华为云用户手册

  • Driver配置 Spark Driver可以理解为Spark提交应用的客户端,所有的代码解析工作都在这个进程中完成,因此该进程的参数尤其重要。下面将以如下顺序介绍Spark中进程的参数设置: JavaOptions:Java命令中“-D”后面的参数,可以由System.getProperty获取。 ClassPath:包括Java类和Native的Lib加载路径。 Java Memory and Cores:Java进程的内存和CPU使用量。 Spark Configuration:Spark内部参数,与Java进程无关。 表10 参数说明 参数 描述 默认值 spark.driver.extraJavaOptions 传递至driver(驱动程序)的一系列额外JVM选项。例如,GC设置或其他日志记录。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 参考快速配置参数 spark.driver.extraClassPath 附加至driver的classpath的额外classpath条目。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 参考快速配置参数 spark.driver.userClassPathFirst (试验性)当在驱动程序中加载类时,是否授权用户添加的jar优先于Spark自身的jar。这种特性可用于减缓Spark依赖和用户依赖之间的冲突。目前该特性仍处于试验阶段,仅用于Cluster模式中。 false spark.driver.extraLibraryPath 设置一个特殊的library path在启动驱动程序JVM时使用。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 JD BCS erver2x: ${SPARK_INSTALL_HOME}/spark/native SparkResource2x: ${DATA_NODE_INSTALL_HOME}/hadoop/lib/native spark.driver.cores 驱动程序进程使用的核数。仅适用于Cluster模式。 1 spark.driver.memory 驱动程序进程使用的内存数量,即SparkContext初始化的进程(例如:512M, 2G)。 注意:在Client模式中,该配置禁止直接在应用程序中通过SparkConf设置,因为驱动程序JVM已经启动。请通过--driver-java-options命令行选项或默认property文件进行设置。 4G spark.driver.maxResultSize 对每个Spark action操作(例如“collect”)的所有分区序列化结果的总量限制,至少1M,设置成0表示不限制。如果总量超过该限制,工作任务会中止。限制值设置过高可能会引起驱动程序的内存不足错误(取决于spark.driver.memory和JVM的对象内存开销)。设置合理的限制可以避免驱动程序出现内存不足的错误。 1G spark.driver.host Driver监测的主机名或IP地址,用于Driver与Executor进行通信。 (local hostname) spark.driver.port Driver监测的端口,用于Driver与Executor进行通信。 (random)
  • ExecutorLaucher配置 ExecutorLauncher只有在Yarn-Client模式下才会存在的角色,Yarn-Client模式下,ExecutorLauncher和Driver不在同一个进程中,需要对ExecutorLauncher的参数进行特殊的配置。 表11 参数说明 参数 描述 默认值 spark.yarn.am.extraJavaOptions 在Client模式下传递至YARN Application Master的一系列额外JVM选项。在Cluster模式下使用spark.driver.extraJavaOptions。 参考快速配置参数 spark.yarn.am.memory 针对Client模式下YARN Application Master使用的内存数量,与JVM内存设置字符串格式一致(例如:512m,2g)。在集群模式下,使用spark.driver.memory。 1G spark.yarn.am.memoryOverhead 和“spark.yarn.driver.memoryOverhead”一样,但只针对Client模式下的Application Master。 - spark.yarn.am.cores 针对Client模式下YARN Application Master使用的核数。在Cluster模式下,使用spark.driver.cores。 1
  • Executor配置 Executor也是单独一个Java进程,但不像Driver和AM只有一个,Executor可以有多个进程,而目前Spark只支持相同的配置,即所有Executor的进程参数都必然是一样的。 表12 参数说明 参数 描述 默认值 spark.executor.extraJavaOptions 传递至Executor的额外JVM选项。例如,GC设置或其他日志记录。请注意不能通过此选项设置Spark属性或heap大小。Spark属性应该使用SparkConf对象或调用spark-submit脚本时指定的spark-defaults.conf文件来设置。Heap大小可以通过spark.executor.memory来设置。 参考快速配置参数 spark.executor.extraClassPath 附加至Executor classpath的额外的classpath。这主要是为了向后兼容Spark的历史版本。用户一般不用设置此选项。 - spark.executor.extraLibraryPath 设置启动executor JVM时所使用的特殊的library path。 参考快速配置参数 spark.executor.userClassPathFirst (试验性)与spark.driver.userClassPathFirst相同的功能,但应用于Executor实例。 false spark.executor.memory 每个Executor进程使用的内存数量,与JVM内存设置字符串的格式相同(例如:512M,2G)。 4G spark.executorEnv.[EnvironmentVariableName] 添加由EnvironmentVariableName指定的环境变量至executor进程。用户可以指定多个来设置多个环境变量。 - spark.executor.logs.rolling.maxRetainedFiles 设置系统即将保留的最新滚动日志文件的数量。旧的日志文件将被删除。默认关闭。 - spark.executor.logs.rolling.size.maxBytes 设置滚动Executor日志的文件的最大值。默认关闭。数值以字节为单位设置。若要自动清除旧日志,请查看spark.executor.logs.rolling.maxRetainedFiles。 - spark.executor.logs.rolling.strategy 设置executor日志的滚动策略。默认滚动关闭。可以设置为“time”(基于时间的滚动)或“size”(基于大小的滚动)。当设置为“time”,使用spark.executor.logs.rolling.time.interval属性的值作为日志滚动的间隔。当设置为“size”,使用spark.executor.logs.rolling.size.maxBytes设置滚动的最大文件大小滚动。 - spark.executor.logs.rolling.time.interval 设置executor日志滚动的时间间隔。默认关闭。合法值为“daily”、“hourly”、“minutely”或任意秒。若要自动清除旧日志,请查看spark.executor.logs.rolling.maxRetainedFiles。 daily
  • 普通Shuffle配置 表9 参数说明 参数 描述 默认值 spark.shuffle.spill 若设为“true”,通过将数据溢出至磁盘来限制reduce任务期间内存的使用量。 true spark.shuffle.spill.compress 是否压缩shuffle期间溢出的数据。使用spark.io.compression.codec指定的算法进行数据压缩。 true spark.shuffle.file.buffer 每个shuffle文件输出流的内存缓冲区大小(单位:KB)。这些缓冲区可以减少创建中间shuffle文件流过程中产生的磁盘寻道和系统调用次数。也可以通过配置项spark.shuffle.file.buffer.kb设置。 32KB spark.shuffle.compress 是否压缩map任务输出文件。建议压缩。使用spark.io.compression.codec进行压缩。 true spark.reducer.maxSizeInFlight 从每个reduce任务同时fetch的map任务输出最大值(单位:MB)。由于每个输出要求创建一个缓冲区进行接收,这代表了每个reduce任务固定的内存开销,所以除非拥有大量内存,否则保持低值。也可以通过配置项spark.reducer.maxMbInFlight设置。 48MB
  • Spark Streaming Kafka Receiver是Spark Streaming一个重要的组成部分,它负责接收外部数据,并将数据封装为Block,提供给Streaming消费。最常见的数据源是Kafka,Spark Streaming对Kafka的集成也是最完善的,不仅有可靠性的保障,而且也支持从Kafka直接作为RDD输入。 表7 参数说明 参数 描述 默认值 spark.streaming.kafka.maxRatePerPartition 使用Kafka direct stream API时,从每个Kafka分区读取数据的最大速率(每秒记录数量)。 - spark.streaming.blockInterval 在被存入Spark之前Spark Streaming Receiver接收数据累积成数据块的间隔(毫秒)。推荐最小值为50毫秒。 200ms spark.streaming.receiver.maxRate 每个Receiver接收数据的最大速率(每秒记录数量)。配置设置为0或者负值将不会对速率设限。 - spark.streaming.receiver.writeAheadLog.enable 是否使用ReliableKafkaReceiver。该Receiver支持流式数据不丢失。 false
  • Dynamic Allocation 动态资源调度是On Yarn模式特有的特性,并且必须开启Yarn External Shuffle才能使用这个功能。在使用Spark作为一个常驻的服务时候,动态资源调度将大大的提高资源的利用率。例如JDB CS erver服务,大多数时间该进程并不接受JDBC请求,因此将这段空闲时间的资源释放出来,将极大的节约集群的资源。 表5 参数说明 参数 描述 默认值 spark.dynamicAllocation.enabled 是否使用动态资源调度,用于根据规模调整注册于该应用的executor的数量。注意目前仅在YARN模式下有效。 启用动态资源调度必须将spark.shuffle.service.enabled设置为true。以下配置也与此相关:spark.dynamicAllocation.minExecutors、spark.dynamicAllocation.maxExecutors和spark.dynamicAllocation.initialExecutors。 JDBCServer2x: true SparkResource2x: false spark.dynamicAllocation.minExecutors 最小Executor个数。 0 spark.dynamicAllocation.initialExecutors 初始Executor个数。 spark.dynamicAllocation.minExecutors spark.dynamicAllocation.maxExecutors 最大executor个数。 2048 spark.dynamicAllocation.schedulerBacklogTimeout 调度第一次超时时间。单位为秒。 1s spark.dynamicAllocation.sustainedSchedulerBacklogTimeout 调度第二次及之后超时时间。 1s spark.dynamicAllocation.executorIdleTimeout 普通Executor空闲超时时间。单位为秒。 60 spark.dynamicAllocation.cachedExecutorIdleTimeout 含有cached blocks的Executor空闲超时时间。 JDBCServer2x:2147483647s IndexServer2x:2147483647s SparkResource2x:120
  • Spark Streaming Spark Streaming是在Spark批处理平台提供的流式数据的处理能力,以“mini-batch”的方式处理从外部输入的数据。 在Spark客户端的“spark-defaults.conf”文件中配置如下参数。 表6 参数说明 参数 描述 默认值 spark.streaming.receiver.writeAheadLog.enable 启用预写日志(WAL)功能。所有通过Receiver接收的输入数据将被保存至预写日志,预写日志可以保证Driver程序出错后数据可以恢复。 false spark.streaming.unpersist 由Spark Streaming产生和保存的RDDs自动从Spark的内存中强制移除。Spark Streaming接收的原始输入数据也将自动清除。设置为false时原始输入数据和存留的RDDs不会自动清除,因此在streaming应用外部依然可以访问,但是这会占用更多的Spark内存。 true
  • Netty/NIO及Hash/Sort配置 Shuffle是大数据处理中最重要的一个性能点,网络是整个Shuffle过程的性能点。目前Spark支持两种Shuffle方式,一种是Hash,另外一种Sort。网络也有两种方式,Netty和NIO。 表8 参数说明 参数 描述 默认值 spark.shuffle.manager 处理数据的方式。有两种实现方式可用:sort和hash。sort shuffle对内存的使用率更高,是Spark 1.2及后续版本的默认选项。 SORT spark.shuffle.consolidateFiles (仅hash方式)若要合并在shuffle过程中创建的中间文件,需要将该值设置为“true”。文件创建的少可以提高文件系统处理性能,降低风险。使用ext4或者xfs文件系统时,建议设置为“true”。由于文件系统限制,在ext3上该设置可能会降低8核以上机器的处理性能。 false spark.shuffle.sort.bypassMergeThreshold 该参数只适用于spark.shuffle.manager设置为sort时。在不做map端聚合并且reduce任务的partition数小于或等于该值时,避免对数据进行归并排序,防止系统处理不必要的排序引起性能下降。 200 spark.shuffle.io.maxRetries (仅Netty方式)如果设为非零值,由于IO相关的异常导致的fetch失败会自动重试。该重试逻辑有助于大型shuffle在发生长GC暂停或者网络闪断时保持稳定。 12 spark.shuffle.io.numConnectionsPerPeer (仅Netty方式)为了减少大型集群的连接创建,主机间的连接会被重新使用。对于拥有较多硬盘和少数主机的集群,此操作可能会导致并发性不足以占用所有磁盘,所以用户可以考虑增加此值。 1 spark.shuffle.io.preferDirectBufs (仅Netty方式)使用off-heap缓冲区减少shuffle和高速缓存块转移期间的垃圾回收。对于off-heap内存被严格限制的环境,用户可以将其关闭以强制所有来自Netty的申请使用堆内内存。 true spark.shuffle.io.retryWait (仅Netty方式)等待fetch重试期间的时间(秒)。重试引起的最大延迟为maxRetries * retryWait,默认是15秒。 5
  • Spark长时间任务安全认证配置 安全模式下,使用Spark CLI(如spark shell、spark sql、spark submit)时,如果使用kinit命令进行安全认证,当执行长时间运行任务时,会因为认证过期导致任务失败。 在客户端的“spark-defaults.conf”配置文件中设置如下参数,配置完成后,重新执行Spark CLI即可。 当参数值为“true”时,需要保证“spark-defaults.conf”和“hive-site.xml”中的Keytab和principal的值相同。 表3 参数说明 参数名称 含义 默认值 spark.kerberos.principal 具有Spark操作权限的principal。请联系 MRS 集群管理员获取对应principal。 - spark.kerberos.keytab 具有Spark操作权限的Keytab文件名称和文件路径。请联系MRS集群管理员获取对应Keytab文件。 - spark.security.bigdata.loginOnce Principal用户是否只登录一次。true为单次登录;false为多次登录。 单次登录与多次登录的区别在于:Spark社区使用多次Kerberos用户登录多次的方案,但容易出现TGT过期或者Token过期异常导致应用无法长时间运行。DataSight修改了Kerberos登录方式,只允许用户登录一次,可以有效的解决过期问题。限制在于,Hive相关的principal与keytab的配置项必须与Spark配置相同。 说明: 当参数值为true时,需要保证“spark-defaults.conf”和“hive-site.xml”中的Keytab和principal的值相同。 true
  • 配置是否使用笛卡尔积功能 要启动使用笛卡尔积功能,需要在Spark的“spark-defaults.conf”配置文件中进行如下设置。 表2 笛卡尔积参数说明 参数 说明 默认值 spark.sql.crossJoin.enabled 是否允许隐性执行笛卡尔积。 “true”表示允许 “false”表示不允许,此时只允许query中显式包含CROSS JOIN语法。 true JDBC应用在服务端的“spark-defaults.conf”配置文件中设置该参数。 Spark客户端提交的任务在客户端配的“spark-defaults.conf”配置文件中设置该参数。
  • Python Spark Python Spark是Spark除了Scala、Java两种API之外的第三种编程语言。不同于Java和Scala都是在JVM平台上运行,Python Spark不仅会有JVM进程,还会有自身的Python进程。以下配置项只适用于Python Spark场景,而其他配置项也同样可以在Python Spark中生效。 表4 参数说明 参数 描述 默认值 spark.python.profile 在Python worker中开启profiling。通过sc.show_profiles()展示分析结果。或者在driver退出前展示分析结果。可以通过sc.dump_profiles(path) 将结果转储到磁盘中。如果一些分析结果已经手动展示,那么在Driver退出前,它们将不会再自动展示。 默认使用pyspark.profiler.BasicProfiler,可以在初始化SparkContext时传入指定的profiler来覆盖默认的profiler。 false spark.python.worker.memory 聚合过程中每个python worker进程所能使用的内存大小,其值格式同指定JVM内存一致,如512m,2g。如果进程在聚集期间所用的内存超过了该值,数据将会被写入磁盘。 512m spark.python.worker.reuse 是否重用python worker。如是,它将使用固定数量的Python workers,那么下一批提交的task将重用这些Python workers,而不是为每个task重新fork一个Python进程。 该功能在大型广播下非常有用,因为此时对下一批提交的task不需要将数据从JVM再一次传输至Python worker。 true
  • 配置Stage失败重试次数 Spark任务在遇到FetchFailedException时会触发Stage重试。为了防止Stage无限重试,对Stage重试次数进行限制。重试次数可以根据实际需要进行调整。 在Spark客户端的“spark-defaults.conf”文件中配置如下参数。 表1 参数说明 参数 说明 默认值 spark.stage.maxConsecutiveAttempts Stage失败重试最大次数。 4
  • 操作步骤 假设存在如下一张表: user_data(user_group int, user_name string, update_time timestamp); 其中user_group是分区列,需要根据已有数据,按更新时间进行排序,刷新用户组信息。操作步骤如下: 在Hive Beeline命令行执行以下命令开启Hive动态分区: set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict; 执行以下命令创建一个临时表,用于存储去重后的数据: CREATE TABLE temp_user_data AS SELECT * FROM ( SELECT *, ROW_NUMBER() OVER(PARTITION BY user_group ORDER BY update_time DESC) as rank FROM user_data ) tmp WHERE rank = 1; 执行以下命令使用临时数据作为数据源,并插入到目的表中: INSERT OVERWRITE TABLE user_data SELECT user_group, user_name, update_time FROM temp_user_data; 执行以下命令清理临时表: DROP TABLE IF EXISTS temp_user_data;
  • 操作场景 Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类的基本类型数据,性能的提升就几乎可以忽略。 KryoSerializer依赖Twitter的Chill库来实现,相对于JavaSerializer,主要的问题在于不是所有的Java Serializable对象都能支持,兼容性不好,所以需要手动注册类。 序列化功能用在两个地方:序列化任务和序列化数据。Spark任务序列化只支持JavaSerializer,数据序列化支持JavaSerializer和KryoSerializer。
  • 操作步骤 Spark程序运行时,在shuffle和RDD Cache等过程中,会有大量的数据需要序列化,默认使用JavaSerializer,通过配置让KryoSerializer作为数据序列化器来提升序列化性能。 在开发应用程序时,添加如下代码来使用KryoSerializer作为数据序列化器。 实现类注册器并手动注册类。 package com.etl.common; import com.esotericsoftware.kryo.Kryo; import org.apache.spark.serializer.KryoRegistrator; public class DemoRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { //以下为示例类,请注册自定义的类 kryo.register(AggrateKey.class); kryo.register(AggrateValue.class); } } 您可以在Spark客户端对spark.kryo.registrationRequired参数进行配置,设置是否需要Kryo注册序列化。 当参数设置为true时,如果工程中存在未被序列化的类,则会发生异常。如果设置为false(默认值),Kryo会自动将未注册的类名写到对应的对象中。此操作会对系统性能造成影响。设置为true时,用户需手动注册类,针对未序列化的类,系统不会自动写入类名,而是发生异常,相对比false,其性能较好。 配置KryoSerializer作为数据序列化器和类注册器。 val conf = new SparkConf() conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .set("spark.kryo.registrator", "com.etl.common.DemoRegistrator")
  • 配置描述 在客户端的“mapred-site.xml”配置文件中进行如下配置。“mapred-site.xml”配置文件在客户端安装路径的config目录下,例如“/opt/client/Yarn/config”。 表1 参数说明 参数 描述 默认值 mapreduce.app-submission.cross-platform 支持在Windows上提交到Linux上运行MR任务的配置项。当该参数的值设为“true”时,表示支持。当该参数的值设为“false”时,表示不支持。 true
  • 操作步骤 在外部节点上确保连接SSH时使用的用户存在,且该用户“~/.ssh”目录存在。 使用omm用户登录Oozie所在节点,查看“~/.ssh/id_rsa.pub”文件是否存在。 是,执行3。 否,执行以下命令生成公私钥: ssh-keygen -t rsa 以omm用户登录oozie实例所在节点,执行以下命令配置互信: ssh-copy-id -i ~/.ssh/id_rsa.pub 运行SSH任务的用户@运行SSH任务的节点的IP地址 执行该命令后需要输入运行SSH任务的用户的密码。 Shell所在节点(外部节点)的账户需要有权限执行Shell脚本并对于所有Shell脚本里涉及到的所有目录文件有足够权限。 如果Oozie具有多个节点,需要在所有Oozie节点执行2~3。 使用omm用户登录依次其他Oozie所在节点,重复执行2-3。
  • 操作场景 抢占任务可精简队列中的job运行并提高资源利用率,由ResourceManager的capacity scheduler实现,其简易流程如下: 假设存在两个队列A和B。其中队列A的capacity为25%,队列B的capacity为75%。 初始状态下,任务1发送给队列A,此任务需要75%的集群资源。之后任务2发送到了队列B,此任务需要50%的集群资源。 任务1将会使用队列A提供的25%的集群资源,并从队列B获取的50%的集群资源。队列B保留25%的集群资源。 启用抢占任务特性,则任务1使用的资源将会被抢占。队列B会从队列A中获取25%的集群资源以满足任务2的执行。 当任务2完成后,集群中存在足够的资源时,任务1将重新开始执行。
  • 操作步骤 参数入口: 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。 表1 Preemption配置 参数 描述 默认值 yarn.resourcemanager.scheduler.monitor.enable 根据“yarn.resourcemanager.scheduler.monitor.policies”中的策略,启用新的scheduler监控。设置为“true”表示启用监控,并根据scheduler的信息,启动抢占的功能。设置为“false”表示不启用。 false yarn.resourcemanager.scheduler.monitor.policies 设置与scheduler配合的“SchedulingEditPolicy”的类的清单。 org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicy yarn.resourcemanager.monitor.capacity.preemption.observe_only 设置为“true”,则执行策略,但是不对集群资源进程抢占操作。 设置为“false”,则执行策略,且根据策略启用集群资源抢占的功能。 false yarn.resourcemanager.monitor.capacity.preemption.monitoring_interval 根据策略监控的时间间隔,单位为毫秒。如果将该参数设置为更大的值,容量检测将不那么频繁地运行。 3000 yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill 应用发送抢占需求到停止container(释放资源)的时间间隔,单位为毫秒。取值范围大于等于0。 默认情况下,若ApplicationMaster15秒内没有终止container,ResourceManager等待15秒后会强制终止。 15000 yarn.resourcemanager.monitor.capacity.preemption.total_preemption_per_round 在一个周期内能够抢占资源的最大的比例。可使用这个值来限制从集群回收容器的速度。计算出了期望的总抢占值之后,策略会伸缩回这个限制。 0.1 yarn.resourcemanager.monitor.capacity.preemption.max_ignored_over_capacity 集群中资源总量乘以此配置项的值加上某个队列(例如队列A)原有的资源量为资源抢占盲区。当队列A中的任务实际使用的资源超过该抢占盲区时,超过部分的资源将会被抢占。取值范围:0~1。 说明: 设置的值越小越有利于资源抢占。 0 yarn.resourcemanager.monitor.capacity.preemption.natural_termination_factor 设置抢占目标,Container只会抢占所配置比例的资源。 示例,如果设置为0.5,则在5*“yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill”的时间内,任务会回收所抢占资源的近95%。即接连抢占5次,每次抢占待抢占资源的0.5,呈几何收敛,每次的时间间隔为“yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill”。取值范围:0~1。 1
  • index相关配置 参数 描述 默认值 hoodie.index.class 用户自定义索引的全路径名,索引类必须为HoodieIndex的子类,当指定该配置时,其会优先于hoodie.index.type配置。 "" hoodie.index.type 使用的索引类型,默认为布隆过滤器。可能的选项是[BLOOM | HBASE | GLOBAL_BLOOM | SIMPLE | GLOBAL_SIMPLE] 。 布隆过滤器消除了对外部系统的依赖,并存储在Parquet数据文件的页脚中。 BLOOM hoodie.index.bloom.num_entries 存储在布隆过滤器中的条目数。 假设maxParquetFileSize为128MB,averageRecordSize为1024B,因此,一个文件中的记录总数约为130K。 默认值(60000)大约是此近似值的一半。 注意: 将此值设置的太低,将产生很多误报,并且索引查找将必须扫描比其所需的更多的文件;如果将其设置的非常高,将线性增加每个数据文件的大小(每50000个条目大约4KB)。 60000 hoodie.index.bloom.fpp 根据条目数允许的错误率。 用于计算应为布隆过滤器分配多少位以及哈希函数的数量。通常将此值设置得很低(默认值:0.000000001),在磁盘空间上进行权衡以降低误报率。 0.000000001 hoodie.bloom.index.parallelism 索引查找的并行度,其中涉及Spark Shuffle。 默认情况下,根据输入的工作负载特征自动计算的。 0 hoodie.bloom.index.prune.by.ranges 为true时,从文件框定信息,可以加快索引查找的速度。 如果键具有单调递增的前缀,例如时间戳,则特别有用。 true hoodie.bloom.index.use.caching 为true时,将通过减少用于计算并行度或受影响分区的IO来缓存输入的RDD以加快索引查找。 true hoodie.bloom.index.use.treebased.filter 为true时,启用基于间隔树的文件过滤优化。与暴力模式相比,此模式可根据键范围加快文件过滤速度。 true hoodie.bloom.index.bucketized.checking 为true时,启用了桶式布隆过滤。这减少了在基于排序的布隆索引查找中看到的偏差。 true hoodie.bloom.index.keys.per.bucket 仅在启用bloomIndexBucketizedChecking并且索引类型为bloom的情况下适用。 此配置控制“存储桶”的大小,该大小可跟踪对单个文件进行的记录键检查的次数,并且是分配给执行布隆过滤器查找的每个分区的工作单位。 较高的值将分摊将布隆过滤器读取到内存的固定成本。 10000000 hoodie.bloom.index.update.partition.path 仅在索引类型为GLOBAL_BLOOM时适用。 为true时,当对一个已有记录执行包含分区路径的更新操作时,将会导致把新记录插入到新分区,而把原有记录从旧分区里删除。为false时,只对旧分区的原有记录进行更新。 true hoodie.index.hbase.zkquorum 仅在索引类型为HBASE时适用,必填选项。要连接的HBase ZK Quorum URL。 无 hoodie.index.hbase.zkport 仅在索引类型为HBASE时适用,必填选项。要连接的HBase ZK Quorum端口。 无 hoodie.index.hbase.zknode.path 仅在索引类型为HBASE时适用,必填选项。这是根znode,它将包含HBase创建及使用的所有znode。 无 hoodie.index.hbase.table 仅在索引类型为HBASE时适用,必填选项。HBase表名称,用作索引。Hudi将row_key和[partition_path, fileID, commitTime]映射存储在表中。 无 父主题: Hudi常见配置参数
  • 对系统的影响 配置高可用、高性能的影响: 配置高可用、高性能模式后,数据可靠性会降低。在磁盘故障、节点故障等场景下存在数据丢失风险。 配置高可靠性的影响: 性能降低: 在生产数据时,配置了高可靠参数ack=-1之后,需要多个副本均写入成功之后才认为是写入成功。这样会导致单条消息时延增加,客户端处理能力下降。具体性能以现场实际测试数据为准。 可用性降低: 不允许不在ISR中的副本被选举为Leader。如果Leader下线时,其他副本均不在ISR列表中,那么该分区将保持不可用,直到Leader节点恢复。当分区的一个副本所在节点故障时,无法满足最小写入成功的副本数,那么将会导致业务写入失败。 参数配置项为服务级配置需要重启Kafka,建议在变更窗口做服务级配置修改。
  • 配置建议 请根据以下业务场景对可靠性和性能要求进行评估,采用合理参数配置。 对于价值数据,这两种场景下建议Kafka数据目录磁盘配置raid1或者raid5,从而提高单个磁盘故障情况下数据可靠性。 参数配置项均为Topic级别可修改的参数,默认采用服务级配置。 可针对不同Topic可靠性要求对Topic进行单独配置。以root用户登录Kafka客户端节点,在客户端安装目录下配置Topic名称为test的可靠性参数命令: cd Kafka/kafka/bin kafka-topics.sh --zookeeper 192.168.1.205:2181/kafka --alter --topic test --config unclean.leader.election.enable=false --config min.insync.replicas=2 其中192.168.1.205为ZooKeeper业务IP地址。 参数配置项为服务级配置需要重启Kafka,建议在变更窗口做服务级配置修改。
  • 回答 当运行任务时,将MR ApplicationMaster或ResourceManager移动为D状态(不间断睡眠状态)或T状态(停止状态),客户端会等待返回任务运行的状态,由于AM无返回,客户端会一直处于等待状态。 为避免出现上述场景,使用“core-site.xml”中的“ipc.client.rpc.timeout”配置项设置客户端超时时间。 该参数的参数值为毫秒。默认值为0,表示无超时。客户端超时的取值范围可以为0~2147483647毫秒。 如果Hadoop进程已处于D状态,重启该进程所处的节点。 “core-site.xml”配置文件在客户端安装路径的conf目录下,例如“/opt/client/Yarn/config”。
  • 操作步骤 访问Hue WebUI,请参考访问Hue WebUI界面。 单击菜单左侧的,在打开的页面中可以查看Workflow、计划、Bundles任务的相关信息。 默认显示当前集群的所有作业。 作业浏览器显示的数字表示集群中所有作业的总数。 “作业浏览器”将显示作业以下信息: 表1 MRS作业属性介绍 属性名 描述 名称 表示作业的名称。 用户 表示启动该作业的用户。 类型 表示作业的类型。 状态 表示作业的状态,包含“成功”、“正在运行”、“失败”。 进度 表示作业运行进度。 组 表示作业所属组。 开始 表示作业开始时间。 持续时间 表示作业运行使用的时间。 Id 表示作业的编号,由系统自动生成。 如果MRS集群安装了Spark组件,则默认会启动一个作业“Spark-JDBCServer”,用于执行任务。
  • 操作步骤 SparkSQL表授权、列授权、数据库授权与Hive的操作相同,详情请参见Hive用户权限管理。 在权限管理中,为了方便用户使用,授予数据库下表的任意权限将自动关联该数据库目录的HDFS权限。为了避免产生性能问题,取消表的任意权限,系统不会自动取消数据库目录的HDFS权限,但对应的用户只能登录数据库和查看表名。 若为角色添加或删除数据库的查询权限,数据库中的表也将自动添加或删除查询权限。此机制为Hive实现,SparkSQL与Hive保持一致。 Spark不支持struct数据类型中列名称含有特殊字符(除字母、数字、下划线外的其他字符)。如果struct类型中列名称含有特殊字符,在 FusionInsight Manager的“编辑角色”页面进行授权时,该列将无法正确显示。
  • 相关概念 SparkSQL的语句在SparkSQL中进行处理,权限要求如表1所示。 表1 使用SparkSQL表、列或数据库场景权限一览 操作场景 用户需要的权限 CREATE TABLE “创建”,RWX+ownership(for create external table - the location) 说明: 按照指定文件路径创建datasource表时,需要path后面文件的RWX+ownership权限。 DROP TABLE “Ownership”(of table) DROP TABLE PROPERTIES “Ownership” DESCRIBE TABLE “查询” SHOW PARTITIONS “查询” ALTER TABLE LOCATION “Ownership”,RWX+ownership (for new location) ALTER PARTITION LOCATION “Ownership”,RWX+ownership (for new partition location) ALTER TABLE ADD PARTITION “插入”,RWX+ownership (for partition location) ALTER TABLE DROP PARTITION “删除” ALTER TABLE(all of them except the ones above) “Update”,“Ownership” TRUNCATE TABLE “Ownership” CREATE VIEW “查询”,“Grant Of Select”,“创建” ALTER VIEW PROPERTIES “Ownership” ALTER VIEW RENAME “Ownership” ALTER VIEW ADD PARTS “Ownership” ALTER VIEW AS “Ownership” ALTER VIEW DROPPARTS “Ownership” ANALYZE TABLE “查询”,“插入” SHOW COLUMNS “查询” SHOW TABLE PROPERTIES “查询” CREATE TABLE AS SELECT “查询”,“创建” SELECT “查询” 说明: 与表一样,对视图进行SELECT操作的时候需要有该视图的“查询”权限。 INSERT “插入”,“删除 (for overwrite)” LOAD “插入”,“删除”,RWX+ownership(input location) SHOW CREATE TABLE “查询”,“Grant Of Select” CREATE FUNCTION “管理” DROP FUNCTION “管理” DESC FUNCTION - SHOW FUNCTIONS - MSCK (metastore check) “Ownership” ALTER DATABASE “管理” CREATE DATABASE - SHOW DATABASES - EXPLAIN “查询” DROP DATABASE “Ownership” DESC DATABASE - CACHE TABLE “查询” UNCACHE TABLE “查询” CLEAR CACHE TABLE “管理” REFRESH TABLE “查询” ADD FILE “管理” ADD JAR “管理” HEALTHCHECK -
  • 问题 当使用与Region Server相同的Linux用户(例如omm用户)但不同的kerberos用户(例如admin用户)时,为什么ImportTsv工具执行失败报“Permission denied”的异常? Exception in thread "main" org.apache.hadoop.security.AccessControlException: Permission denied: user=admin, access=WRITE, inode="/user/omm-bulkload/hbase-staging/partitions_cab16de5-87c2-4153-9cca-a6f4ed4278a6":hbase:hadoop:drwx--x--x at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:342) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:315) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:231) at com.xxx.hadoop.adapter.hdfs.plugin.HWAccessControlEnforce.checkPermission(HWAccessControlEnforce.java:69) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:190) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1789) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1773) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1756) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInternal(FSNamesystem.java:2490) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInt(FSNamesystem.java:2425) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFile(FSNamesystem.java:2308) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.create(NameNodeRpcServer.java:745) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.create(ClientNamenodeProtocolServerSideTranslatorPB.java:434) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:973) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2260) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2256) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1781) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2254)
  • 回答 ImportTsv工具在“客户端安装路径/HBase/hbase/conf/hbase-site.xml”文件中“hbase.fs.tmp.dir”参数所配置的HBase临时目录中创建partition文件。因此客户端(kerberos用户)应该在指定的临时目录上具有rwx的权限来执行ImportTsv操作。“hbase.fs.tmp.dir”参数的默认值为“/user/${user.name}/hbase-staging”(例如“/user/omm/hbase-staging”),此处“$ {user.name}”是操作系统用户名(即omm用户),客户端(kerberos用户,例如admin用户)不具备该目录的rwx权限。 上述问题可通过执行以下步骤解决: 在客户端将“hbase.fs.tmp.dir”参数设置为当前kerberos用户的目录(如“/user/admin/hbase-staging”),或者为客户端(kerberos用户)提供已配置的目录所必需的rwx权限。 重试ImportTsv操作。
  • 操作步骤 以Hive客户端安装用户登录安装客户端的节点。 执行以下命令,切换到客户端安装目录。 cd 客户端安装目录 例如安装目录为“/opt/client”,则执行以下命令: cd /opt/client 执行以下命令配置环境变量。 source bigdata_env 集群认证模式是否为安全模式。 是,执行以下命令进行用户认证: kinit Hive业务用户 否,执行5。 执行以下命令,将需要关联的关系型数据库驱动Jar包上传到HDFS目录下。 hdfs dfs -put Jar包所在目录 保存Jar包的HDFS目录 例如将“/opt”目录下ORACLE驱动Jar包上传到HDFS的“/tmp”目录下,则执行如下命令。 hdfs dfs -put /opt/ojdbc6.jar /tmp 按照如下示例,在Hive客户端创建关联关系型数据库的外表。 如果是安全模式,建表的用户需要“ADMIN”权限,ADD JAR的路径请以实际路径为准。 -- 关联oracle linux6版本示例 -- 如果是安全模式,设置admin权限 set role admin; -- 添加连接关系型数据库的驱动jar包,不同数据库有不同的驱动JAR ADD JAR hdfs:///tmp/ojdbc6.jar; CREATE EXTERNAL TABLE ora_test -- hive表的列需比数据库返回结果多一列用于分页查询 (id STRING,rownum string) STORED BY 'com.qubitproducts.hive.storage.jdbc.JdbcStorageHandler' TBLPROPERTIES ( -- 关系型数据库类型 "qubit.sql.database.type" = "ORACLE", -- 通过JDBC连接关系型数据库的url(不同数据库有不同的url格式) "qubit.sql.jdbc.url" = "jdbc:oracle:thin:@//10.163.0.1:1521/mydb", -- 关系型数据库驱动类名 "qubit.sql.jdbc.driver" = "oracle.jdbc.OracleDriver", -- 在关系型数据库查询的sql语句,结果将返回hive表 "qubit.sql.query" = "select name from aaa", -- hive表的列与关系型数据库表的列进行匹配(可忽略) "qubit.sql.column.mapping" = "id=name", -- 关系型数据库用户 "qubit.sql.dbcp.username" = "test", -- 关系型数据库密码,命令中如果携带认证密码信息可能存在安全风险,在执行命令前建议关闭系统的history命令记录功能,避免信息泄露。 "qubit.sql.dbcp.password" = "xxx");
  • 日志级别 Kafka提供了如表3所示的日志级别。 运行日志的级别优先级从高到低分别是ERROR、WARN、INFO、DEBUG,程序会打印高于或等于所设置级别的日志,设置的日志等级越高,打印出来的日志就越少。 表3 日志级别 级别 描述 ERROR ERROR表示系统运行的错误信息。 WARN WARN表示当前事件处理存在异常信息。 INFO INFO表示记录系统及各事件正常运行状态信息。 DEBUG DEBUG表示记录系统及系统的调试信息。 如果您需要修改日志级别,请执行如下操作: 请参考修改集群服务配置参数,进入Kafka的“全部配置”页面。 左边菜单栏中选择所需修改的角色所对应的日志菜单。 选择所需修改的日志级别。 保存配置,在弹出窗口中单击“确定”使配置生效。
共100000条