBS 适用于训练数据集的存储。 对象存储。常用OBS SDK进行样本数据下载。存储量大,但是离节点比较远,直接训练速度会比较慢,通常会先将数据拉取到本地cache,然后再进行训练任务。 静态挂载 动态挂载 SFS Turbo 适用于海量小文件业务场景。 提供posix协议的文件系统; 需要和资源池在同一个VPC下或VPC互通; 价格较高。 静态挂载 动态挂载:不支持 SFS 适用于多读多写场景的持久化存储。 适用大容量扩展以及成本敏感型的业务场景,包括 媒体处理 、内容管理、大数据分析和分析工作负载程序等。 SFS容量型文件系统不适合海量小文件业务。 静态挂载 动态挂载 EVS 适用于Notebook场景,开发过程的数据持久化。 每个云盘只能在单个节点挂载。 存储大小根据云硬盘的大小而定。 静态挂载 动态挂载 父主题: Lite Cluster资源配置
  • Lite Cluster使用流程 ModelArts Lite Cluster面向k8s资源型用户,提供托管式k8s集群,并预装主流AI开发插件以及自研的加速插件,以云原生方式直接向用户提供AI Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。本文旨在帮助您了解Lite Cluster的基本使用流程,帮助您快速上手。 图1 资源池架构图 如图所示为Lite Cluster架构图。Lite Cluster基于CCE服务实现对资源节点的管理,因此,用户首先需要购买一个CCE集群。在ModelArts控制台购买Lite Cluster集群时,ModelArts的资源池会先纳管这个CCE集群,然后根据用户设置的规格创建相应的计算节点(BMS/E CS )。随后,CCE会对这些节点进行纳管,并且ModelArts会在CCE集群中安装npuDriver、os-node-agent等插件。完成Cluster资源池的购买后,您即可对资源进行配置,并将数据上传至存储云服务中。当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite Cluster进行使用。 资源开通:您需要开通资源后才可使用Lite Cluster,在开通资源前,请确保完成所有相关准备工作,包括申请开通所需的规格和进行权限配置。随后,在ModelArts控制台上购买Lite Cluster资源。请参考Lite Cluster资源开通。 资源配置:完成资源购买后,需要对网络、存储、驱动进行相关配置。请参考Lite Cluster资源配置。 资源使用:完成资源配置后,您可以使用集群资源运行训练和推理训练,具体案例可参考Lite Cluster资源使用。 资源管理:Lite Cluster提供扩缩容、驱动升级等管理手段,您可在ModelArts控制台上对资源进行管理。请参考Lite Cluster资源管理。 表1 相关名词解释 名词 含义 容器 容器技术起源于Linux,是一种内核虚拟化技术,提供轻量级的虚拟化,以便隔离进程和资源。尽管容器技术已经出现很久,却是随着Docker的出现而变得广为人知。Docker是第一个使容器能在不同机器之间移植的系统。它不仅简化了打包应用的流程,也简化了打包应用的库和依赖,甚至整个操作系统的文件系统能被打包成一个简单的可移植的包,这个包可以被用来在任何其他运行Docker的机器上使用。 Kubernetes Kubernetes是一个开源的容器编排部署管理平台,用于管理云平台中多个主机上的容器化应用。Kubernetes的目标是让部署容器化的应用简单并且高效,Kubernetes提供了应用部署、规划、更新、维护的一种机制。使用Lite Cluster需要用户具备一定的Kubernetes知识背景,您可参考Kubernetes基础知识。 CCE 云容器引擎(Cloud Container Engine,简称CCE)是一个企业级的Kubernetes集群托管服务,支持容器化应用的全生命周期管理,为您提供高度可扩展的、高性能的云原生应用部署和管理方案。CCE官网文档可参考云容器引擎。 BMS 裸金属服务器(Bare Metal Server)是一款兼具虚拟机弹性和物理机性能的计算类服务,为您和您的企业提供专属的云上物理服务器,为核心数据库、关键应用系统、高性能计算、大数据等业务提供卓越的计算性能以及数据安全。 ECS 弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,可帮助您打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率。 os-node-agent ModelArts Lite k8s Cluster节点默认会安装os-node-agent插件,用于对节点进行管理,例如: 驱动升级:通过os-node-agent插件下载驱动文件并进行驱动版本升级、回退。 故障检测:通过os-node-agent插件在系统内周期性巡检故障特征,及时发现节点故障。 指标采集:通过os-node-agent插件采集GPU/NPU利用率指标等重要的观测数据,上报到租户侧 AOM 。 节点运维:授权后,通过os-node-agent插件执行诊断脚本,进行故障定位定界。 父主题: Lite Cluster使用前必读
  • Step5 购买CCE集群 购买Cluster资源池时,需要选择CCE集群,若您没有可用的CCE集群,可参考购买Standard/Turbo集群进行购买,集群配套版本请参考不同机型的对应的软件配套版本。 创建Cluster资源池时,请确保CCE集群为“运行中”状态。 当前仅支持CCE集群1.23&1.25&1.28版本。 若您没有可用的CCE集群,可先创建CCE集群。CCE 1.28集群版本支持通过控制台、API方式创建,CCE 1.23和CCE 1.25版本支持通过API方式创建。不同版本的CCE集群创建方式请见Kubernetes版本策略。 若您已有CCE集群,但CCE集群版本低于1.23,则可参考升级集群的流程和方法,建议将集群升级至1.28版本。
  • 配置Lite Cluster网络 本章节介绍如何申请弹性公网IP并绑定到弹性云服务器。通过本文档,您可以实现弹性云服务器访问公网的目的。 使用华为云账号登录CCE管理控制台。 找到购买Cluster资源时选择的CCE集群,单击名称进入CCE集群详情页面,单击“节点管理”页签,在“节点”页签中单击需要登录的节点名称,跳转至弹性云服务器页面。 图1 节点管理 绑定弹性公网IP。 若已有未绑定的弹性公网IP,直接选择即可。如果没有可用的弹性公网IP,需要先购买弹性公网IP,具体操作请参见申请弹性公网IP。 图2 弹性公网IP 单击“购买弹性公网IP”,进入购买页。 图3 绑定弹性公网IP 图4 购买弹性公网IP 完成购买后,返回弹性云服务器页面,刷新列表。 选择刚才创建的弹性公网IP,单击“确定”。 图5 绑定弹性公网IP 通过SSH方式远程访问集群资源包括2种方式,密码方式或密钥方式,二选一即可。 通过SSH密钥方式登录云服务器,具体操作请参见SSH密钥登录方式。 通过SSH密码方式登录云服务器,具体操作请参见SSH密码登录方式。 父主题: Lite Cluster资源配置
  • 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2.myhuaweicloud.com/os-public-repo/bert_pretrain_mindspore:v1 docker tag swr.cn-southwest-2.myhuaweicloud.com/os-public-repo/bert_pretrain_mindspore:v1 bert_pretrain_mindspore:v1 在主机上新建config.yaml文件。 config.yaml文件用于配置pod,本示例中使用sleep命令启动pod,便于进入pod调试。您也可以修改command为对应的任务启动命令(如“python train.py”),任务会在启动容器后执行。 config.yaml内容如下: apiVersion: v1 kind: ConfigMap metadata: name: configmap1980-yourvcjobname # 前缀使用“configmap1980-”不变,后接vcjob的名字 namespace: default # 命名空间自选,需要和下边的vcjob处在同一命名空间 labels: ring-controller.cce: ascend-1980 # 保持不动 data: #data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 # The value cannot be changed. The volcano API must be used. kind: Job # Only the job type is supported at present. metadata: name: yourvcjobname # job名字,需要和configmap中名字保持一致 namespace: default # 和configmap保持一致 labels: ring-controller.cce: ascend-1980 # 保持不动 fault-scheduling: "force" spec: minAvailable: 1 # The value of minAvailable is 1 in a single-node scenario and N in an N-node distributed scenario. schedulerName: volcano # 保持不动,Use the Volcano scheduler to schedule jobs. policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true maxRetry: 3 queue: default tasks: - name: "yourvcjobname-1" replicas: 1 # The value of replicas is 1 in a single-node scenario and N in an N-node scenario. The number of NPUs in the requests field is 8 in an N-node scenario. template: metadata: labels: app: mindspore ring-controller.cce: ascend-1980 # 保持不动,The value must be the same as the label in ConfigMap and cannot be changed. spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: volcano.sh/job-name operator: In values: - yourvcjobname topologyKey: kubernetes.io/hostname containers: - image: bert_pretrain_mindspore:v1 # 镜像地址,Training framework image, which can be modified. imagePullPolicy: IfNotPresent name: mindspore env: - name: name # The value must be the same as that of Jobname. valueFrom: fieldRef: fieldPath: metadata.name - name: ip # IP address of the physical node, which is used to identify the node where the pod is running valueFrom: fieldRef: fieldPath: status.hostIP - name: framework value: "MindSpore" command: - "sleep" - "1000000000000000000" resources: requests: huawei.com/ascend-1980: "1" # 需求卡数,key保持不变。Number of required NPUs. The maximum value is 16. You can add lines below to configure resources such as memory and CPU. limits: huawei.com/ascend-1980: "1" # 限制卡数,key保持不变。The value must be consistent with that in requests. volumeMounts: - name: ascend-driver #驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons #驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: localtime mountPath: /etc/localtime - name: hccn #驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi #npu-smi mountPath: /usr/local/sbin/npu-smi nodeSelector: accelerator/huawei-npu: ascend-1980 volumes: - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: localtime hostPath: path: /etc/localtime # Configure the Docker time. - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi restartPolicy: OnFailure 根据config.yaml创建pod。 kubectl apply -f config.yaml 检查pod启动情况,执行下述命令。如果显示“1/1 running”状态代表启动成功。 kubectl get pod -A 进入容器,{pod_name}替换为您的pod名字(get pod中显示的名字),{namespace}替换为您的命名空间(默认为default)。 kubectl exec -it {pod_name} bash -n {namespace} 查看卡信息,执行以下命令。 npu-smi info kubernetes会根据config.yaml文件中配置的卡数分配资源给pod,如下图所示由于配置了1卡因此在容器中只会显示1卡,说明配置生效。 图2 查看卡信息 修改pod的卡数。由于本案例中为分布式训练,因此所需卡数修改为8卡。 删除已创建的pod。 kubectl delete -f config.yaml 将config.yaml文件中“limit”和“request”改为8。 vi config.yaml 图3 修改卡数 重新创建pod。 kubectl apply -f config.yaml 进入容器并查看卡信息,{pod_name}替换为您的pod名字,{namespace}替换为您的命名空间(默认为default)。 kubectl exec -it {pod_name} bash -n {namespace} npu-smi info 如图所示为8卡,pod配置成功。 图4 查看卡信息 查看卡间通信配置文件,执行以下命令。 cat /user/config/jobstart_hccl.json 多卡训练时,需要依赖“rank_table_file”做卡间通信的配置文件,该文件自动生成,pod启动之后文件地址。为“/user/config/jobstart_hccl.json”,“/user/config/jobstart_hccl.json”配置文件生成需要一段时间,业务进程需要等待“/user/config/jobstart_hccl.json”中“status”字段为“completed”状态,才能生成卡间通信信息。如下图所示。 图5 卡间通信配置文件 启动训练任务。 cd /home/ma-user/modelarts/user-job-dir/code/bert/ export MS_ENABLE_GE=1 export MS_GE_TRAIN=1 python scripts/ascend_distributed_launcher/get_distribute_pretrain_cmd.py --run_script_dir ./scripts/run_distributed_pretrain_ascend.sh --hyper_parameter_config_dir ./scripts/ascend_distributed_launcher/hyper_parameter_config.ini --data_dir /home/ma-user/modelarts/user-job-dir/data/cn-news-128-1f-mind/ --hccl_config /user/config/jobstart_hccl.json --cmd_file ./distributed_cmd.sh bash scripts/run_distributed_pretrain_ascend.sh /home/ma-user/modelarts/user-job-dir/data/cn-news-128-1f-mind/ /user/config/jobstart_hccl.json 图6 启动训练任务 训练任务加载需要一定时间,在等待若干分钟后,可以执行下述命令查看卡信息。如下图可见,8张卡均被占用,说明训练任务在进行中 npu-smi info 图7 查看卡信息 若想停止训练任务,可执行下述命令关闭进程,查询进程后显示已无运行中python进程。 pkill -9 python ps -ef 图8 关闭训练进程 limit/request配置cpu和内存大小,已知单节点Snt9B机器为:8张Snt9B卡+192u1536g,请合理规划,避免cpu和内存限制过小引起任务无法正常运行。
  • 配置kubectl工具 kubectl是Kubernetes集群的命令行工具,配置kubectl后,您可通过kubectl命令操作Kubernetes集群。本文介绍如何配置kubectl工具,操作步骤如下。 进入资源管理-AI专属资源池-,单击Lite资源池。 图1 专属资源池页签 单击创建的专属资源池,进入专属资源池详情页面。 图2 专属资源池详情 单击对应的CCE集群,进入CCE集群详情页面,在集群信息栏找到“连接信息”。 图3 连接信息 使用kubectl工具。 若通过内网使用kubectl工具,需要将kubectl工具安装在和集群在相同vpc下的某一台机器上。单击kubectl后的“配置”按钮。按照界面提示步骤操作即可。 图4 通过内网使用kubectl工具 通过公网使用kubectl工具,可以将kubectl安装在任一台可以访问公网的机器。 首先需要绑定公网地址,单击公网地址后的“绑定”按钮。 图5 绑定公网地址 选择已有的公网IP,或者跳至创建,创建新的弹性公网IP。 完成公网地址绑定后,在“集群信息”找到“连接信息”,单击kubectl后的“配置”按钮。 按照界面提示步骤操作即可。 图6 配置kubectl 验证。 在安装了kubectl工具的机器上执行如下命令,显示集群节点即为成功。 kubectl get node 父主题: Lite Cluster资源配置
  • Lite Cluster高危操作一览表 当您在CCE、ECS或BMS服务控制台直接操作ModelArts Lite Lite Cluster资源时,可能会导致资源池部分功能异常。下表可帮助您定位异常出现的原因,风险操作包括但不限于以下内容。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。 表1 操作及其对应风险 操作对象 操作名称 风险描述 风险等级 应对措施 集群 升级、修改、休眠集群、删除集群等。 可能影响ModelArts侧基本功能,包括但不限于资源池管理、节点管理、扩缩容、驱动升级等。 高 不可恢复。 节点 退订、移除、关机、污点管理、切换/重装操作系统等。 可能影响ModelArts侧基本功能,包括但不限于节点管理、扩缩容、驱动升级、带本地盘机型的本地盘数据丢失等。 高 不可恢复。 修改网络安全组 可能影响ModelArts侧基本功能,包括但不限于节点管理、扩缩容、驱动升级等。 中 改回原有内容。 网络 修改/删除集群关联网段。 影响ModelArts侧基本功能,包括但不限于节点管理、扩缩容、驱动升级等。 高 不可恢复。 插件 升级、卸载gpu-beta插件。 可能导致GPU驱动使用异常。 中 回退版本、重装插件。 升级、卸载huawei-npu插件。 可能导致NPU驱动使用异常。 中 回退版本、重装插件。 升级、卸载volcano插件。 可能导致作业调度异常。 中 回退版本、重装插件。 卸载ICAgent插件。 可能导致日志、监控功能异常。 中 回退版本、重装插件。 helm 升级、回退、卸载os-node-agent。 导致驱动升级、故障检测、指标采集、节点运维功能异常。 高 联系华为云技术支持重装os-node-agent。 升级、回退、卸载rdma-sriov-dev-plugin。 可能影响容器内使用RDMA网卡。 高 联系华为云技术支持重装rdma-sriov-dev-plugin。 父主题: Lite Cluster使用前必读
  • Lite Cluster资源管理介绍 在ModelArts控制台,您可以对已创建的资源进行管理。通过单击资源池名称,可以进入到资源池详情页,您可以在详情页进行下述操作。 管理Lite Cluster节点:节点是容器集群组成的基本元素,您可以对资源池内单节点进行替换、删除、重置等操作。 管理Lite Cluster节点池:为帮助您更好地管理Kubernetes集群内的节点,ModelArts支持通过节点池来管理节点。节点池是集群中具有相同配置的一组节点,一个节点池包含一个节点或多个节点,您可以创建、更新和删除节点池。 管理Lite Cluster资源池标签:ModelArts支持为资源池添加标签,用来标识云资源,方便您快速搜索到资源池。 扩缩容Lite Cluster资源池:当Cluster资源池创建完成,使用一段时间后,由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts提供了扩缩容功能,用户可以根据自己的需求动态调整。 升级Lite Cluster资源池驱动:当资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/Ascend驱动的需求,ModelArts面向此类客户提供了自助升级专属资源池GPU/Ascend驱动的能力。 监控Lite Cluster资源:ModelArts支持使用AOM和Prometheus对资源进行监控,方便您了解当前的资源使用情况。 释放Lite Cluster资源:针对不再使用的Lite Cluster资源,您可以释放资源。 图1 Lite Cluster资源管理介绍 父主题: Lite Cluster资源管理
  • 操作步骤 在左侧目录栏中找到资源管理-AI专属资源池-弹性集群Cluster,在上方选择Lite资源池,在下方列表中单击资源池名称,进入资源池详情。 单击左侧“配置管理”。 图1 配置管理 在镜像预热中单击编辑图标,填写镜像预热信息。 表1 镜像预热参数 参数名称 说明 镜像来源 可选择“预置”或“自定义”的镜像。 预置:可选择SWR服务上自有的或他人共享的镜像。 自定义:可直接填写镜像地址。 添加镜像密钥 若本租户不具有预热的镜像的权限(即非公开/非本租户私有/非他人共享的镜像),此时需要添加镜像密钥。在开启镜像密钥开关后,选择命名空间及对应密钥。创建密钥方法可参考创建密钥,密钥类型须为kubernetes.io/dockerconfigjson类型。 若需添加多个密钥,可以单击“+”新增密钥数。 添加镜像预热配置 若需添加多个镜像,可单击此按键。 图2 预置镜像预热 图3 预置镜像选择 图4 自定义镜像 预热 创建密钥所需的仓库地址、用户名、密码、可以参考对应租户的SWR登录指令。 图5 创建密钥 图6 登录指令 上图中为临时登录指令,若需长期有效登录指令,可单击图中的“如何获取长期有效指令”链接获取指导。 单击“确认”后,在预热信息框中可以看到已成功预热的镜像信息。 图7 镜像预热成功 若镜像预热失败,请检查镜像地址以及密钥是否正确。
  • 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2.myhuaweicloud.com/os-public-repo/bert_pretrain_mindspore:v1 docker tag swr.cn-southwest-2.myhuaweicloud.com/os-public-repo/bert_pretrain_mindspore:v1 bert_pretrain_mindspore:v1 在主机上新建config.yaml文件。 config.yaml文件用于配置pod,本示例中使用sleep命令启动pod,便于进入pod调试。您也可以修改command为对应的任务启动命令(如“python inference.py”),任务会在启动容器后执行。 config.yaml内容如下: apiVersion: apps/v1 kind: Deployment metadata: name: yourapp labels: app: infers spec: replicas: 1 selector: matchLabels: app: infers template: metadata: labels: app: infers spec: schedulerName: volcano nodeSelector: accelerator/huawei-npu: ascend-1980 containers: - image: bert_pretrain_mindspore:v1 # Inference image name imagePullPolicy: IfNotPresent name: mindspore command: - "sleep" - "1000000000000000000" resources: requests: huawei.com/ascend-1980: "1" # 需求卡数,key保持不变。Number of required NPUs. The maximum value is 16. You can add lines below to configure resources such as memory and CPU. limits: huawei.com/ascend-1980: "1" # 限制卡数,key保持不变。The value must be consistent with that in requests. volumeMounts: - name: ascend-driver #驱动挂载,保持不动 mountPath: /usr/local/Ascend/driver - name: ascend-add-ons #驱动挂载,保持不动 mountPath: /usr/local/Ascend/add-ons - name: hccn #驱动hccn配置,保持不动 mountPath: /etc/hccn.conf - name: npu-smi #npu-smi mountPath: /usr/local/sbin/npu-smi - name: localtime #The container time must be the same as the host time. mountPath: /etc/localtime volumes: - name: ascend-driver hostPath: path: /usr/local/Ascend/driver - name: ascend-add-ons hostPath: path: /usr/local/Ascend/add-ons - name: hccn hostPath: path: /etc/hccn.conf - name: npu-smi hostPath: path: /usr/local/sbin/npu-smi - name: localtime hostPath: path: /etc/localtime 根据config.yaml创建pod。 kubectl apply -f config.yaml 检查pod启动情况,执行下述命令。如果显示“1/1 running”状态代表启动成功。 kubectl get pod -A 进入容器,{pod_name}替换为您的pod名字(get pod中显示的名字),{namespace}替换为您的命名空间(默认为default)。 kubectl exec -it {pod_name} bash -n {namespace} 激活conda模式。 su - ma-user //切换用户身份 conda activate MindSpore //激活 MindSpore环境 创建测试代码test.py。 from flask import Flask, request import json app = Flask(__name__) @app.route('/greet', methods=['POST']) def say_hello_func(): print("----------- in hello func ----------") data = json.loads(request.get_data(as_text=True)) print(data) username = data['name'] rsp_msg = 'Hello, {}!'.format(username) return json.dumps({"response":rsp_msg}, indent=4) @app.route('/goodbye', methods=['GET']) def say_goodbye_func(): print("----------- in goodbye func ----------") return '\nGoodbye!\n' @app.route('/', methods=['POST']) def default_func(): print("----------- in default func ----------") data = json.loads(request.get_data(as_text=True)) return '\n called default func !\n {} \n'.format(str(data)) # host must be "0.0.0.0", port must be 8080 if __name__ == '__main__': app.run(host="0.0.0.0", port=8080) 执行代码,执行后如下图所示,会部署一个在线服务,该容器即为服务端。 python test.py 图2 部署在线服务 在XShell中新建一个终端,参考步骤5~7进入容器,该容器为客户端。执行以下命令验证自定义镜像的三个API接口功能。当显示如图所示时,即可调用服务成功。 curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/ curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet curl -X GET 127.0.0.1:8080/goodbye 图3 访问在线服务 limit/request配置cpu和内存大小,已知单节点Snt9B机器为:8张Snt9B卡+192u1536g,请合理规划,避免cpu和内存限制过小引起任务无法正常运行。
  • 步骤3 单机多卡训练 和单机单卡训练相比, 单机多卡训练只需在预训练脚本中设置多卡参数相关即可, 其余步骤与单机单卡相同。 当前选择GPU裸金属服务器是8卡, 因此需要调整如下参数: GPUS_PER_NODE=8 调整全局批处理大小(global batch size)、微批处理大小(micro batch size)、数据并行大小(data_parallel_size)参数。三者的关系为:“global_batch_size”可被“micro_batch_size * data_parallel_size”整除。 本文设置的参数值如下: global_batch_size = 64 micro_batch_size = 4 data_parallel_size = 8 单机多卡完整的预训练脚本内容如下: #! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=data/meg-gpt2_text_document CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --micro-batch-size 4 \ --global-batch-size 64 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 5000 \ --lr-decay-iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --vocab-file data/gpt2-vocab.json \ --merge-file data/gpt2-merges.txt \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --lr-warmup-fraction .01 \ --checkpoint-activations \ --log-interval 10 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ --fp16 训练时监控的GPU利用率如下: 图7 GPU利用率
  • 步骤1 安装模型 安装Megatron-Deepspeed框架。 使用root用户SSH的方式登录GPU裸金属服务器,登录方式在华为云购买页面可以获取。 拉取pytorch镜像,可以选择常用的镜像源进行下载。 docker pull nvcr.io/nvidia/pytorch:21.10-py3 启动容器。 docker run -d -t --network=host --gpus all --privileged --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --name megatron-deepspeed -v /etc/localtime:/etc/localtime -v /root/.ssh:/root/.ssh nvcr.io/nvidia/pytorch:21.10-py3 执行以下命令,进入容器终端。 docker exec -it megatron-deepspeed bash 下载Megatron-DeepSpeed框架。 git clone https://github.com/bigscience-workshop/Megatron-DeepSpeed 若git clone失败,可以尝试先下载至本地,然后拷贝至服务器中,在docker cp至容器中。 安装Megatron-DeepSpeed框架。 cd Megatron-DeepSpeed pip install -r requirements.txt -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com pip install mpi4py -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com 修改测试代码,注释掉以下文件的断言所在行。 vim /workspace/Megatron-DeepSpeed/megatron/model/fused_softmax.py +191 在“assert mask is None, "Mask is silently ignored due to the use of a custom kernel"”前加“#”,即: # assert mask is None, "Mask is silently ignored due to the use of a custom kernel" 数据集下载和预处理。 本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据集。 下载数据集。 wget https://huggingface.co/bigscience/misc-test-data/resolve/main/stas/oscar-1GB.jsonl.xz wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt 解压数据集。 xz -d oscar-1GB.jsonl.xz 预处理数据。 python3 tools/preprocess_data.py \ --input oscar-1GB.jsonl \ --output-prefix meg-gpt2 \ --vocab gpt2-vocab.json \ --dataset-impl mmap \ --tokenizer-type GPT2BPETokenizer \ --merge-file gpt2-merges.txt \ --append-eod \ --workers 8 若发生如下“np.float”报错,按照报错提示修改为“float”即可。 图1 预处理数据报错 数据预处理完成标识。 图2 数据预处理完成 新建data目录并移动处理好的数据。 mkdir data mv meg-gpt2* ./data mv gpt2* ./data
  • 步骤2 单机单卡训练 本小节使用上文的服务器环境和安装好的模型, 使用GP Ant8裸金属服务器, 完成单机单卡GPT-2 MEDIUM模型的训练。 创建预训练脚本文件。 执行以下命令,创建预训练脚本文件。 vim pretrain_gpt2.sh 在文件中添加以下信息。 #! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=1 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=data/meg-gpt2_text_document CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --micro-batch-size 4 \ --global-batch-size 8 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 5000 \ --lr-decay-iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --vocab-file data/gpt2-vocab.json \ --merge-file data/gpt2-merges.txt \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --lr-warmup-fraction .01 \ --checkpoint-activations \ --log-interval 10 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ --fp16 开始训练。 本文是单机单卡训练,使用预训练脚本参数控制: GPUS_PER_NODE=1 NNODES=1 NODE_RANK=0 执行以下命令,开始预训练。 nohup sh ./pretrain_gpt2.sh & 图3 开始预训练 实时查看训练日志,监控程序。 tail -f nohup.out 如果显示如下信息, 表示模型训练完成。 图4 模型训练完成 在训练过程中观察单GPU卡的利用率,如下: 图5 GPU利用率 查看生成的模型checkpoint。 本示例生成的模型checkpoint路径设置在“/workspace/Megatron-DeepSpeed/checkpoints/gpt2”。 ll ./checkpoints/gpt2 图6 模型checkpoint
  • 背景信息 Megatron-Deepspeed Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是一个用于大规模语言建模的模型。它基于GPT(Generative Pre-trained Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于 自然语言处理 任务,如文本生成、 机器翻译 和对话系统等。 DeepSpeed是开源的加速深度学习训练的库。它针对大规模的模型和分布式训练进行了优化,可以显著提高训练速度和效率。DeepSpeed提供了各种技术和优化策略,包括分布式梯度下降、模型并行化、梯度累积和动态精度缩放等。它还支持优化大模型的内存使用和计算资源分配。 GPT2 GPT2(Generative Pre-trained Transformer 2),是OpenAI组织在2018年于GPT模型的基础上发布的新预训练模型,是一个基于Transformer且非常庞大的语言模型。它在大量数据集上进行了训练,直接运行一个预训练好的GPT-2模型:给定一个预定好的起始单词或者句子,可以让它自行地随机生成后续的文本。
  • 环境准备 在华为云ModelArts Server预购相关超强算力的GPU裸金属服务器,并选择AIGC场景通用的镜像,完成使用Megatron-Deepspeed训练GPT2模型。本最佳实践使用以下镜像和规格: 镜像选择:Ubuntu 20.04 x86 64bit SDI3 for Ant8 BareMetal with RoCE and NVIDIA-525 CUDA-12.0。 裸金属规格选择: GP Ant8,包含8张GPU卡以及8张RoCE网卡。 关于Ant8裸金属服务器的购买,可以在华为云官网提工单至ModelArts云服务, 完成资源的申请。
  • Python封装API方式切换操作系统 以下为BMS使用Python语言通过API方式切换操作系统的示例代码。 # -*- coding: UTF-8 -*- import requests import json import time import requests.packages.urllib3.exceptions from urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) class ServerOperation(object): ################################ IAM 认证API################################################# def __init__(self, account, password, region_name, username=None, project_id=None): """ :param username: if IAM user,here is small user, else big user :param account: account big big user :param password: account :param region_name: """ self.account = account self.username = username self.password = password self.region_name = region_name self.project_id = project_id self.ma_endpoint = "https://modelarts.{}.myhuaweicloud.com".format(region_name) self.service_endpoint = "https://bms.{}.myhuaweicloud.com".format(region_name) self.iam_endpoint = "https://iam.{}.myhuaweicloud.com".format(region_name) self.headers = {"Content-Type": "application/json", "X-Auth-Token": self.get_project_token_by_account(self.iam_endpoint)} def get_project_token_by_account(self, iam_endpoint): body = { "auth": { "identity": { "methods": [ "password" ], "password": { "user": { "name": self.username if self.username else self.account, "password": self.password, "domain": { "name": self.account } } } }, "scope": { "project": { "name": self.region_name } } } } headers = { "Content-Type": "application/json" } import json url = iam_endpoint + "/v3/auth/tokens" response = requests.post(url, headers=headers, data=json.dumps(body), verify=True) token = (response.headers['X-Subject-Token']) return token def change_os(self, server_id): url = "{}/v1/{}/baremetalservers/{}/changeos".format(self.service_endpoint, self.project_id, server_id) print(url) body = { "os-change": { "adminpass": "@Server", "imageid": "40d88eea-6e41-418a-ad6c-c177fe1876b8" } } response = requests.post(url, headers=self.headers, data=json.dumps(body), verify=False) print(json.dumps(response.json(), indent=1)) return response.json() if __name__ == '__main__': # 调用API前置准备,初始化认证鉴权信息 server = ServerOperation(username="xxx", account="xxx", password="xxx", project_id="xxx", region_name="cn-north-4") server.change_os(server_id="0c84bb62-35bd-4e1c-ba08-a3a686bc5097")
  • 在BMS控制台切换操作系统 获取操作系统镜像。 由华为云官方提供给客户操作系统镜像,在IMS 镜像服务 的共享镜像处进行接收即可,参考如下图操作。 图1 共享镜像 切换操作系统。 对Lite Server资源对应的裸金属服务器,对其进行关机操作,完成关机后,才可以执行切换操作系统动作。 在裸金属服务的更多选项中,点击切换操作系统,如下图所示。 图2 选择操作系统 在切换操作系统界面,选择上一步接收到的共享镜像即可。
  • 场景描述 Lite Server为一台弹性裸金属服务器,您可以使用BMS服务提供的切换操作系统功能,对Lite Server资源操作系统进行切换。本文介绍以下三种切换操作系统的方式: 在BMS控制台切换操作系统 使用BMS Go SDK的方式切换操作系统 使用Python封装API的方式切换操作系统 切换操作系统需满足以下条件: 当前裸金属服务器状态为停止状态。 目标操作系统必须是该Region下的IMS公共镜像或者私有共享镜像。
  • 使用BMS Go SDK的方式切换操作系统 以下为BMS使用Go语言通过SDK方式切换操作系统的示例代码。 package main import ( "fmt" "os" "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth/basic" bms "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/bms/v1" "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/bms/v1/model" region "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/bms/v1/region" ) func main() { // 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; // 本示例以ak和sk保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_SDK_AK和HUAWEICLOUD_SDK_SK。 ak := os.Getenv("HUAWEICLOUD_SDK_AK") sk := os.Getenv("HUAWEICLOUD_SDK_SK") auth := basic.NewCredentialsBuilder(). WithAk(ak). WithSk(sk). Build() client := bms.NewBmsClient( bms.BmsClientBuilder(). WithRegion(region.ValueOf("cn-north-4")). WithCredential(auth). Build()) keyname := "KeyPair-name" userdata := "aGVsbG8gd29ybGQsIHdlbGNvbWUgdG8gam9pbiB0aGUgY29uZmVyZW5jZQ==" request := &model.ChangeBaremetalServerOsRequest{ ServerId: "****input your bms instance id****", Body: &model.OsChangeReq{ OsChange: &model.OsChange{ Keyname: &keyname, Imageid: "****input your ims image id****", Metadata: &model.MetadataInstall{ UserData: &userdata, }, }, }, } response, err := client.ChangeBaremetalServerOs(request) if err == nil { fmt.Printf("%+v\n", response) } else { fmt.Println(err) } }
  • GP Vnt1裸金属服务器Ubuntu18.04安装NVIDIA 515+CUDA 11.7 本小节旨在指导如何在GP Vnt1裸金属服务器上(Ubuntu 18.04系统),安装NVIDIA驱动版本515、CUDA版本11.7和Docker。 NVIDIA驱动安装。 wget https://us.download.nvidia.com/tesla/515.105.01/NVIDIA-Linux-x86_64-515.105.01.run chmod +x NVIDIA-Linux-x86_64-515.105.01.run ./NVIDIA-Linux-x86_64-515.105.01.run CUDA安装。 wget https://developer.download.nvidia.com/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run chmod +x cuda_11.7.1_515.65.01_linux.run ./cuda_11.7.1_515.65.01_linux.run --toolkit --samples –silent 安装Docker。 curl https://get.docker.com | sh && sudo systemctl --now enable docker 安装NIVDIA容器插件。 distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list apt-get update apt-get install -y nvidia-container-toolkit nvidia-ctk runtime configure --runtime=docker systemctl restart docker 验证Docker模式环境是否安装成功。 基于PyTorch2.0镜像验证(本案例中镜像较大,拉取时间可能较长)。 docker run -ti --runtime=nvidia --gpus all pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel bash 图4 成功拉取镜像
  • GP Vnt1裸金属服务器Ubuntu 18.04安装NVIDIA 470+CUDA 11.4 本小节旨在指导如何在GP Vnt1裸金属服务器上(Ubuntu 18.04系统),安装NVIDIA驱动版本470,CUDA版本11.4。 安装NVIDIA驱动。 apt-get update sudo apt-get install nvidia-driver-470 安装CUDA。 wget https://developer.download.nvidia.com/compute/cuda/11.4.4/local_installers/cuda_11.4.4_470.82.01_linux.run chmod +x cuda_11.4.4_470.82.01_linux.run ./cuda_11.4.4_470.82.01_linux.run --toolkit --samples --silent 验证NVIDIA安装结果。 nvidia-smi -pm 1 nvidia-smi /usr/local/cuda/bin/nvcc -V 安装Pytorch2.0和验证CUDA验证。 PyTorch2.0所需环境为Python3.10, 安装配置miniconda环境。 miniconda安装并创建alpha环境。 wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh chmod 750 Miniconda3-py310_23.1.0-1-Linux-x86_64.sh bash Miniconda3-py310_23.1.0-1-Linux-x86_64.sh -b -p /home/miniconda export PATH=/home/miniconda/bin:$PATH conda create --quiet --yes -n alpha python=3.10 安装pytorch2.0并验证cuda状态。 在alpha环境下安装torch2.0,使用清华PIP源完成。 source activate alpha conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia python 验证torch与cuda的安装状态,输出为True即为正常。 import torch print(torch.cuda.is_available())
  • GP Vnt1裸金属服务器EulerOS 2.9安装NVIDIA 515+CUDA 11.7 本小节旨在指导如何在GP Vnt1裸金属服务器上(Euler2.9系统),安装NVIDIA驱动版本515.105.01,CUDA版本11.7.1。 安装NVIDIA驱动。 wget https://us.download.nvidia.com/tesla/515.105.01/NVIDIA-Linux-x86_64-515.105.01.run chmod 700 NVIDIA-Linux-x86_64-515.105.01.run yum install -y elfutils-libelf-devel ./NVIDIA-Linux-x86_64-515.105.01.run --kernel-source-path=/usr/src/kernels/4.18.0-147.5.1.6.h998.eulerosv2r9.x86_64 默认情况下Vnt1裸金属服务器在EulerOS 2.9使用的yum源是“http://repo.huaweicloud.com”,该源可用。若执行“yum update”时报错, 显示有软件包冲突等问题, 可通过“yum remove xxx软件包”解决该问题。 NVIDIA的驱动程序是一个二进制文件,需使用系统中的libelf库(在elfutils-libelf-devel开发包)中。它提供了一组C函数,用于读取、修改和创建ELF文件,而NVIDIA驱动程序需要使用这些函数来解析当前正在运行的内核和其他相关信息。 安装过程中的提示均选OK或YES,安装好后执行reboot重启机器,再次登录后执行命令查看GPU卡信息。 nvidia-smi -pm 1 #该命令执行时间较长,请耐心等待,作用为启用持久模式,可以优化Linux实例上GPU设备的性能 nvidia-smi 安装CUDA。 wget https://developer.download.nvidia.com/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run chmod 700 cuda_11.7.1_515.65.01_linux.run ./cuda_11.7.1_515.65.01_linux.run --toolkit --samples --silent 安装好后执行以下命令检查安装结果: /usr/local/cuda/bin/nvcc -V PyTorch2.0安装和CUDA验证指南。 PyTorch2.0所需环境为Python3.10, 安装配置miniconda环境。 miniconda安装并创建alpha环境。 wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh chmod 750 Miniconda3-py310_23.1.0-1-Linux-x86_64.sh bash Miniconda3-py310_23.1.0-1-Linux-x86_64.sh -b -p /home/miniconda export PATH=/home/miniconda/bin:$PATH conda create --quiet --yes -n alpha python=3.10 安装pytorch2.0并验证cuda状态。 在alpha环境下安装torch2.0,使用清华PIP源完成。 source activate alpha pip install torch==2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple python 验证torch与cuda的安装状态,输出为True即为正常。 import torch print(torch.cuda.is_available())
  • GP Ant8裸金属服务器Ubuntu 20.04安装NVIDIA 515+CUDA 11.7 本小节旨在指导如何在GP Vnt1裸金属服务器上(Ubuntu 20.04系统),安装NVIDIA驱动版本515、CUDA版本11.7、 nvidia-fabricmanager515,并进行nccl-test测试。 替换apt源。 sudo sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list sudo sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list sudo apt update 安装nvidia驱动。 wget https://us.download.nvidia.com/tesla/515.105.01/NVIDIA-Linux-x86_64-515.105.01.run chmod +x NVIDIA-Linux-x86_64-515.105.01.run ./NVIDIA-Linux-x86_64-515.105.01.run 安装cuda。 # run包安装 wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run chmod +x cuda_11.7.0_515.43.04_linux.run ./cuda_11.7.0_515.43.04_linux.run --toolkit --samples --silent 安装nccl。 nccl安装可参考NCCL Documentation。 nccl和cuda版本的配套关系和安装方法参考NCL Downloads。 本文使用cuda版本是11.7,因此安装nccl的命令为: wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt update sudo apt install libnccl2=2.14.3-1+cuda11.7 libnccl-dev=2.14.3-1+cuda11.7 安装完成后可以查看: 图5 查看nccl 安装nvidia-fabricmanager。 nvidia-fabricmanager必须和nvidia driver版本保持一致。 version=515.105.01 main_version=$(echo $version | awk -F '.' '{print $1}') apt-get update apt-get -y install nvidia-fabricmanager-${main_version}=${version}-* 验证驱动安装结果:启动fabricmanager服务并查看状态是否为“RUNNING”。 nvidia-smi -pm 1 nvidia-smi systemctl enable nvidia-fabricmanager systemctl start nvidia-fabricmanager systemctl status nvidia-fabricmanager 安装nv-peer-memory。 git clone https://github.com/Mellanox/nv_peer_memory.git cd ./nv_peer_memory ./build_module.sh cd /tmp tar xzf /tmp/nvidia-peer-memory_1.3.orig.tar.gz cd nvidia-peer-memory-1.3 dpkg-buildpackage -us -uc dpkg -i ../nvidia-peer-memory-dkms_1.2-0_all.deb nv_peer_mem工作在linux内核态,安装完成后需要看是否加载到内核,通过执行“lsmod | grep peer”查看是否加载。 如果git clone拉不下来代码,可能需要先设置下git的配置: git config --global core.compression -1 export GIT_SSL_NO_VERIFY=1 git config --global http.sslVerify false git config --global http.postBuffer 10524288000 git config --global http.lowSpeedLimit 1000 git config --global http.lowSpeedTime 1800 如果安装完成后lsmod看不到nv-peer-memory,可能是由于ib驱动版本过低导致,此时需要升级ib驱动,升级命令: wget https://content.mellanox.com/ofed/MLNX_OFED-5.4-3.6.8.1/MLNX_OFED_LINUX-5.4-3.6.8.1-ubuntu20.04-x86_64.tgz tar -zxvf MLNX_OFED_LINUX-5.4-3.6.8.1-ubuntu20.04-x86_64.tgz cd MLNX_OFED_LINUX-5.4-3.6.8.1-ubuntu20.04-x86_64 apt-get install -y python3 gcc quilt build-essential bzip2 dh-python pkg-config dh-autoreconf python3-distutils debhelper make ./mlnxofedinstall --add-kernel-support 如果想安装其它更高版本的ib驱动,请参考Linux InfiniBand Drivers。比如要安装MLNX_OFED-5.8-2.0.3.0 (当前最新版本),则命令为: wget https://content.mellanox.com/ofed/MLNX_OFED-5.8-2.0.3.0/MLNX_OFED_LINUX-5.8-2.0.3.0-ubuntu20.04-x86_64.tgz tar -zxvf MLNX_OFED_LINUX-5.8-2.0.3.0-ubuntu20.04-x86_64.tgz cd MLNX_OFED_LINUX-5.8-2.0.3.0-ubuntu20.04-x86_64 apt-get install -y python3 gcc quilt build-essential bzip2 dh-python pkg-config dh-autoreconf python3-distutils debhelper make ./mlnxofedinstall --add-kernel-support 安装完nv_peer_mem, 如果想查看其状态可以输入如下指令: /etc/init.d/nv_peer_mem/ status 如果发现没有此文件,则可能安装的时候没有默认拷贝过来,需要拷贝即可: cp /tmp/nvidia-peer-memory-1.3/nv_peer_mem.conf /etc/infiniband/ cp /tmp/nvidia-peer-memory-1.3/debian/tmp/etc/init.d/nv_peer_mem /etc/init.d/ 设置环境变量。 MPI路径版本需要匹配,可以通过“ls /usr/mpi/gcc/”查看openmpi的具体版本。 # 加入到~/.bashrc export LD_LIBRARY_PATH=/usr/local/cuda/lib:usr/local/cuda/lib64:/usr/include/nccl.h:/usr/mpi/gcc/openmpi-4.1.2a1/lib:$LD_LIBRARY_PATH export PATH=$PATH:/usr/local/cuda/bin:/usr/mpi/gcc/openmpi-4.1.2a1/bin 安装编译nccl-test。 cd /root git clone https://github.com/NVIDIA/nccl-tests.git cd ./nccl-tests make MPI=1 MPI_HOME=/usr/mpi/gcc/openmpi-4.1.2a1 -j 8 编译时需要加上MPI=1的参数,否则无法进行多机之间的测试。 MPI路径版本需要匹配,可以通过“ls /usr/mpi/gcc/”查看openmpi的具体版本。 nccl-test测试。 单机测试: /root/nccl-tests/build/all_reduce_perf -b 8 -e 1024M -f 2 -g 8 多机测试(btl_tcp_if_include后面替换为主网卡名称): mpirun --allow-run-as-root --hostfile hostfile -mca btl_tcp_if_include eth0 -mca btl_openib_allow_ib true -x NCCL_DEBUG=INFO -x NCCL_IB_GID_INDEX=3 -x NCCL_IB_TC=128 -x NCCL_ALGO=RING -x NCCL_IB_HCA=^mlx5_bond_0 -x LD_LIBRARY_PATH /root/nccl-tests/build/all_reduce_perf -b 8 -e 11g -f 2 -g 8 hostfile格式: #主机私有IP 单节点进程数 192.168.20.1 slots=1 192.168.20.2 slots=1 NCCL环境变量说明: NCCL_IB_GID_INDEX=3 :数据包走交换机的队列4通道,这是RoCE协议标准。 NCCL_IB_TC=128 :使用RoCE v2协议,默认使用RoCE v1,但是v1在交换机上没有拥塞控制,可能会丢包,而且后续的交换机不会支持v1,会导致无法运行。 NCCL_ALGO=RING :nccl_test的总线bandwidth是在假定是Ring算法的情况下计算出来的。 计算公式是有假设的: 总线带宽 = 算法带宽 * 2 ( N-1 ) / N ,算法带宽 = 数据量 / 时间 但是这个计算公式的前提是用Ring算法,Tree算法的总线带宽不可以这么计算。 如果Tree算法算出来的总线带宽相当于是相对Ring算法的性能加速。算法计算总耗时减少了,所以用公式算出来的总线带宽也增加了。理论上Tree算法是比Ring算法更优的,但是Tree算法对网络的要求比Ring高,计算可能不太稳定。 Tree算法可以用更少的数据通信量完成all reduce计算,但用来测试性能不太合适。因此,会出现两节点实际带宽100,但测试出速度110,甚至130GB/s的情况。加这个参数以后,2节点和2节点以上情况的速度才会稳定一些。 测试时需要执行mpirun的节点到hostfile中的节点间有免密登录,设置SSH免密登录方法如下: 客户端生成公私钥。 执行如下命令,在本地客户端生成公私钥(一路回车默认即可)。 ssh-keygen 上面这个命令会在用户目录.ssh文件夹下创建“id_rsa.pub”(公钥)和“id_rsa”(私钥),可通过如下命令查看: cd ~/.ssh 上传公钥到服务器。 例如用户名为root,服务器地址为192.168.222.213,则将公钥上传至服务器的命令如下: ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.222.213 通过如下命令可以看到客户端写入到服务器的id_rsa.pub (公钥)内容: cd ~/.ssh vim authorized_keys 测试免密登录。 客户端通过ssh连接远程服务器,即可免密登录。 ssh root@192.168.222.213
共100000条