华为云用户手册

  • 回答 动态分区表插入数据的最后一步是读取shuffle文件的数据,再写入到表对应的分区文件中。 当大面积shuffle文件损坏后,会引起大批量task失败,然后进行job重试。重试前Spark会将写表分区文件的句柄关闭,大批量task关闭句柄时HDFS无法及时处理。在task进行下一次重试时,句柄在NameNode端未被及时释放,即会发生"Failed to CREATE_FILE"异常。 这种现象仅会在大面积shuffle文件损坏时发生,出现异常后task会重试,重试耗时在毫秒级,影响较小,可以忽略不计。
  • 回答 对于Hash shuffle,在shuffle的过程中写数据时不做排序操作,只是将数据根据Hash的结果,将各个reduce分区的数据写到各自的磁盘文件中。 这样带来的问题是如果reduce分区的数量比较大的话,将会产生大量的磁盘文件(比如:该问题中将产生1000000 * 100000 = 10^11个shuffle文件)。如果磁盘文件数量特别巨大,对文件读写的性能会带来比较大的影响,此外由于同时打开的文件句柄数量多,序列化以及压缩等操作需要占用非常大的临时内存空间,对内存的使用和GC带来很大的压力,从而容易造成Executor无法响应Driver。 因此,建议使用Sort shuffle,而不使用Hash shuffle。
  • 回答 在yarn-client模式下,Spark的Driver和ApplicationMaster作为两个独立的进程在运行。当Driver完成任务退出时,会通知ApplicationMaster向ResourceManager注销自身,即调用unregister方法。 由于是远程调用,则存在发生网络故障的可能性。当发生网络故障时,ApplicationMaster会使用Yarn客户端的重试机制进行重试。在达到最大重试次数之前网络恢复正常,则ApplicationMaster会正常退出。 如果超过重试次数和重试时长,则ApplicationMaster注销失败,ResourceManager会认为ApplicationMaster异常退出并尝试重新启动ApplicationMaster。新启动的ApplicationMaster在尝试连接已经退出的Driver失败后,会在ResourceManager页面上标记此次Application为FAILED状态。
  • 问题 ZooKeeper客户端刷新TGT失败,无法连接ZooKeeper。报错内容如下: Login: Could not renew TGT due to problem running shell command: '***/kinit -R'; exception was:org.apache.zookeeper.Shell$ExitCodeException: kinit: Ticket expired while renewing credentials
  • 回答 HDFS_DELEGATION_TOKEN到期的异常是由于token没有更新或者超出了最大生命周期。 在token的最大生命周期内确保下面的参数值大于作业的运行时间。 “dfs.namenode.delegation.token.max-lifetime”=“604800000”(默认是一星期) 参考修改集群服务配置参数,进入HDFS“全部配置”页面,在搜索框搜索该参数。 建议在token的最大生命周期内参数值为多倍小时数。
  • 前提条件 HDFS和Oozie组件安装完成且运行正常,客户端安装成功。 如果当前客户端为旧版本,需要重新下载和安装客户端。 已创建或获取访问Oozie服务的人机用户账号及密码。 该用户需要从属于hadoop、supergroup、hive组,同时添加Oozie的角色操作权限。如果使用Hive多实例,该用户还需要从属于具体的Hive实例组,如hive3。 用户同时还需要至少有manager_viewer权限的角色。
  • 操作步骤 访问Hue WebUI,请参考访问Hue WebUI界面。 单击菜单左侧的,在打开的页面中可以查看Workflow、计划、Bundles任务的相关信息。 默认显示当前集群的所有作业。 作业浏览器显示的数字表示集群中所有作业的总数。 “作业浏览器”将显示作业以下信息: 表1 MRS 作业属性介绍 属性名 描述 名称 表示作业的名称。 用户 表示启动该作业的用户。 类型 表示作业的类型。 状态 表示作业的状态,包含“成功”、“正在运行”、“失败”。 进度 表示作业运行进度。 组 表示作业所属组。 开始 表示作业开始时间。 持续时间 表示作业运行使用的时间。 Id 表示作业的编号,由系统自动生成。 如果MRS集群安装了Spark组件,则默认会启动一个作业“Spark-JD BCS erver”,用于执行任务。
  • 操作步骤 Spark程序运行时,在shuffle和RDD Cache等过程中,会有大量的数据需要序列化,默认使用JavaSerializer,通过配置让KryoSerializer作为数据序列化器来提升序列化性能。 在开发应用程序时,添加如下代码来使用KryoSerializer作为数据序列化器。 实现类注册器并手动注册类。 package com.etl.common;import com.esotericsoftware.kryo.Kryo;import org.apache.spark.serializer.KryoRegistrator; public class DemoRegistrator implements KryoRegistrator{ @Override public void registerClasses(Kryo kryo) { //以下为示例类,请注册自定义的类 kryo.register(AggrateKey.class); kryo.register(AggrateValue.class); }} 您可以在Spark客户端对spark.kryo.registrationRequired参数进行配置,设置是否需要Kryo注册序列化。 当参数设置为true时,如果工程中存在未被序列化的类,则会发生异常。如果设置为false(默认值),Kryo会自动将未注册的类名写到对应的对象中。此操作会对系统性能造成影响。设置为true时,用户需手动注册类,针对未序列化的类,系统不会自动写入类名,而是发生异常,相对比false,其性能较好。 配置KryoSerializer作为数据序列化器和类注册器。 val conf = new SparkConf()conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").set("spark.kryo.registrator", "com.etl.common.DemoRegistrator")
  • 操作场景 Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类的基本类型数据,性能的提升就几乎可以忽略。 KryoSerializer依赖Twitter的Chill库来实现,相对于JavaSerializer,主要的问题在于不是所有的Java Serializable对象都能支持,兼容性不好,所以需要手动注册类。 序列化功能用在两个地方:序列化任务和序列化数据。Spark任务序列化只支持JavaSerializer,数据序列化支持JavaSerializer和KryoSerializer。
  • 操作步骤 配置Driver内存。 Driver负责任务的调度,和Executor、AM之间的消息通信。当任务数变多,任务平行度增大时,Driver内存都需要相应增大。 您可以根据实际任务数量的多少,为Driver设置一个合适的内存。 将“spark-defaults.conf”中的“spark.driver.memory”配置项设置为合适大小。 在使用spark-submit命令时,添加“--driver-memory MEM”参数设置内存。 配置Executor个数。 每个Executor每个核同时能跑一个task,所以增加了Executor的个数相当于增大了任务的并发度。在资源充足的情况下,可以相应增加Executor的个数,以提高运行效率。 将“spark-defaults.conf”中的“spark.executor.instance”配置项或者“spark-env.sh”中的“SPARK_EXECUTOR_INSTAN CES ”配置项设置为合适大小。 在使用spark-submit命令时,添加“--num-executors NUM”参数设置Executor个数。 配置Executor核数。 每个Executor多个核同时能跑多个task,相当于增大了任务的并发度。但是由于所有核共用Executor的内存,所以要在内存和核数之间做好平衡。 将“spark-defaults.conf”中的“spark.executor.cores”配置项或者“spark-env.sh”中的“SPARK_EXECUTOR_CORES”配置项设置为合适大小。 在使用spark-submit命令时,添加“--executor-cores NUM”参数设置核数。 配置Executor内存。 Executor的内存主要用于任务执行、通信等。当一个任务很大的时候,可能需要较多资源,因而内存也可以做相应的增加;当一个任务较小运行较快时,就可以增大并发度减少内存。 将“spark-defaults.conf”中的“spark.executor.memory”配置项或者“spark-env.sh”中的“SPARK_EXECUTOR_MEMORY”配置项设置为合适大小。 在使用spark-submit命令时,添加“--executor-memory MEM”参数设置内存。
  • 示例 在执行spark wordcount计算中。1.6T数据,250个executor。 在默认参数下执行失败,出现Futures timed out和OOM错误。 因为数据量大,task数多,而wordcount每个task都比较小,完成速度快。当task数多时driver端相应的一些对象就变大了,而且每个task完成时executor和driver都要通信,这就会导致由于内存不足,进程之间通信断连等问题。 当把Driver的内存设置到4g时,应用成功跑完。 使用JDB CS erver执行TPC-DS测试套,默认参数配置下也报了很多错误:Executor Lost等。而当配置Driver内存为30g,executor核数为2,executor个数为125,executor内存为6g时,所有任务才执行成功。
  • 操作场景 Spark on Yarn模式下,有Driver、ApplicationMaster、Executor三种进程。在任务调度和运行的过程中,Driver和Executor承担了很大的责任,而ApplicationMaster主要负责container的启停。 因而Driver和Executor的参数配置对Spark应用的执行有着很大的影响意义。用户可通过如下操作对Spark集群性能做优化。
  • 回答 由于Spark存在一个机制,为了提高性能会缓存Parquet的元数据信息。当通过Hive或其他方式更新了Parquet表时,缓存的元数据信息未更新,导致Spark SQL查询不到新插入的数据。 对于存储类型为Parquet的Hive分区表,在执行插入数据操作后,如果分区信息未改变,则缓存的元数据信息未更新,导致Spark SQL查询不到新插入的数据。 解决措施:在使用Spark SQL查询之前,需执行Refresh操作更新元数据信息。 REFRESH TABLE table_name; table_name为刷新的表名,该表必须存在,否则会出错。 执行查询语句时,即可获取到最新插入的数据。
  • 回答 当前在默认配置下,在内存中保留的Job和Stage的UI数据个数为1000个。 当前大集群优化已增加将UI数据溢出到磁盘的优化,其溢出条件是每个Stage中的UI数据大小达到最小阈值5MB。如果每个Stage的task数较小,那么其UI数据大小可能达不到该阈值,从而导致该Stage的UI数据一直缓存在内存中,直到UI数据个数到达保留的上限值(当前默认值为1000个),旧的UI数据才会在内存中被清除。 因此,在将旧的UI数据从内存中清除之前,UI数据会占用大量内存,从而导致执行10T的TPCDS测试套时出现Driver内存不足的现象。 规避措施: 根据业务需要,配置合适的需要保留的Job和Stage的UI数据个数,即配置“spark.ui.retainedJobs”和“spark.ui.retainedStages”参数。详细信息请参考Spark常用配置参数中的表13。 如果需要保留的Job和Stage的UI数据个数较多,可通过配置“spark.driver.memory”参数,适当增大Driver的内存。详细信息请参考Spark常用配置参数中的表10。
  • 回答 当前JDBCServer中存在两个线程池HiveServer2-Handler-Pool和HiveServer2-Background-Pool,其中HiveServer2-Handler-Pool用于处理session连接,HiveServer2-Background-Pool用于处理SQL语句的执行。 当前的健康检查机制是通过新建session连接,并在该session所在的线程中执行健康检查命令HEALTHCHECK来判断Spark JDBCServer的健康状况,因此HiveServer2-Handler-Pool必须保留一个线程,用于处理健康检查的session连接和健康检查命令执行,否则将导致无法建立健康检查的session连接或健康检查命令无法执行,从而认为Spark JDBCServer不健康而被Kill。即如果当前HiveServer2-Handler-Pool的线程池数为100,那么最多支持连接99个session。
  • 问题 在执行大数据量的Spark任务(如100T的TPCDS测试套)过程中,有时会出现Executor丢失从而导致Stage重试的现象。查看Executor的日志,出现“Executor 532 is lost rpc with driver,but is still alive, going to kill it”所示信息,表明Executor丢失是由于JVM Crash导致的。 JVM的关键Crash错误日志,如下: ## A fatal error has been detected by the Java Runtime Environment:## Internal Error (sharedRuntime.cpp:834), pid=241075, tid=140476258551552# fatal error: exception happened outside interpreter, nmethods and vtable stubs at pc 0x00007fcda9eb8eb1
  • 回答 问题分析 创建表。 CREATE TABLE TEST_TABLE(DATE varchar not null,NUM integer not null,SEQ_NUM integer not null,ACCOUNT1 varchar not null,ACCOUNTDES varchar,FLAG varchar,SALL double,CONSTRAINT PK PRIMARY KEY (DATE,NUM,SEQ_NUM,ACCOUNT1)); 创建全局索引 CREATE INDEX TEST_TABLE_INDEX ON TEST_TABLE(ACCOUNT1,DATE,NUM,ACCOUNTDES,SEQ_NUM); 插入数据 UPSERT INTO TEST_TABLE (DATE,NUM,SEQ_NUM,ACCOUNT1,ACCOUNTDES,FLAG,SALL) values ('20201001',30201001,13,'367392332','sffa1','',''); 执行BulkLoad任务更新数据 hbase org.apache.phoenix.mapreduce.CsvBulkLoadTool -t TEST_TABLE -i /tmp/test.csv,test.csv内容如下: 20201001 30201001 13 367392332 sffa888 1231243 23 问题现象:无法直接更新之前存在的索引数据,导致存在两条索引数据。 +------------+-----------+-----------+---------------+----------------+| :ACCOUNT1 | :DATE | :NUM | 0:ACCOUNTDES | :SEQ_NUM |+------------+-----------+-----------+---------------+----------------+| 367392332 | 20201001 | 30201001 | sffa1 | 13 || 367392332 | 20201001 | 30201001 | sffa888 | 13 |+------------+-----------+-----------+---------------+----------------+ 解决方法 删除旧的索引表。 DROP INDEX TEST_TABLE_INDEX ON TEST_TABLE; 异步方式创建新的索引表。 CREATE INDEX TEST_TABLE_INDEX ON TEST_TABLE(ACCOUNT1,DATE,NUM,ACCOUNTDES,SEQ_NUM) ASYNC; 索引重建。 hbase org.apache.phoenix.mapreduce.index.IndexTool --data-table TEST_TABLE --index-table TEST_TABLE_INDEX --output-path /user/test_table
  • 问题 Spark Streaming应用创建1个输入流,但该输入流无输出逻辑。应用从checkpoint恢复启动失败,报错如下: 17/04/24 10:13:57 ERROR Utils: Exception encounteredjava.lang.NullPointerExceptionat org.apache.spark.streaming.dstream.DStreamCheckpointData$$anonfun$writeObject$1.apply$mcV$sp(DStreamCheckpointData.scala:125)at org.apache.spark.streaming.dstream.DStreamCheckpointData$$anonfun$writeObject$1.apply(DStreamCheckpointData.scala:123)at org.apache.spark.streaming.dstream.DStreamCheckpointData$$anonfun$writeObject$1.apply(DStreamCheckpointData.scala:123)at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1195)at org.apache.spark.streaming.dstream.DStreamCheckpointData.writeObject(DStreamCheckpointData.scala:123)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1028)at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496)at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)at java.io.ObjectOutputStream.defaultWriteObject(ObjectOutputStream.java:441)at org.apache.spark.streaming.dstream.DStream$$anonfun$writeObject$1.apply$mcV$sp(DStream.scala:515)at org.apache.spark.streaming.dstream.DStream$$anonfun$writeObject$1.apply(DStream.scala:510)at org.apache.spark.streaming.dstream.DStream$$anonfun$writeObject$1.apply(DStream.scala:510)at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1195)at org.apache.spark.streaming.dstream.DStream.writeObject(DStream.scala:510)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1028)at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496)at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)at java.io.ObjectOutputStream.writeArray(ObjectOutputStream.java:1378)at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1174)at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)at java.io.ObjectOutputStream.defaultWriteObject(ObjectOutputStream.java:441)at org.apache.spark.streaming.DStreamGraph$$anonfun$writeObject$1.apply$mcV$sp(DStreamGraph.scala:191)at org.apache.spark.streaming.DStreamGraph$$anonfun$writeObject$1.apply(DStreamGraph.scala:186)at org.apache.spark.streaming.DStreamGraph$$anonfun$writeObject$1.apply(DStreamGraph.scala:186)at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1195)at org.apache.spark.streaming.DStreamGraph.writeObject(DStreamGraph.scala:186at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1028)at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496)at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)at org.apache.spark.streaming.Checkpoint$$anonfun$serialize$1.apply$mcV$sp(Checkpoint.scala:142)at org.apache.spark.streaming.Checkpoint$$anonfun$serialize$1.apply(Checkpoint.scala:142)at org.apache.spark.streaming.Checkpoint$$anonfun$serialize$1.apply(Checkpoint.scala:142)at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1230)at org.apache.spark.streaming.Checkpoint$.serialize(Checkpoint.scala:143)at org.apache.spark.streaming.StreamingContext.validate(StreamingContext.scala:566)at org.apache.spark.streaming.StreamingContext.liftedTree1$1(StreamingContext.scala:612)at org.apache.spark.streaming.StreamingContext.start(StreamingContext.scala:611)at com.spark.test.kafka08LifoTwoInkfk$.main(kafka08LifoTwoInkfk.scala:21)at com.spark.test.kafka08LifoTwoInkfk.main(kafka08LifoTwoInkfk.scala)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:772)at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:183)at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:208)at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:123)at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
  • 回答 在YARN中,当一个APP的节点被AM(ApplicationMaster)加入黑名单的数量达到一定比例(默认值为节点总数的33%)时,该AM会自动释放黑名单,从而不会出现由于所有可用节点都被加入黑名单而任务无法获取节点资源的现象。 在资源池场景下,假设该集群上有8个节点,通过NodeLabel特性将集群划分为两个资源池,pool A和pool B,其中pool B包含两个节点。用户提交了一个任务App1到pool B,由于HDFS空间不足,App1运行失败,导致pool B的两个节点都被App1的AM加入了黑名单,根据上述原则,2个节点小于8个节点的33%,所以YARN不会释放黑名单,使得App1一直无法得到资源而保持运行状态,后续即使被加入黑名单的节点恢复,App1也无法得到资源。 由于上述原则不适用于资源池场景,所以目前可通过调整客户端参数(路径为“客户端安装路径/Yarn/config/yarn-site.xml”)“yarn.resourcemanager.am-scheduling.node-blacklisting-disable-threshold”为:(nodes number of pool / total nodes )* 33%解决该问题。
  • 回答 这是RM的使用限制,应用程序运行过程中移动到别的队列,此时RM重启,RM并不会在状态存储中存储新队列的信息。 假设用户提交一个MR任务到叶子队列test11上。当任务运行时,删除叶子队列test11,这时提交队列自动变为lost_and_found队列(找不到队列的任务会被放入lost_and_found队列中),任务暂停运行。要启动该任务,用户将任务移动到叶子队列test21上。在将任务移动到叶子队列test21后,任务继续运行,此时RM重启,重启后显示提交队列为lost_and_found队列,而不是test21队列。 发生上述情况的原因是,任务未完成时,RM状态存储中存储的还是应用程序移动前的队列状态。唯一的解决办法就是等RM重启后,再次移动应用程序,将新的队列状态信息写入状态存储中。
  • 回答 Streaming Context启动时,如果应用设置了checkpoint,则需要对应用中的DStream checkpoint对象进行序列化,序列化时会用到dstream.context。 dstream.context是Streaming Context启动时从output Streams反向查找所依赖的DStream,逐个设置context。如果Spark Streaming应用创建1个输入流,但该输入流无输出逻辑时,则不会给它设置context。所以在序列化时报“NullPointerException”。 解决办法:应用中如果有无输出逻辑的输入流,则在代码中删除该输入流,或添加该输入流的相关输出逻辑。
  • 通过ECS访问 FusionInsight Manager 登录MRS管理控制台。 在“现有集群”列表中,单击指定的集群名称。 记录集群的“可用区”、“虚拟私有云”、“集群管理页面”、“安全组”。 在管理控制台首页服务列表中选择“弹性云服务器”,进入ECS管理控制台,创建一个新的弹性云服务器。 弹性云服务器的“可用区”、“虚拟私有云”、“安全组”,需要和待访问集群的配置相同。 选择一个Windows系统的公共镜像。例如,选择一个标准镜像“Windows Server 2012 R2 Standard 64bit(40GB)”。 其他配置参数详细信息,请参见购买弹性云服务器。 如果ECS的安全组和Master节点的“默认安全组”不同,用户可以选择以下任一种方法修改配置: 将ECS的安全组修改为Master节点的默认安全组,请参见更改安全组。 在集群Master节点和Core节点的安全组添加两条安全组规则使ECS可以访问集群,“协议”需选择为“TCP”,“端口”需分别选择“28443”和“20009”。请参见创建安全组。 在EIP管理控制台,申请一个弹性IP地址,并与ECS绑定。 登录弹性云服务器。 登录ECS需要Windows系统的账号、密码,弹性IP地址以及配置安全组规则。具体请参见Windows云服务器登录方式。 在Windows的远程桌面中,打开浏览器访问Manager。 Manager访问地址为“集群管理页面”地址。访问时需要输入集群的用户名和密码,例如“admin”用户。 如果使用其他集群用户访问Manager,第一次访问时需要修改密码。新密码需要满足集群当前的用户密码复杂度策略。请咨询管理员。 默认情况下,在登录时输入5次错误密码将锁定用户,需等待5分钟自动解锁。 注销用户退出Manager时移动鼠标到右上角 ,然后单击“注销”。
  • 回答 运行包含Reduce的Mapreduce任务时,通过-Dmapreduce.job.map.output.collector.class=org.apache.hadoop.mapred.nativetask.NativeMapOutputCollectorDelegator命令开启Native Task特性,任务在部分操作系统运行失败,日志中提示错误“version 'GLIBCXX_3.4.20' not found”。该问题原因是操作系统的GLIBCXX版本较低,导致该特性依赖的libnativetask.so.1.0.0库无法加载,进而导致任务失败。 规避手段: 设置配置项mapreduce.job.map.output.collector.class的值为org.apache.hadoop.mapred.MapTask$MapOutputBuffer。
  • 操作步骤 以omm用户登录到需要配置SSL的DBService节点上。 进入“$BIGDATA_HOME/FusionInsight_BASE_x.x.x/install/FusionInsight-dbservice-2.7.0/sbin/”目录,执行以下命令: ./proceed_ha_ssl_cert.sh DBService安装目录 节点IP地址。 例如: cd $BIGDATA_HOME/FusionInsight_BASE_x.x.x/install/FusionInsight-dbservice-2.7.0/sbin/ ./proceed_ha_ssl_cert.sh $BIGDATA_HOME/FusionInsight_BASE_x.x.x/install/FusionInsight-dbservice-2.7.0 10.10.10.10 “$BIGDATA_HOME/FusionInsight_BASE_x.x.x/install/FusionInsight-dbservice-2.7.0”为DBService工作区安装目录,请按照实际环境进行修改。 进入“$BIGDATA_HOME/FusionInsight_BASE_x.x.x/install/FusionInsight-dbservice-2.7.0/ha/module/hacom/script/”目录,执行以下命令重启HA: ./stop_ha.sh ./start_ha.sh 在以上节点执行以下命令获取HA进程的“pid”: ps -ef |grep "ha.bin" |grep DBSERVICE 执行以下命令,查看协议是否全部变更为TCP: netstat -nap | grep pid | grep -v unix 是,结束操作。 否,执行2。 (Not all processes could be identified, non-owned process info will not be shown, you would have to be root to see it all.) tcp 0 0 127.0.0.1:20054 0.0.0.0:* LISTEN 11896/ha.bin tcp 0 0 10.10.10.10:20052 10.10.10.14:20052 ESTABLISHED 11896/ha.bin tcp 0 0 10.10.10.10:20053 10.10.10.14:20053 ESTABLISHED 11896/ha.bin
  • 操作场景 用户需要使用图形化界面在集群中创建或查询HBase表时,可以通过Hue完成任务。 如需在Hue WebUI中操作HBase,当前MRS集群中必须部署HBase的Thrift1Server实例。 Thrift1Server实例默认不会安装,用户可在创建自定义类型的MRS集群时,选择HBase组件并通过调整集群自定义拓扑,添加Thrift1Server实例,详情请参考购买自定义拓扑集群。 如果当前集群支持手动添加服务,也可以在首次添加HBase服务时,选择部署Thrift1Server实例,服务添加成功后,需重启Hue服务,详情请参考添加服务。
  • 操作步骤 使用Ranger管理员用户rangeradmin登录Ranger管理页面,具体操作可参考登录Ranger WebUI界面。 在首页中单击“HBASE”区域的组件插件名称如“HBase”。 单击“Add New Policy”,添加HBase权限控制策略。 根据业务需求配置相关参数。 表1 HBase权限参数 参数名称 描述 Policy Name 策略名称,可自定义,不能与本服务内其他策略名称重复。 Policy Conditions IP过滤策略,可自定义,配置当前策略适用的主机节点,可填写一个或多个IP或IP段,并且IP填写支持“*”通配符,例如:192.168.1.10,192.168.1.20或者192.168.1.*。 Policy Label 为当前策略指定一个标签,可以根据这些标签搜索报告和筛选策略。 HBase Table 将适用该策略的表。 可支持通配符“*”,例如“table1:*”表示table1下的所有表。 “Include”策略适用于当前输入的对象,“Exclude”表示策略适用于除去当前输入内容之外的其他对象。 说明: Ranger界面上HBase服务插件的“hbase.rpc.protection”参数值必须和HBase服务端的“hbase.rpc.protection”参数值保持一致。具体请参考配置HBase权限策略时无法使用通配符搜索已存在的HBase表。 HBase Column-family 将适用该策略的列族。 “Include”策略适用于当前输入的对象,“Exclude”表示策略适用于除去当前输入内容之外的其他对象。 HBase Column 将适用该策略的列。 “Include”策略适用于当前输入的对象,“Exclude”表示策略适用于除去当前输入内容之外的其他对象。 Description 策略描述信息。 Audit Logging 是否审计此策略。 Allow Conditions 策略允许条件,配置本策略内允许的权限及例外。 在“Select Role”、“Select Group”、“Select User”列选择已创建好的需要授予权限的Role、用户组或用户,单击“Add Conditions”,添加策略适用的IP地址范围,单击“Add Permissions”,添加对应权限。 Read:读权限 Write:写权限 Create:创建权限 Admin:管理权限 Select/Deselect All:全选/取消全选 如需让当前条件中的用户或用户组管理本条策略,可勾选“Delegate Admin”使这些用户或用户组成为受委托的管理员。被委托的管理员可以更新、删除本策略,还可以基于原始策略创建子策略。 如需添加多条权限控制规则,可单击按钮添加。如需删除权限控制规则,可单击按钮删除。 Exclude from Allow Conditions:配置策略例外条件。 Deny All Other Accesses 是否拒绝其他所有访问。 True:拒绝其他所有访问 False:设置为False,可配置Deny Conditions。 Deny Conditions 策略拒绝条件,配置本策略内拒绝的权限及例外,配置方法与“Allow Conditions”类似。 拒绝条件的优先级高于“Allow Conditions”中配置的允许条件。 Exclude from Deny Conditions:配置排除在拒绝条件之外的例外规则。 表2 设置权限 任务场景 角色授权操作 设置HBase管理员权限 在首页中单击“HBase”区域的组件插件名称,例如“HBase”。 选择“Policy Name”为“all - table, column-family, column”的策略,单击按钮编辑策略。 在“Allow Conditions”区域,单击“Select User”下选择框选择用户。 设置用户创建表的权限 在“HBase Table”配置表名。 在“Allow Conditions”区域,单击“Select User”下选择框选择用户。 单击“Add Permissions”,勾选“Create”。 该用户具有以下操作权限: create table drop table truncate table alter table enable table flush table flush region compact disable enable desc 设置用户写入数据的权限 在“HBase Table”配置表名。 在“Allow Conditions”区域,单击“Select User”下选择框选择用户。 单击“Add Permissions”,勾选“Write”。 该用户具有put,delete,append,incr等操作权限。 设置用户读取数据的权限 在“HBase Table”配置表名。 在“Allow Conditions”区域,单击“Select User”下选择框选择用户。 单击“Add Permissions”,勾选“Read”。 该用户具有get,scan操作权限。 设置用户管理命名空间或表的权限 在“HBase Table”配置表名。 在“Allow Conditions”区域,单击“Select User”下选择框选择用户。 单击“Add Permissions”,勾选“Admin”。 该用户具有rsgroup,peer,assign,balance等操作权限。 设置列的读取或写入权限 在“HBase Table”配置表名。 在“HBase Column-family”配置列族名。 在“Allow Conditions”区域,单击“Select User”下选择框选择用户。 单击“Add Permissions”,勾选“Read”或者“Write”。 如果用户在hbase shell中执行desc操作,需要同时给该用户赋予hbase:quota表的读权限。 (可选)添加策略有效期。在页面右上角单击“Add Validity period”,设置“Start Time”和“End Time”,选择“Time Zone”。单击“Save”保存。如需添加多条策略有效期,可单击按钮添加。如需删除策略有效期,可单击按钮删除。 单击“Add”,在策略列表可查看策略的基本信息。等待策略生效后,验证相关权限是否正常。 如需禁用某条策略,可单击按钮编辑策略,设置策略开关为“Disabled”。 如果不再使用策略,可单击按钮删除策略。
  • 问题 在380节点的大集群上,运行29T数据量的HiBench测试套中ScalaSort测试用例,使用以下关键配置(--executor-cores 4)出现如下异常: org.apache.spark.shuffle.FetchFailedException: Failed to connect to /192.168.114.12:23242 at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:321) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:306) at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:51) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32) at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) at org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:217) at org.apache.spark.shuffle.hash.HashShuffleReader.read(HashShuffleReader.scala:102) at org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:90) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:301) at org.apache.spark.rdd.RDD.iterator(RDD.scala:265) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:301) at org.apache.spark.rdd.RDD.iterator(RDD.scala:265) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:301) at org.apache.spark.rdd.RDD.iterator(RDD.scala:265) at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:301) at org.apache.spark.rdd.RDD.iterator(RDD.scala:265) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:87) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)Caused by: java.io.IOException: Failed to connect to /192.168.114.12:23242 at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:214) at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:167) at org.apache.spark.network.netty.NettyBlockTransferService$$anon$1.createAndStart(NettyBlockTransferService.scala:91) at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140) at org.apache.spark.network.shuffle.RetryingBlockFetcher.access$200(RetryingBlockFetcher.java:43) at org.apache.spark.network.shuffle.RetryingBlockFetcher$1.run(RetryingBlockFetcher.java:170) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) ... 3 moreCaused by: java.net.ConnectException: Connection timed out: /192.168.114.12:23242 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717) at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:224) at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:289) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:528) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) ... 1 more
  • 回答 在运行应用程序时,使用Executor参数“--executor-cores 4”,单进程中并行度高导致IO非常繁忙,以至于任务运行缓慢。 16/02/26 10:04:53 INFO TaskSetManager: Finished task 2139.0 in stage 1.0 (TID 151149) in 376455 ms on 10-196-115-2 (694/153378) 单个任务运行时间超过6分钟,从而导致连接超时问题,最终使得任务失败。 将参数中的核数设置为1,“--executor-cores 1”,任务正常完成,单个任务处理时间在合理范围之内(15秒左右)。 16/02/29 02:24:46 INFO TaskSetManager: Finished task 59564.0 in stage 1.0 (TID 208574) in 15088 ms on 10-196-115-6 (59515/153378) 因此,处理这类网络超时任务,可以减少单个Executor的核数来规避该类问题。
  • 问题 运行一个Spark Streaming任务,确认有数据输入后,发现没有任何处理的结果。打开Web界面查看Spark Job执行情况,发现如下图所示:有两个Job一直在等待运行,但一直无法成功运行。 图1 Active Jobs 继续查看已经完成的Job,发现也只有两个,说明Spark Streaming都没有触发数据计算的任务(Spark Streaming默认有两个尝试运行的Job,就是图中两个) 图2 Completed Jobs
  • 回答 经过定位发现,导致这个问题的原因是:Spark Streaming的计算核数少于Receiver的个数,导致部分Receiver启动以后,系统已经没有资源去运行计算任务,导致第一个任务一直在等待,后续任务一直在排队。从现象上看,就是如问题中的图1中所示,会有两个任务一直在等待。 因此,当Web出现两个任务一直在等待的情况,首先检查Spark的核数是否大于Receiver的个数。 Receiver在Spark Streaming中是一个常驻的Spark Job,Receiver对于Spark是一个普通的任务,但它的生命周期和Spark Streaming任务相同,并且占用一个核的计算资源。 在调试和测试等经常使用默认配置的场景下,要时刻注意核数与Receiver个数的关系。
共100000条