华为云用户手册
-
分库分表场景 对于不同库上表可以聚合为一个表,同步时会被统一写入一个目标表中,匹配的分库分表需要保证结构的一致性。 源端配置。 图4 添加逻辑表 已添加的逻辑表支持预览,单击操作列的预览即可。 预览逻辑表,源表数量越多,等待时间可能越长,需要几分钟到几十分钟不等。 图5 逻辑表预览 目标端配置。 源库表和目标匹配策略: 目标端库名:自定义目标端库名。 表匹配策略:默认为与源端逻辑表同名,不可更改。 写入模式:选择数据写入模式。 UPSERT为批量更新入库模式,COPY为DWS专有的高性能批量入库模式。 批写最大数据量:根据表数据大小和作业内存使用,适当调整,数据范围1-10000000。 定时批写时间间隔:数据定时入库的间隔时间,时间1-1000, 单位为秒。 高级配置:通过设置以下参数配置数据写入的高级属性。 sink.buffer-flush.max-size:根据作业配置内存和数据大小设置批写最大内存,单位:Mb。 sink.case-sensitive: 是否对字段大小写字母敏感,可选:true/false,当写入模式为COPY MODE,主键名称含大写字母时,需要设置为true。 源表与目标表映射: 图6 配置源表与目标表映射 附加字段编辑:单击操作列“附加字段编辑”可为迁移后的DWS表中增加自定义字段,附加字段会成为一个新的字段加入到DWS表的建表中。 表2 附加字段值支持情况 类型 示例 常量 - 内置变量 源端host ip地址:source.host 源端schema名称:mgr.source.schema 源端table名称:mgr.source.table 目的端schema名称:mgr.target.schema 目的端table名称:mgr.target.table 字段变量 - udf方法 substring(#col, pos[, len]): 截取源端col列的子串, 范围在[pos, pos+len)。 date_format(#col, time_format[, src_tz, dst_tz]): 将源端col列按time_format格式化, 可选转换时区。 now([tz]): 获取指定时区的当前时间。 if(cond_exp, str1, str2): 满足条件表达式cond_exp时返回str1, 否则返回str2。 concat(#col[, #str, ...]): 拼接多个参数, 可为源端列或字符串。 from_unixtime(#col[, time_format]): 将unix时间戳按time_format格式化。 unix_timestamp(#col[, precision, time_format]): 将时间转成unix时间戳, 可显式定义时间格式及转换后精度。 对于新建的表,用户可以在已有的源表字段基础上添加附加字段,可以自定义字段名(如custom_defined_col)、选择字段类型、填写字段值。 用户可同时添加多个附加字段。 自动建表:单击“自动建表”为列表中的表按照已配置规则自动建表。成功后表建立方式会显示为使用已有表。
-
约束限制 适用PostgreSQL 9.4+版本。 不支持源端无主键表迁移。 不支持增量位点启动,即增量启动不支持用户修改时间,默认使用启动时的时间。 不支持DDL能力。 Postgres数据源复制槽数达到上限时,无法执行新的作业,可以通过设置max_replication_slots的数值提高复制槽的使用上限或手动删除复制槽(Postgres数据源不支持自动删除复制槽)解决,手动删除请参见PostgreSQL数据源如何手动删除复制槽?。
-
整库场景 源端配置。 添加数据源,选择需要迁移的PostgreSQL表。 图1 选择库表 库与表均支持自定义选择,即可选择一库一表,也可选择多库多表。 目标端配置。 图2 配置目标端参数 源库表和目标匹配策略: Schema匹配策略:配置目标数据Schema的匹配策略,使数据按照规划迁移至目标库。 用户需要提前创建对应数据库,否则可能导致后续自动建表失败。 与来源库同名:会迁移至目的端对应与来源库同名的数据库中。 自定义:支持用户指定目的端库名,也支持通过#{source_db_name}给源数据库名添加自定义字段变成目的端DWS表的库名。 如果包含内置参数#{source_db_name},则会迁移至DWS目的端对应Schema中,如果不包含该内置参数,则会迁移至与源端数据库同名的Schema中。 表匹配策略:配置目标数据表的匹配策略,使数据按照规划迁移至目标表。同步对象为库级同步时,无此配置项。 用户不需要提前创建对应数据表,后续作业时自动建表。 与来源表同名:会迁移至目的端对应与来源表同名的表中。 自定义:支持用户指定目的端表名,也支持通过内置参数#{source_table_name}给源表名添加前后缀,变成目的端Hudi表的表名。 写入模式:选择数据写入模式。 UPSERT MODE为批量更新入库模式,COPY MODE为DWS专有的高性能批量入库模式。 批写最大数据量:根据表数据大小和作业内存使用,适当调整,数据范围1-10000000。 定时批写时间间隔:数据定时入库的间隔时间,时间1-1000, 单位为秒。 高级配置:通过设置以下参数配置数据写入的高级属性。 sink.buffer-flush.max-size:根据作业配置内存和数据大小设置批写最大内存,单位:Mb。 sink.case-sensitive:是否对字段大小写字母敏感,可选:true/false,当写入模式为COPY MODE,主键名称含大写字母时,需要设置为true。 源表与目标表映射:同步对象为库级同步时,无此配置项。 图3 配置源表与目标表映射 附加字段编辑:单击操作列“附加字段编辑”可为迁移后的DWS表中增加自定义字段,附加字段会成为一个新的字段加入到DWS表的建表中。 表1 附加字段值支持情况 类型 示例 常量 - 内置变量 源端host ip地址:source.host 源端schema名称:mgr.source.schema 源端table名称:mgr.source.table 目的端schema名称:mgr.target.schema 目的端table名称:mgr.target.table 字段变量 - udf方法 substring(#col, pos[, len]): 截取源端col列的子串, 范围在[pos, pos+len)。 date_format(#col, time_format[, src_tz, dst_tz]): 将源端col列按time_format格式化, 可选转换时区。 now([tz]): 获取指定时区的当前时间。 if(cond_exp, str1, str2): 满足条件表达式cond_exp时返回str1, 否则返回str2。 concat(#col[, #str, ...]): 拼接多个参数, 可为源端列或字符串。 from_unixtime(#col[, time_format]): 将unix时间戳按time_format格式化。 unix_timestamp(#col[, precision, time_format]): 将时间转成unix时间戳, 可显式定义时间格式及转换后精度。 对于新建的表,用户可以在已有的源表字段基础上添加附加字段,可以自定义字段名(如custom_defined_col)、选择字段类型、填写字段值。 用户可同时添加多个附加字段。 自动建表:单击“自动建表”为列表中的表按照已配置规则自动建表。成功后表建立方式会显示为使用已有表。
-
整库场景 源端配置。 添加数据源,选择需要迁移的SQLServer表。 图1 选择库表 库与表均支持自定义选择,即可选择一库一表,也可选择多库多表。 目标端配置。 图2 配置目标端参数 源库表和目标匹配策略: 库匹配策略:配置目标数据库的匹配策略,使数据按照规划迁移至目标库。 用户需要提前创建对应数据库,否则可能导致后续自动建表失败。 与来源库同名:会迁移至目的端对应与来源库同名的数据库中。 自定义:支持用户指定目的端库名,也支持通过#{source_db_name}给源数据库名添加自定义字段变成目的端Hudi表的库名。 表匹配策略:配置目标数据表的匹配策略,使数据按照规划迁移至目标表。 用户不需要提前创建对应数据表,后续作业时自动建表。 与来源表同名:会迁移至目的端对应与来源表同名的表中。 自定义:支持用户指定目的端表名,也支持通过内置参数#{source_table_name}给源表名添加前后缀,变成目的端Hudi表的表名。 目标数据源配置: 数据存储路径:Hudi数据存储的基础路径,只对自动建表生效。每张目的端表会在基础路径下创建子目录,支持HDFS或OBS路径。 OBS格式:obs://{桶名}。 HDFS格式:/tmp。 Hudi表属性全局配置:单击“查看编辑”配置Hudi表属性全局配置。 “Hudi全局配置”作用于所有Hudi表,可配置的Hudi配置项参考Hudi官网介绍。 “Hudi全局配置”优先级低于单表“表属性编辑”中的配置,存在相同配置项时会被覆盖。 源表与目标表映射: 图3 配置源表与目标表映射 Hudi表必须设置“同步主键”,在源端为非主键表时,必须在字段映射阶段手动勾选主键。 表属性编辑:单击操作列“表属性编辑”可配置Hudi表属性,包含表类型,分区类型及表自定义属性。 表类型:MERGE_ON_READ、COPY_ON_WRITE。 分区类型:无分区、时间分区、自定义分区。 其中时间分区需要用户指定一个源端表名,选择一个时间转换格式。 比如时间分区用户指定一个源端表名src_col_1,选择一个时间转换格式,日(yyyyMMdd)、月(yyyyMM)、年(yyyy),自动建表时会在Hudi表默认创建一个cdc_partition_key的字段,系统会根据配置的时间转换格式将源端字段(src_col_1)的值格式化后写入cdc_partition_key中。 自定义分区:选择源端的某个字段或多个字段作为分区,多个分区通过英文半角逗号”,”分割。 附加字段编辑:单击操作列“附加字段编辑”可为迁移后的Hudi表中增加自定义字段,附加字段会成为一个新的字段加入到Hudi表的建表中。 表1 附加字段值支持情况 类型 示例 常量 - 字段变量 - 对于新建的表,用户可以在已有的源表字段基础上添加附加字段,可以自定义字段名(如custom_defined_col)、选择字段类型、填写字段值。 用户可同时添加多个附加字段。 自动建表:单击“自动建表”为列表中的表按照已配置规则自动建表。成功后表建立方式会显示为使用已有表。
-
前提条件 已开启SQLServer库、表的CDC(change data capture,就是增量实时同步)能力,详情请参见如下示例。 开启CDC能力时数据库账号至少需要有sysadmin权限。 启用数据库CDC。 USE YourDatabaseName; EXEC sys.sp_cdc_enable_db; GO -- 查看数据库是否启动CDC SELECT is_cdc_enabled, name FROM sys.databases WHERE name = 'YourDatabaseName' 启用表CDC。 EXEC sys.sp_cdc_enable_table @source_schema = N'dbo', -- Schema @source_name = N'YourTable',-- 表名 @role_name = NULL,-- 可选,CDC访问角色名称 @supports_net_changes = 0; GO -- 查看表是否启动CDC SELECT name,is_tracked_by_cdc FROM sys.tables WHERE name = 'YourTable'; 源端SQLServer需要给管理中心数据连接中配置的用户赋予以下全部权限。 给用户添加数据库CONNECT, VIEW DATABASE STATE 权限。 USE YourDatabaseName; GRANT CONNECT, VIEW DATABASE STATE TO [YourUserName]; 给用户添加CDC schema的SELECT 权限。 USE YourDatabaseName; GRANT SELECT ON SCHEMA::[cdc] TO [YourUserName]; 给用户添加表的SELECT权限。 USE YourDatabaseName; GRANT SELECT ON OBJECT::[YourSchema].[YourTable] TO [YourUserName];
-
场景说明 假定用户有某个周末网民网购停留时间的日志文本,基于某些业务要求,要求开发MapReduce应用程序实现如下功能: 统计日志文件中本周末网购停留总时间超过2个小时的女性网民信息。 周末两天的日志文件第一列为姓名,第二列为性别,第三列为本次停留时间,单位为分钟,分隔符为“,”。 log1.txt:周六网民停留日志 LiuYang,female,20 YuanJing,male,10 GuoYijun,male,5 CaiXuyu,female,50 Liyuan,male,20 FangBo,female,50 LiuYang,female,20 YuanJing,male,10 GuoYijun,male,50 CaiXuyu,female,50 FangBo,female,60 log2.txt:周日网民停留日志 LiuYang,female,20 YuanJing,male,10 CaiXuyu,female,50 FangBo,female,50 GuoYijun,male,5 CaiXuyu,female,50 Liyuan,male,20 CaiXuyu,female,50 FangBo,female,50 LiuYang,female,20 YuanJing,male,10 FangBo,female,50 GuoYijun,male,50 CaiXuyu,female,50 FangBo,female,60
-
功能简介 本小节介绍了如何使用Impala SQL建内部表、外部表的基本操作。创建表主要有以下三种方式。 自定义表结构,以关键字EXTERNAL区分创建内部表和外部表。 内部表,如果对数据的处理都由Impala完成,则应该使用内部表。在删除内部表时,元数据和数据一起被删除。 外部表,如果数据要被多种工具(如Pig等)共同处理,则应该使用外部表,可避免对该数据的误操作。删除外部表时,只删除掉元数据。 根据已有表创建新表,使用CREATE LIKE句式,完全复制原有的表结构,包括表的存储格式。 根据查询结果创建新表,使用CREATE AS SELECT句式。 这种方式比较灵活,可以在复制原表表结构的同时指定要复制哪些字段,不包括表的存储格式。
-
创建ClickHouse库 以下代码片段在com.huawei.clickhouse.examples包的“Demo”类的createDatabase方法中。通过on cluster语句在集群中创建表1中以databaseName参数值为数据库名的数据库。 private void createDatabase(String databaseName, String clusterName) throws Exception { String createDbSql = "create database if not exists " + databaseName + " on cluster " + clusterName; util.exeSql(createDbSql); } 父主题: 开发ClickHouse应用
-
代码样例 如下是写文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 创建文件,写文件 * * @throws java.io.IOException * @throws com.huawei.bigdata.hdfs.examples.ParameterException */ private void write() throws IOException { final String content = "hi, I am bigdata. It is successful if you can see me."; FSDataOutputStream out = null; try { out = fSystem.create(new Path(DEST_PATH + File.separator + FILE_NAME)); out.write(content.getBytes()); out.hsync(); LOG .info("success to write."); } finally { // make sure the stream is closed finally. IOUtils.closeStream(out); } }
-
常用概念 Colocation 同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client HDFS Client主要包括五种方式:JAVA API、C API、Shell、HTTP REST API、WEB UI五种方式,可参考HDFS常用API介绍、HDFS Shell命令介绍。 JAVA API 提供HDFS文件系统的应用接口,本开发指南主要介绍如何使用Java API进行HDFS文件系统的应用开发。 C API 提供HDFS文件系统的应用接口,使用C语言开发的用户可参考C接口的描述进行应用开发。 Shell 提供shell命令完成HDFS文件系统的基本操作。 HTTP REST API 提供除Shell、Java API和C API以外的其他接口,可通过此接口监控HDFS状态等信息。 WEB UI 提供Web可视化组件管理界面。
-
代码样例 如下是删除文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 删除文件 * * @throws java.io.IOException */ private void delete() throws IOException { Path beDeletedPath = new Path(DEST_PATH + File.separator + FILE_NAME); if (fSystem.delete(beDeletedPath, true)) { LOG.info("success to delete the file " + DEST_PATH + File.separator + FILE_NAME); } else { LOG.warn("failed to delete the file " + DEST_PATH + File.separator + FILE_NAME); } }
-
参考信息 针对MapReduce提供的几个样例程序,其对应的依赖包如下: MapReduce统计样例程序 没有需要额外导入的jar包 MapReduce访问多组件样例程序 导入样例工程之后,如果需要使用访问多组件样例程序,请确保集群已安装Hive、HBase服务。 不使用访问多组件样例程序时,如果不影响统计样例程序的正常编译,可忽略多组件样例程序相关报错信息,否则请在导入样例工程后将多组件样例程序类文件删除。
-
样例工程介绍 MRS 样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下Flink相关样例工程,安全模式路径为“flink-examples/flink-examples-security”,普通模式路径为“flink-examples/flink-examples-normal”: 表2 Flink相关样例工程 样例工程 描述 FlinkCheckpointJavaExample 异步Checkpoint机制程序的应用开发示例。 假定用户需要每隔1秒钟需要统计4秒中窗口中数据的量,并做到状态严格一致性,即:当应用出现异常并恢复后,各个算子的状态能够处于统一的状态,相关业务场景介绍请参见Flink开启Checkpoint样例程序。 FlinkCheckpointScalaExample FlinkKafkaJavaExample 向Kafka生产并消费数据程序的应用开发示例。 通过调用flink-connector-kafka模块的接口,生产并消费数据,相关业务场景介绍请参见Flink Kafka样例程序。 FlinkKafkaScalaExample FlinkPipelineJavaExample Job Pipeline程序的应用开发示例。 相关业务场景介绍请参见Flink Job Pipeline样例程序。 发布者Job自己每秒钟产生10000条数据,然后经由该job的NettySink算子向下游发送。另外两个Job作为订阅者,分别订阅一份数据并打印输出。 FlinkPipelineScalaExample FlinkSqlJavaExample 使用客户端通过jar作业提交SQL作业的应用开发示例。 FlinkStreamJavaExample DataStream程序的应用开发示例。 相关业务场景介绍请参见Flink DataStream样例程序。 假定用户有某个网站周末网民网购停留时间的日志文本,另有一张网民个人信息的csv格式表,可通过Flink应用程序实现例如实时统计总计网购时间超过2个小时的女性网民信息,包含对应的个人详细信息的功能。 FlinkStreamScalaExample FlinkStreamSqlJoinExample Stream SQL Join程序的应用开发示例。 相关业务场景介绍请参见Flink Join样例程序。 假定某个Flink业务1每秒就会收到1条消息记录,消息记录某个用户的基本信息,包括名字、性别、年龄。另有一个Flink业务2会不定时收到1条消息记录,消息记录该用户的名字、职业信息。实现实时的以根据业务2中消息记录的用户名字作为关键字,对两个业务数据进行联合查询的功能。
-
简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。 Flink技术栈如图1所示。 图1 Flink技术栈 Flink在当前版本中重点构建如下特性,其他特性继承开源社区,不做增强,具体请参考:https://ci.apache.org/projects/flink/flink-docs-release-1.15。 DataStream Checkpoint 窗口 Job Pipeline 配置表
-
结构 Flink结构如图2所示。 图2 Flink结构 Flink整个系统包含三个部分: Client Flink Client主要给用户提供向Flink系统提交用户任务(流式作业)的能力。 TaskManager Flink系统的业务执行节点,执行具体的用户任务。TaskManager可以有多个,各个TaskManager都平等。 JobManager Flink系统的管理节点,管理所有的TaskManager,并决策用户任务在哪些Taskmanager执行。JobManager在HA模式下可以有多个,但只有一个主JobManager。 Flink系统提供的关键能力: 低时延 提供ms级时延的处理能力。 ExactlyOnce 提供异步快照机制,保证所有数据真正只处理一次。 HA JobManager支持主备模式,保证无单点故障。 水平扩展能力 TaskManager支持手动水平扩展。
-
基本概念 DataStream 数据流,是指Flink系统处理的最小数据单元。该数据单元最初由外部系统导入,可以通过Socket、Kafka和文件等形式导入,在Flink系统处理后,在通过Socket、Kafka和文件等输出到外部系统,这是Flink的核心概念。 Data Transformation 数据处理单元,会将一或多个DataStream转换成一个新的DataStream。 具体可以细分如下几类: 一对一的转换:如Map。 一对0、1或多个的转换:如FlatMap。 一对0或1的转换,如Filter。 多对1转换,如Union。 多个聚合的转换,如window、keyby。 CheckPoint CheckPoint是Flink数据处理高可靠、最重要的机制。该机制可以保证应用在运行过程中出现失败时,应用的所有状态能够从某一个检查点恢复,保证数据仅被处理一次(Exactly Once)。 SavePoint Savepoint是指允许用户在持久化存储中保存某个checkpoint,以便用户可以暂停自己的任务进行升级。升级完后将任务状态设置为savepoint存储的状态开始恢复运行,保证数据处理的延续性。
-
REST API增强 SQL相关的命令:获取所有SQL语句和执行时间最长的SQL语句 SparkUI命令: curl -k -i --negotiate -u: "https://192.168.195.232:8090/proxy/application_1476947670799_0053/api/v1/applications/application_1476947670799_0053/SQL" 其中192.168.195.232为ResourceManager主节点的业务IP,8090为ResourceManager的端口号,application_1476947670799_0053为在YARN中的应用ID。 可以在命令后的url路径增加相应的参数设置,搜索对应的SQL语句。 例如,查看100条sql语句: curl -k -i --negotiate -u: "https://192.168.195.232:8090/proxy/application_1476947670799_0053/api/v1/applications/application_1476947670799_0053/SQL?limit=100" 查看正在运行的参数: curl -k -i --negotiate -u: "https://192.168.195.232:8090/proxy/application_1476947670799_0053/api/v1/applications/application_1476947670799_0053/SQL?completed=false" JobHistory命令: curl -k -i --negotiate -u: "https://192.168.227.16:18080/api/v1/applications/application_1478570725074_0004/SQL" 其中192.168.227.16为JobHistory节点的业务IP,18080为JobHistory的端口号,application_1478570725074_0004为应用ID。 结果: SparkUI命令和JobHistory命令的查询结果均为: { "longestDurationOfCompletedSQL" : [ { "id" : 0, "status" : "COMPLETED", "description" : "getCallSite at SQLExecution.scala:48", "submissionTime" : "2016/11/08 15:39:00", "duration" : "2 s", "runningJobs" : [ ], "successedJobs" : [ 0 ], "failedJobs" : [ ] } ], "sqls" : [ { "id" : 0, "status" : "COMPLETED", "description" : "getCallSite at SQLExecution.scala:48", "submissionTime" : "2016/11/08 15:39:00", "duration" : "2 s", "runningJobs" : [ ], "successedJobs" : [ 0 ], "failedJobs" : [ ] }] } 结果分析: 通过这个命令,可以查询当前应用的所有SQL语句的信息(即结果中“sqls”的部分),执行时间最长的SQL语句的信息(即结果中“longestDurationOfCompletedSQL”的部分)。每个SQL语句的信息如下表3。 表3 SQL的常用信息 参数 描述 id SQL语句的ID status SQL语句的执行状态,有RUNNING、COMPLETED、FAILED三种 runningJobs SQL语句产生的job中,正在执行的job列表 successedJobs SQL语句产生的job中,执行成功的job列表 failedJobs SQL语句产生的job中,执行失败的job列表 JDBC Server相关的命令:获取连接数,正在执行的SQL数,所有session信息,所有SQL的信息 命令: curl -k -i --negotiate -u: "https://192.168.195.232:8090/proxy/application_1476947670799_0053/api/v1/applications/application_1476947670799_0053/sqlserver" 其中192.168.195.232为ResourceManager主节点的业务IP,8090为ResourceManager的端口号,application_1476947670799_0053为在YARN中的应用ID。 结果: { "sessionNum" : 1, "runningSqlNum" : 0, "sessions" : [ { "user" : "spark", "ip" : "192.168.169.84", "sessionId" : "9dfec575-48b4-4187-876a-71711d3d7a97", "startTime" : "2016/10/29 15:21:10", "finishTime" : "", "duration" : "1 minute 50 seconds", "totalExecute" : 1 } ], "sqls" : [ { "user" : "spark", "jobId" : [ ], "groupId" : "e49ff81a-230f-4892-a209-a48abea2d969", "startTime" : "2016/10/29 15:21:13", "finishTime" : "2016/10/29 15:21:14", "duration" : "555 ms", "statement" : "show tables", "state" : "FINISHED", "detail" : "== Parsed Logical Plan ==\nShowTablesCommand None\n\n== Analyzed Logical Plan ==\ntableName: string, isTemporary: boolean\nShowTablesCommand None\n\n== Cached Logical Plan ==\nShowTablesCommand None\n\n== Optimized Logical Plan ==\nShowTablesCommand None\n\n== Physical Plan ==\nExecutedCommand ShowTablesCommand None\n\nCode Generation: true" } ] } 结果分析: 通过这个命令,可以查询当前JDBC应用的session连接数,正在执行的SQL数,所有的session和SQL信息。每个session的信息如下表4,每个SQL的信息如下表5。 表4 session常用信息 参数 描述 user 该session连接的用户 ip session所在的节点IP sessionId session的ID startTime session开始连接的时间 finishTime session结束连接的时间 duration session连接时长 totalExecute 在该session上执行的SQL数 表5 sql常用信息 参数 描述 user SQL执行的用户 jobId SQL语句包含的job id列表 groupId SQL所在的group id startTime SQL开始时间 finishTime SQL结束时间 duration SQL执行时长 statement 对应的语句 detail 对应的逻辑计划,物理计划 JDBC api增强通过beeline里面获取的executionID 取消当前正在执行的SQL 命令: curl -k -i --negotiate -X PUT -u: "https://192.168.195.232:8090/proxy/application_1477722033672_0008/api/v1/applications/application_1477722033672_0008/cancel/execution?executionId=8" 结果: 取消executionId 执行序号为8的job任务。 补充说明: spark-beeline里面执行SQL语句,如果该SQL语句产生spark任务,该SQL的executionId将会被打印在beeline里面,这个时候如果想取消这条sql的执行,可以用上述命令。 Streaming相关的命令:获取平均输入频率,平均调度时延,平均执行时长,总时延平均值 命令: curl -k -i --negotiate -u: "https://192.168.195.232:8090/proxy/application_1477722033672_0008/api/v1/applications/application_1477722033672_0008/streaming/statistics" 其中192.168.195.232为ResourceManager主节点的业务IP,8090为ResourceManager的端口号,application_1477722033672_0008为在YARN中的应用ID。 结果: { "startTime" : "2018-12-25T08:58:10.836GMT", "batchDuration" : 1000, "numReceivers" : 1, "numActiveReceivers" : 1, "numInactiveReceivers" : 0, "numTotalCompletedBatches" : 373, "numRetainedCompletedBatches" : 373, "numActiveBatches" : 0, "numProcessedRecords" : 1, "numReceivedRecords" : 1, "avgInputRate" : 0.002680965147453083, "avgSchedulingDelay" : 14, "avgProcessingTime" : 47, "avgTotalDelay" : 62 } 结果分析: 通过这个命令,可以查询当前Streaming应用的平均输入频率(events/sec),平均调度时延(ms),平均执行时长(ms),总时延平均值(ms)。
-
REST接口 通过以下命令可跳过REST接口过滤器获取相应的应用信息。 安全模式下,JobHistory仅支持https协议,故在如下命令的url中请使用https协议。 安全模式下,需要设置spark.ui.customErrorPage=false并重启spark2x服务 (JobHistory2x、JD BCS erver2x和SparkResource2x三个实例对应的参数都需要修改)。 升级更新节点环境上的curl版本。具体curl版本升级方法如下: 下载curl安装包(http://curl.haxx.se/download/)。 使用如下命令进行安装包解压: tar -xzvf curl-x.x.x.tar.gz 使用如下命令覆盖安装: cd curl-x.x.x ./configure make make install 使用如下命令更新curl的动态链接库: ldconfig 安装成功后,重新登录节点环境,使用如下命令查看curl版本是否更新成功: curl --version 获取JobHistory中所有应用信息: 命令: curl -k -i --negotiate -u: "https://192.168.227.16:18080/api/v1/applications" 其中192.168.227.16为JobHistory节点的业务IP,18080为JobHistory的端口号。 结果: [ { "id" : "application_1517290848707_0008", "name" : "Spark Pi", "attempts" : [ { "startTime" : "2018-01-30T15:05:37.433 CS T", "endTime" : "2018-01-30T15:06:04.625CST", "lastUpdated" : "2018-01-30T15:06:04.848CST", "duration" : 27192, "sparkUser" : "sparkuser", "completed" : true, "startTimeEpoch" : 1517295937433, "endTimeEpoch" : 1517295964625, "lastUpdatedEpoch" : 1517295964848 } ] }, { " id" : "application_1517290848707_0145", "name" : "Spark shell", "attempts" : [ { "startTime" : "2018-01-31T15:20:31.286CST", "endTime" : "1970-01-01T07:59:59.999CST", "lastUpdated" : "2018-01-31T15:20:47.086CST", "duration" : 0, "sparkUser" : "admintest", "completed" : false, "startTimeEpoch" : 1517383231286, "endTimeEpoch" : -1, "lastUpdatedEpoch" : 1517383247086 } ] }] 结果分析: 通过这个命令,可以查询当前集群中所有的Spark应用(包括正在运行的应用和已经完成的应用),每个应用的信息如下表1。 表1 应用常用信息 参数 描述 id 应用的ID name 应用的Name attempts 应用的尝试,包含了开始时间、结束时间、执行用户、是否完成等信息 获取JobHistory中某个应用的信息: 命令: curl -k -i --negotiate -u: "https://192.168.227.16:18080/api/v1/applications/application_1517290848707_0008" 其中192.168.227.16为JobHistory节点的业务IP,18080为JobHistory的端口号,application_1517290848707_0008为应用的id。 结果: { "id" : "application_1517290848707_0008", "name" : "Spark Pi", "attempts" : [ { "startTime" : "2018-01-30T15:05:37.433CST", "endTime" : "2018-01-30T15:06:04.625CST", "lastUpdated" : "2018-01-30T15:06:04.848CST", "duration" : 27192, "sparkUser" : "sparkuser", "completed" : true, "startTimeEpoch" : 1517295937433, "endTimeEpoch" : 1517295964625, "lastUpdatedEpoch" : 1517295964848 } ] } 结果分析: 通过这个命令,可以查询某个Spark应用的信息,显示的信息如表1所示。 获取正在执行的某个应用的Executor信息: 针对alive executor命令: curl -k -i --negotiate -u: "https://192.168.169.84:8090/proxy/application_1478570725074_0046/api/v1/applications/application_1478570725074_0046/executors" 针对全部executor(alive&dead)命令: curl -k -i --negotiate -u: "https://192.168.169.84:8090/proxy/application_1478570725074_0046/api/v1/applications/application_1478570725074_0046/allexecutors" 其中192.168.169.84为ResourceManager主节点的业务IP,8090为ResourceManager的端口号,application_1478570725074_0046为在YARN中的应用ID。 结果: [{ "id" : "driver", "hostPort" : "192.168.169.84:23886", "isActive" : true, "rddBlocks" : 0, "memoryUsed" : 0, "diskUsed" : 0, "activeTasks" : 0, "failedTasks" : 0, "completedTasks" : 0, "totalTasks" : 0, "totalDuration" : 0, "totalInputBytes" : 0, "totalShuffleRead" : 0, "totalShuffleWrite" : 0, "maxMemory" : 278019440, "executorLogs" : { } }, { "id" : "1", "hostPort" : "192.168.169.84:23902", "isActive" : true, "rddBlocks" : 0, "memoryUsed" : 0, "diskUsed" : 0, "totalCores" : 1, "maxTasks" : 1, "activeTasks" : 0, "failedTasks" : 0, "completedTasks" : 0, "totalTasks" : 0, "totalDuration" : 0, "totalGCTime" : 139, "totalInputBytes" : 0, "totalShuffleRead" : 0, "totalShuffleWrite" : 0, "maxMemory" : 555755765, "executorLogs" : { "stdout" : "https://XTJ-224:8044/node/containerlogs/container_1478570725074_0049_01_000002/admin/stdout?start=-4096", "stderr" : "https://XTJ-224:8044/node/containerlogs/container_1478570725074_0049_01_000002/admin/stderr?start=-4096" } } ] 结果分析: 通过这个命令,可以查询当前应用的所有Executor信息(包括Driver),每个Executor的信息包含如下表2所示的常用信息。 表2 Executor常用信息 参数 描述 id Executor的ID hostPort Executor所在节点的ip:端口 executorLogs Executor的日志查看路径
-
功能简介 Spark的REST API以JSON格式展现Web UI的一些指标,提供用户一种更简单的方法去创建新的展示和监控的工具,并且支持查询正在运行的app和已经结束的app的相关信息。开源的Spark REST接口支持对Jobs、Stages、Storage、Environment和Executors的信息进行查询, FusionInsight 版本中添加了查询SQL、JDBC Server和Streaming的信息的REST接口。开源REST接口完整和详细的描述请参考官网上的文档以了解其使用方法:https://spark.apache.org/docs/3.1.1/monitoring.html#rest-api。
-
代码样例 如下是写文件的代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 创建文件,写文件 * * @throws java.io.IOException * @throws com.huawei.bigdata.hdfs.examples.ParameterException */ private void write() throws IOException { final String content = "hi, I am bigdata. It is successful if you can see me."; FSDataOutputStream out = null; try { out = fSystem.create(new Path(DEST_PATH + File.separator + FILE_NAME)); out.write(content.getBytes()); out.hsync(); LOG.info("success to write."); } finally { // make sure the stream is closed finally. IOUtils.closeStream(out); } }
-
代码样例 如下是代码片段,详细代码请参考com.huawei.bigdata.hdfs.examples中的HdfsExample类。 /** * 追加文件内容 * * @throws java.io.IOException */ private void append() throws IOException { final String content = "I append this content."; FSDataOutputStream out = null; try { out = fSystem.append(new Path(DEST_PATH + File.separator + FILE_NAME)); out.write(content.getBytes()); out.hsync(); LOG.info("success to append."); } finally { // make sure the stream is closed finally. IOUtils.closeStream(out); } }
-
准备MapReduce开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。 安装和配置IntelliJ IDEA 开发环境的基本配置,建议使用2019.1或其他兼容版本。 说明: 若使用IBM JDK,请确保IntelliJ IDEA中的JDK配置为IBM JDK。 若使用Oracle JDK,请确保IntelliJ IDEA中的JDK配置为Oracle JDK。 若使用Open JDK,请确保IntelliJ IDEA中的JDK配置为Open JDK。 不同的IntelliJ IDEA不要使用相同的workspace和相同路径下的示例工程 安装Maven 开发环境基本配置。用于项目管理,贯穿软件开发生命周期。 安装JDK 开发和运行环境的基本配置,版本要求如下: 服务端和客户端仅支持集群自带的OpenJDK,不允许替换。 对于客户应用需引用SDK类的Jar包运行在客户应用进程中的: X86客户端: Oracle JDK:支持1.8版本; IBM JDK:支持1.8.0.7.20和1.8.0.6.15版本。 ARM客户端: OpenJDK:支持1.8.0_272版本(集群自带JDK,可通过集群客户端安装目录中“JDK”文件夹下获取)。 毕昇JDK:支持1.8.0_272版本。 说明: 基于安全考虑,服务端只支持TLS V1.2及以上的加密协议。 IBM JDK默认只支持TLS V1.0,若使用IBM JDK,请配置启动参数“com.ibm.jsse2.overrideDefaultTLS”为“true”,设置后可以同时支持TLS V1.0/V1.1/V1.2,详情可参考https://www.ibm.com/support/knowledgecenter/zh/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/matchsslcontext_tls.html#matchsslcontext_tls。 毕昇JDK详细信息可参考https://www.hikunpeng.com/zh/developer/devkit/compiler/jdk。 7-zip 用于解压“*.zip”和“*.rar”文件,支持7-Zip 16.04版本。 父主题: 准备MapReduce应用开发环境
-
样例工程介绍 MRS样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下Flink相关样例工程,安全模式路径为“flink-examples/flink-examples-security”,普通模式路径为“flink-examples/flink-examples-normal”: 表2 Flink相关样例工程 样例工程 描述 FlinkCheckpointJavaExample 异步Checkpoint机制程序的应用开发示例。 假定用户需要每隔1秒钟需要统计4秒中窗口中数据的量,并做到状态严格一致性,即:当应用出现异常并恢复后,各个算子的状态能够处于统一的状态,相关业务场景介绍请参见Flink开启Checkpoint样例程序。 FlinkCheckpointScalaExample FlinkKafkaJavaExample 向Kafka生产并消费数据程序的应用开发示例。 通过调用flink-connector-kafka模块的接口,生产并消费数据,相关业务场景介绍请参见Flink Kafka样例程序。 FlinkKafkaScalaExample FlinkPipelineJavaExample Job Pipeline程序的应用开发示例。 相关业务场景介绍请参见Flink Job Pipeline样例程序。 发布者Job自己每秒钟产生10000条数据,然后经由该job的NettySink算子向下游发送。另外两个Job作为订阅者,分别订阅一份数据并打印输出。 FlinkPipelineScalaExample FlinkSqlJavaExample 使用客户端通过jar作业提交SQL作业的应用开发示例。 FlinkStreamJavaExample DataStream程序的应用开发示例。 相关业务场景介绍请参见Flink DataStream样例程序。 假定用户有某个网站周末网民网购停留时间的日志文本,另有一张网民个人信息的csv格式表,可通过Flink应用程序实现例如实时统计总计网购时间超过2个小时的女性网民信息,包含对应的个人详细信息的功能。 FlinkStreamScalaExample FlinkStreamSqlJoinExample Stream SQL Join程序的应用开发示例。 相关业务场景介绍请参见Flink Join样例程序。 假定某个Flink业务1每秒就会收到1条消息记录,消息记录某个用户的基本信息,包括名字、性别、年龄。另有一个Flink业务2会不定时收到1条消息记录,消息记录该用户的名字、职业信息。实现实时的以根据业务2中消息记录的用户名字作为关键字,对两个业务数据进行联合查询的功能。
-
架构 Flink架构如图2所示。 图2 Flink架构 Flink整个系统包含三个部分: Client Flink Client主要给用户提供向Flink系统提交用户任务(流式作业)的能力。 TaskManager Flink系统的业务执行节点,执行具体的用户任务。TaskManager可以有多个,各个TaskManager都平等。 JobManager Flink系统的管理节点,管理所有的TaskManager,并决策用户任务在哪些Taskmanager执行。JobManager在HA模式下可以有多个,但只有一个主JobManager。 Flink系统提供的关键能力: 低时延 提供ms级时延的处理能力。 Exactly Once 提供异步快照机制,保证所有数据真正只处理一次。 HA JobManager支持主备模式,保证无单点故障。 水平扩展能力 TaskManager支持手动水平扩展。
-
基本概念 DataStream 数据流,是指Flink系统处理的最小数据单元。该数据单元最初由外部系统导入,可以通过socket、Kafka和文件等形式导入,在Flink系统处理后,在通过Socket、Kafka和文件等输出到外部系统,这是Flink的核心概念。 Data Transformation 数据处理单元,会将一或多个DataStream转换成一个新的DataStream。 具体可以细分如下几类: 一对一的转换:如Map。 一对0、1或多个的转换:如FlatMap。 一对0或1的转换,如Filter。 多对1转换,如Union。 多个聚合的转换,如window、keyby。 CheckPoint CheckPoint是Flink数据处理高可靠、最重要的机制。该机制可以保证应用在运行过程中出现失败时,应用的所有状态能够从某一个检查点恢复,保证数据仅被处理一次(Exactly Once)。 SavePoint Savepoint是指允许用户在持久化存储中保存某个checkpoint,以便用户可以暂停自己的任务进行升级。升级完后将任务状态设置为savepoint存储的状态开始恢复运行,保证数据处理的延续性。
-
Flink开发接口简介 Flink DataStream API提供Scala和Java两种语言的开发方式,如表1所示。 表1 Flink DataStream API接口 功能 说明 Scala API 提供Scala语言的API,提供过滤、join、窗口、聚合等数据处理能力。由于Scala语言的简洁易懂,推荐用户使用Scala接口进行程序开发。 Java API 提供Java语言的API,提供过滤、join、窗口、聚合等数据处理能力。
-
简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。 Flink技术栈如图1所示。 图1 Flink技术栈 Flink在当前版本中重点构建如下特性,其他特性继承开源社区,不做增强。 DataStream Checkpoint 窗口 Job Pipeline 配置表
-
创建ClickHouse数据库 以下代码片段在com.huawei.clickhouse.examples包的“Demo”类的createDatabase方法中。通过on cluster语句在集群中创建表1中以databaseName参数值为数据库名的数据库。 private void createDatabase(String databaseName, String clusterName) throws Exception { String createDbSql = "create database if not exists " + databaseName + " on cluster " + clusterName; util.exeSql(createDbSql); } 父主题: 开发ClickHouse应用
-
简介 JDBCServer是Hive中的HiveServer2的另外一个实现,它底层使用了Spark SQL来处理SQL语句,从而比Hive拥有更高的性能。 JDBCServer是一个JDBC接口,用户可以通过JDBC连接JDBCServer来访问SparkSQL的数据。JDBCServer在启动的时候,会启动一个sparkSQL的应用程序,而通过JDBC连接进来的客户端共同分享这个sparkSQL应用程序的资源,也就是说不同的用户之间可以共享数据。JDBCServer启动时还会开启一个侦听器,等待JDBC客户端的连接和提交查询。所以,在配置JDBCServer的时候,至少要配置JDBCServer的主机名和端口,如果要使用hive数据的话,还要提供hive metastore的uris。 JDBCServer默认在安装节点上的22550端口起一个JDBC服务(通过参数hive.server2.thrift.port配置),可以通过Beeline或者JDBC客户端代码来连接它,从而执行SQL命令。 如果您需要了解JDBCServer的其他信息,请参见Spark官网:http://spark.apache.org/docs/3.1.1/sql-programming-guide.html#distributed-sql-engine。
-
增强特性 对比开源社区,华为还提供了两个增强特性,JDBCServer HA方案和设置JDBCServer连接的超时时间。 JDBCServer的HA方案,多个JDBCServer主节点同时提供服务,当其中一个节点发生故障时,新的客户端连接会分配到其他主节点上,从而保障无间断为集群提供服务。Beeline和JDBC客户端代码两种连接方式的操作相同。 设置客户端与JDBCServer连接的超时时间。 Beeline 在网络拥塞的情况下,这个特性可以避免beeline由于无限等待服务端的返回而挂起。使用方式如下: 启动beeline时,在后面追加“--socketTimeOut=n”,其中“n”表示等待服务返回的超时时长,单位为秒,默认为“0”(表示永不超时)。建议根据业务场景,设置为业务所能容忍的最大等待时长。 JDBC客户端代码 在网络拥塞的情况下,这个特性可以避免客户端由于无限等待服务端的返回而挂起。使用方式如下: 在执行“DriverManager.getConnection”方法获取JDBC连接前,添加“DriverManager.setLoginTimeout(n)”方法来设置超时时长,其中n表示等待服务返回的超时时长,单位为秒,类型为Int,默认为“0”(表示永不超时)。建议根据业务场景,设置为业务所能容忍的最大等待时长。
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- ...
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章