华为云用户手册
-
e_kv_delimit 通过分隔符提取源字段中的键值对信息。 函数格式 e_kv_delimit(源字段或源字段列表, pair_sep=r"\s", kv_sep="=", prefix="", suffix="", mode="fill-auto") 参数说明 参数名称 参数类型 是否必填 说明 源字段或源字段列表 字符串或字符串列表 是 字段名或多个字段名的列表。 pair_sep String 否 用于分隔键值对的正则字符集,默认为\s。例如\s\w、abc\s等。 说明 如果您需要使用字符串对字段进行分隔,推荐您使用str_replace或regex_replace将字符串转换成字符作为分隔符,然后再使用e_kv_delimit函数对字段进行分隔。 kv_sep String 否 用于分隔键值对的正则字符串,默认为=,不限于单个字符。 可以使用非捕获分组,但不能使用捕获分组。 prefix String 否 给提取的字段名添加前缀。 suffix String 否 给提取的字段名添加后缀。 mode String 否 字段的覆盖模式。默认为fill-auto。 返回结果 返回附带新字段值的日志。 函数示例 示例1:使用默认分隔符=提取键值对信息。 测试数据 { "data": "i=c1 k1=v1 k2=v2 k3=v3"} 如果测试数据为request_uri: a1=1&a2=&a3=3,a2值为空,则使用e_kv_delimit()函数无法提取出a2。您可以使用e_regex()函数进行提取,例如e_regex("request_uri",r'(\w+)=([^=&]*)',{r"\1":r"\2"}, mode="overwrite")。 加工规则 e_kv_delimit("data") 加工结果 data: i=c1 k1=v1 k2=v2 k3=v3 i: c1 k2: v2 k1: v1 k3: v3 示例2:使用分隔符&?提取键值对信息。 测试数据 { "data": "k1=v1&k2=v2?k3=v3"} 加工规则 e_kv_delimit("data",pair_sep=r"&?") 加工结果 data: k1=v1&k2=v2?k3=v3k2: v2 k1: v1 k3: v3 示例3:使用正则表达式提取键值对信息。 测试数据 { "data": "k1=v1 k2:v2 k3=v3"} 加工规则 e_kv_delimit("data", kv_sep=r"(?:=|:)") 加工结果 data: k1=v1 k2:v2 k3=v3 k2: v2 k1: v1 k3: v3
-
e_kv 通过quote提取多个源字段中的键值对信息。 函数格式 e_kv(源字段或源字段列表, sep="=", quote='"', escape=false, prefix="", suffix="", mode="fill-auto") 参数说明 参数名称 参数类型 是否必填 说明 源字段或源字段列表 字符串或字符串列表 是 字段名或多个字段名的列表。 sep String 否 关键字与值的正则表达式的分隔符串,默认为=,不限于单个字符。 说明 可以使用非捕获分组,但不能使用捕获分组。 quote String 否 引用符,用于包裹值的字符。默认为"。 说明 提取的动态键值对的值一般需要quote来包括,例如:a="abc",b="xyz"如果提取对象中不包含,则只提取如下字符集的值:中文字母数字_-.%~。例如a=中文ab12_-.%~|abc b=123可以提取a: 中文ab12_-.%~,b: 123。 escape Boolean 否 是否自动提取反转字符的值。默认为false表示否。例如key="abc\"xyz"默认提取字段key的值为abc\,设置escape=true时,提取的值为abc"xyz。 prefix String 否 给提取的字段名添加前缀。 suffix String 否 给提取的字段名添加后缀。 mode String 否 字段的覆盖模式。默认为fill-auto。 返回结果 返回附带新字段值的日志。 函数示例 示例1:使用默认分隔符=提取键值对信息。 测试数据 { "http_refer": "https://video.developer.aadoc.com/s?q=asd&a=1&b=2"} 如果测试数据为request_uri: a1=1&a2=&a3=3,a2值为空,则使用e_kv()函数无法提取出a2。您可以使用e_regex()函数进行提取,例如e_regex("request_uri",r'(\w+)=([^=&]*)',{r"\1":r"\2"},mode="overwrite")。 加工规则 e_kv("http_refer") 加工结果 http_refer: https://video.developer.aadoc.com/s?q=asd&a=1&b=2q: asd a: 1b: 2 示例2:给字段名增加前缀和后缀。 测试数据 { "http_refer": "https://video.developer.aadoc.com/s?q=asd&a=1&b=2"} 加工规则 e_kv( "http_refer", sep="=", quote='"', escape=false, prefix="data_", suffix="_end", mode="fill-auto",) 加工结果 http_refer: https://video.developer.aadoc.com/s?q=asd&a=1&b=2data_q_end: asd data_a_end: 1data_b_end: 2 示例3:提取字段content2中的键值对信息,使用escape参数提取反转字符的值。 测试数据 { "content2": "k1:\"v1\\"abc\", k2:\"v2\", k3: \"v3\""} 加工规则 e_kv("content2", sep=":", escape=true) 加工结果 content2: k1:"v1\"abc", k2:"v2", k3: "v3"k1: v1"abc k2: v2 k3: v3 更多参考 支持和其他函数组合使用。
-
e_csv、e_psv、e_tsv 使用自定义的分隔符与预定义的字段名,从特定字段中提取多个字段。 e_csv:默认分隔符为半角逗号(,)。 e_psv:默认分隔符为竖线(|)。 e_tsv:默认分隔符为\t。 函数格式 e_csv(源字段名, 目标字段列表, sep=",", quote='"', restrict=true, mode="fill-auto")e_psv(源字段名, 目标字段列表, sep="|", quote='"', restrict=true, mode="fill-auto")e_tsv(源字段名, 目标字段列表, sep="\t", quote='"', restrict=true, mode="fill-auto") 参数说明 参数名称 参数类型 是否必填 说明 源字段名 任意 是 源字段名。如果字段不存在,则不进行任何操作。 目标字段列表 任意 是 字段值经过分隔符分隔后的每个值对应的字段名。可以是字符串的列表,例如:["error", "message", "result"]。 当字段名中不包含逗号时,也可以直接用逗号作为分隔字符,例如:"error, message, result"。 sep String 否 分隔符,只能是单个字符。 quote String 否 引用符,用于包裹值的字符。当值包含分隔符时需要使用。 restrict Boolean 否 是否采用严格模式,默认为false表示非严格模式。当分隔值的个数与目标字段列表数不一致时: 严格模式下不进行任何操作。 非严格模式下对前几个可以配对的字段进行赋值。 mode String 否 字段的覆盖模式。默认为fill-auto。 返回结果 返回附带新字段值的日志。 函数示例 以e_csv为例,e_psv和e_tsv功能类似。 测试数据 { "content": "192.168.0.100,10/Jun/2019:11:32:16 +0800,example.aadoc.com,GET /zf/11874.html HTTP/1.1,200,0.077,6404,192.168.0.100:8001,200,0.060,https://image.developer.aadoc.com/s?q=%E8%9B%8B%E8%8A%B1%E9%BE%99%E9%A1%BB%E9%9D%A2%E7%9A%84%E5%81%9A%E6%B3%95&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei,-,Mozilla/5.0 (Linux; Android 9; HWI-AL00 Build/HUAWEIHWI-AL00) AppleWebKit/537.36,-,-"} 加工规则 e_csv("content", "remote_addr, time_local,host,request,status,request_time,body_bytes_sent,upstream_addr,upstream_status, upstream_response_time,http_referer,http_x_forwarded_for,http_user_agent,session_id,guid") 加工结果 content: 192.168.0.100,10/Jun/2019:11:32:16 +0800,example.aadoc.com,GET /zf/11874.html HTTP/1.1,200,0.077,6404,192.168.0.100:8001,200,0.060,https://image.developer.aadoc.com/s?q=%E8%9B%8B%E8%8A%B1%E9%BE%99%E9%A1%BB%E9%9D%A2%E7%9A%84%E5%81%9A%E6%B3%95&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdsei,-,Mozilla/5.0 (Linux; Android 9; HWI-AL00 Build/HUAWEIHWI-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Mobile Safari/537.36,-,- body_bytes_sent: 6404guid: -host: example.aadoc.comhttp_referer: https://image.developer.aadoc.com/s?q=%E8%9B%8B%E8%8A%B1%E9%BE%99%E9%A1%BB%E9%9D%A2%E7%9A%84%E5%81%9A%E6%B3%95&from=wy878378&uc_param_str=dnntnwvepffrgibijbprsvdseihttp_user_agent: Mozilla/5.0 (Linux; Android 9; HWI-AL00 Build/HUAWEIHWI-AL00) AppleWebKit/537.36 http_x_forwarded_for: -remote_addr: 192.168.0.100 request: GET /zf/11874.html HTTP/1.1 request_time: 0.077session_id: -status: 200time_local: 10/Jun/2019:11:32:16 +0800 topic: syslog-forwarder upstream_addr: 192.168.0.100:8001upstream_response_time: 0.060upstream_status: 200 更多参考 支持和其他函数组合使用。
-
函数列表 类型 函数 说明 正则提取 e_regex 根据正则表达式提取字段的值并赋值给其他字段。支持和其他函数组合使用。 JSON提取 e_json 对特定字段中的JSON对象进行JSON操作,包括JSON展开、JMES提取或者JMES提取后再展开。支持和其他函数组合使用。 分隔符提取 e_csv、e_psv、e_tsv 使用自定义的分隔符与预定义的字段名,从特定字段中提取多个字段。 e_csv:默认分隔符为半角逗号(,)。 e_psv:默认分隔符为竖线(|)。 e_tsv:默认分隔符为\t。 支持和其他函数组合使用。 KV模式提取 e_kv 通过quote提取多个源字段中的键值对信息。支持和其他函数组合使用。 e_kv_delimit 通过分隔符提取源字段中的键值对信息。
-
e_json 对特定字段中的JSON对象进行JSON操作,包括JSON展开、JMES提取或者JMES提取后再展开。 函数格式 e_json(key, expand=None, depth=100, prefix="__", suffix="__", fmt="simple", sep=".", expand_array=true, fmt_array="{parent}_{index}", include_node=r"[\u4e00-\u9fa5\u0800-\u4e00a-zA-Z][\w\-\.]*", exclude_node="", include_path="", exclude_path="", jmes="", output="", jmes_ignore_none=false, mode='fill-auto') 参数说明 参数名称 参数类型 是否必填 说明 key String 是 源字段名。如果字段不存在,则不进行任何操作。 expand Boolean 否 是否将字段展开。 没有配置jmes参数时,则默认为true,表示展开。 配置jmes参数时,则默认为false,表示不展开。 depth Number 否 字段展开的深度。取值范围为1~2000,1表示只展开第一层,默认为100层。 prefix String 否 展开时添加为字段名的前缀。 suffix String 否 展开时添加为字段名的后缀。 fmt String 否 格式化方式。取值: simple(默认值):表示将节点名作为字段名。展示形式为{prefix}{current}{suffix}。 full:表示将父节点与当前节点合并作为字段名。展示形式为{parent_list_str}{sep}{prefix}{current}{suffix}。分隔符是由sep参数指定,默认为.。 parent:表示用完整的路径作为字段名。展示形式为{parent}{sep}{prefix}{current}{suffix}。分隔符是由sep参数指定,默认为.。 root:表示将根节点与当前节点合并作为字段名。展示形式为{parent_list[0]}{sep}{prefix}{current}{suffix}。分隔符由sep参数指定,默认为.。 sep String 否 父子节点格式化的分隔符。当fmt取值为full、parent或root时需要设置。默认为.。 expand_array Boolean 否 是否将数组展开。默认为true表示展开数组。 fmt_array String 否 数组展开的格式化方式,格式为{parent_rlist[0]}_{index}。也可以使用最多五个占位符自定义格式化字符串:parent_list,current,sep,prefix,suffix。 include_node String/ Number 否 节点允许名单,表示过滤时包含的节点名称。默认只有中文、数字、字母和_.-的节点才会被自动展开。 exclude_node String 否 节点限制名单,表示过滤时排除的节点名称。 include_path String 否 节点允许名单,表示过滤时包含的节点路径。 exclude_path String 否 节点限制名单,表示过滤时排除的节点路径。 jmes String 否 将字段值转化为JSON对象并通过JMES提取特定值。 output String 否 通过JMES提取特定值时输出的字段名。 jmes_ignore_none Boolean 否 当JMES提取不到值时是否忽略。默认为true表示忽略,否则输出一个空字符串。 mode String 否 字段的覆盖模式。默认为fill-auto。 JSON展开过滤 如果设置了节点允许名单,则内容必须包含在节点允许名单中然后才会在结果中出现。节点允许名单正则示例:e_json("json_data_filed", ...., include_node=r'key\d+')。 如果设置了节点限制名单,则内容必须包含在节点限制名单中然后才不会在结果中出现。节点限制名单正则示例:e_json("json_data_filed", ...., exclude_node=r'key\d+')。 展开节点路径:正则include_path 与 exclue_path从路径开头匹配,匹配路径是以.分隔。 JMES过滤 使用JMES选择、计算。 选择特定JSON路径下的元素属性列表:e_json(..., jmes="cve.vendors[*].product",output="product") 用逗号拼接特定JSON路径下的元素属性:e_json(..., jmes="join(',', cve.vendors[*].name)",output="vendors") 计算特定JSON路径下元素的最大属性值:e_json(..., jmes="max(words[*].score)",output="hot_word") 当特定路径不存在或为空时,返回一个空字符串:e_json(..., jmes="max(words[*].score)",output="hot_word", jmes_ignore_none=false) parent_list和parent_rlist,以如下示例说明。 测试数据: { "data": { "k1": 100,"k2": {"k3": 200,"k4": {"k5": 300}}}} parent_list是将父节点从左到右排列。 e_json("data", fmt='{parent_list[0]}-{parent_list[1]}#{current}') 得到的日志: data:{ "k1": 100,"k2": {"k3": 200,"k4": {"k5": 300}}}data-k2#k3:200data-k2#k5:300 parent_rlist是将父节点从右到左排列。 e_json("data", fmt='{parent_rlist[0]}-{parent_rlist[1]}#{current}') 得到的日志: data:{ "k1": 100,"k2": {"k3": 200,"k4": {"k5": 300}}}k2-data#k3:200k4-k2#k5:300 返回结果 返回附带新字段值的日志。 函数示例 示例1:字段展开操作。 测试数据 { "data": {"k1": 100, "k2": 200}} 加工规则 e_json("data",depth=1) 加工结果 data: {"k1": 100, "k2": 200}k1: 100k2: 200 示例2:给字段名添加前缀和后缀。 测试数据 { "data": {"k1": 100, "k2": 200}} 加工规则 e_json("data", prefix="data_", suffix="_end") 加工结果 data: {"k1": 100, "k2": 200}data_k1_end: 100data_k2_end: 200 示例3:将字段按照不同格式展开。 测试数据 { "data": {"k1": 100, "k2": {"k3": 200, "k4": {"k5": 300} } }} fmt=full格式 e_json("data", fmt='full') data: {"k1": 100, "k2": {"k3": 200, "k4": {"k5": 300} } } data.k1: 100 data.k2.k3: 200 data.k2.k4.k5: 300 fmt=parent格式 e_json("data", fmt='parent') data: {"k1": 100, "k2": {"k3": 200, "k4": {"k5": 300} } } data.k1: 100 k2.k3: 200 k4.k5: 3000 fmt=root格式 e_json("data", fmt='root') data: {"k1": 100, "k2": {"k3": 200, "k4": {"k5": 300} } } data.k1: 100 data.k3: 200 data.k5: 300 示例4:使用指定分隔符、字段名前缀和字段名后缀提取JSON 测试数据 { "data": {"k1": 100, "k2": {"k3": 200, "k4": {"k5": 300} } }} 加工规则 e_json("data", fmt='parent', sep="@", prefix="__", suffix="__") 加工结果 data: {"k1": 100, "k2": {"k3": 200, "k4": {"k5": 300} } } data@__k1__:100 k2@__k3__:200 k4@__k5__:300 示例5:指定fmt_array参数,按照数组方式提取JSON。 测试数据 { "people": [{"name": "xm", "gender": "boy"}, {"name": "xz", "gender": "boy"}, {"name": "xt", "gender": "girl"}]} 加工规则 e_json("people", fmt='parent', fmt_array="{parent_rlist[0]}-{index}") 加工结果 people: [{"name": "xm", "gender": "boy"}, {"name": "xz", "gender": "boy"}, {"name": "xt", "gender": "girl"}]people-0.name: xm people-0.gender: boy people-1.name: xz people-1.gender: boy people-2.name: xt people-2.gender: girl 示例6:使用JMES提取JSON对象。 测试数据 { "data": { "people": [{"first": "James", "last": "d"},{"first": "Jacob", "last": "e"}],"foo": {"bar": "baz"}}} 加工规则 e_json("data", jmes='foo', output='jmes_output0')e_json("data", jmes='foo.bar', output='jmes_output1')e_json("data", jmes='people[0].last', output='jmes_output2')e_json("data", jmes='people[*].first', output='jmes_output3') 加工结果 data: { "people": [{"first": "James", "last": "d"},{"first": "Jacob", "last": "e"}],"foo": {"bar": "baz"}}jmes_output0: {"bar": "baz"}jmes_output1: baz jmes_output2: d jmes_output3: ["james", "jacob"] 更多参考 支持和其他函数组合使用。
-
e_search_dict_map 对关键字(查询字符串)以及其匹配的值的字典数据进行映射。 函数格式 e_search_dict_map(data, output_field, multi_match=false, multi_join=" ", missing=None, mode="overwrite") 参数说明 参数名称 数据类型 是否必填 说明 data Dict 是 映射关系的字典。必须为标准的{key01:value01,key01:value02,...}格式,且关键字key必须是查询字符串。 output_field String 是 输出字段的名称。 multi_match Boolean 否 是否允许匹配多个字段。默认为false表示不匹配多个字段,会返回匹配到的最后一个字段值。支持使用multi_join拼接多个匹配的值。 multi_join String 否 匹配多个字段时,多值的连接字符串,默认为空格。当multi_match值为true时生效。 missing String 否 无匹配字段时,将该参数的取值赋给输出字段output_field。默认为None表示不做映射赋值操作。 如果字典中包含默认匹配星号(*),由于星号(*)的优先级高于missing,此时missing将不起作用。 mode String 否 字段的覆盖模式。默认为overwrite。 返回结果 返回查询匹配中后的映射结果。 函数示例 示例1:匹配模式。 测试数据 { "data":123 , "pro":1} 加工规则 e_search_dict_map ({"pro==1": "TCP", "pro==2": "UDP", "pro==3": "HTTP"}, "protocol") 加工结果 data:123 pro:1 protocol:TCP 示例2:根据字段值的不同开头进行映射。 测试数据 { "status":"200,300"} 加工规则 e_search_dict_map( { "status:2??": "ok", "status:3??": "redirect", "status:4??": "auth", "status:5??": "server_error", }, "status_desc", multi_match=true, multi_join="测试",) 加工结果 status:200,300 status_desc:ok测试redirect 更多参考 支持和其他函数组合使用。
-
e_table_map 与目标表格进行映射,根据输入的字段名称返回字段值。 函数格式 e_table_map(data, field, output_fields, missing=None, mode="fill-auto") 参数说明 参数名称 数据类型 是否必填 说明 data Table 是 目标表格。 field String、String List或Tuple List 是 日志中映射到表格的源字段。如果日志中不存在对应字段,则不进行任何操作。 output_fields String、String List或Tuple List 是 映射后的字段。例如["province", "pop"]。 missing String 否 无匹配字段时,将该参数的取值赋给输出字段output_fields。默认为None表示不做映射赋值操作。如果目标字段是多列,则missing可以是一个长度与目标字段数一致的默认值列表。 说明 如果表格中包含匹配星号(*),由于星号(*)的优先级高于missing,此时missing参数将不起作用。 mode String 否 字段的覆盖模式。默认为fill-auto。 返回结果 返回附带新字段值的日志。 函数示例 示例1:在映射表格中查找对应行,根据city字段返回province字段的值。 测试数据 { "data": 123, "city": "nj"} 加工规则 e_table_map( tab_parse_csv("city,pop,province\nnj,800,js\nsh,2000,sh"), "city", "province") 加工结果 data: 123city: njprovince: js 示例2:在映射表格中查找对应行,根据city字段返回province字段和pop字段的值。 测试数据 { "data": 123, "city": "nj"} 加工规则 e_table_map( tab_parse_csv("city,pop,province\nnj,800,js\nsh,2000,sh"), "city", ["province", "pop"],) 加工结果 data: 123city: njprovince: jspop: 800 示例3:使用tab_parse_csv函数构建映射表格,根据city字段返回province字段和pop字段的值。 测试数据 { "data": 123, "city": "nj"} 加工规则 e_table_map( tab_parse_csv("city#pop#province\nnj#800#js\nsh#2000#sh", sep="#"), "city", ["province", "pop"],) 加工结果 data: 123city: njprovince: jspop: 800 示例4:使用tab_parse_csv函数构建映射表格,根据city字段返回province字段和pop字段的值。 测试数据 { "data": 123, "city": "nj"} 加工规则 e_table_map( tab_parse_csv( "city,pop,province\n|nj|,|800|,|js|\n|shang hai|,2000,|SHANG,HAI|", quote="|" ), "city", ["province", "pop"],) 加工结果 data: 123city: njprovince: jspop: 800 示例5:日志匹配字段与映射表格中字段不一样。在映射表格中查找对应行,根据cty或city字段返回province字段的值。 测试数据 { "data": 123, "city": "nj"} 加工规则 e_table_map( tab_parse_csv("city,pop,province\nnj,800,js\nsh,2000,sh"), [("city", "city")], "province") 加工结果 data: 123city: nj province: js 示例6:日志匹配字段与映射表格中字段不一样,并且对输出字段进行重命名。 测试数据 { "data": 123, "city": "nj"} 加工规则 e_table_map( tab_parse_csv("city,pop,province\nnj,800,js\nsh,2000,sh"), [("city", "city")], [("province", "pro")],) 加工结果 data: 123city: nj pro: js 示例7:多个日志匹配字段。 测试数据 { "data": 123, "city": "nj", "pop": 800} 加工规则 e_table_map( tab_parse_csv("city,pop,province\nnj,800,js\nsh,2000,sh"), ["city", "pop"], "province",) 加工结果 data: 123city: nj pop: 800province: js 示例8:多个日志匹配字段,且日志匹配字段与映射表格字段不一样。 测试数据 { "data": 123, "city": "nj", "pp": 800} 加工规则 e_table_map( tab_parse_csv("city,pop,province\nnj,800,js\nsh,2000,sh"), [("city", "city"), ("pp", "pop")], "province",) 加工结果 data: 123city: nj pp: 800province: js 更多参考 支持和其他函数组合使用。
-
e_search_table_map 对某列(查询字符串)以及其匹配的值的表格数据进行映射。 函数格式 e_search_table_map(data, inpt, output_fields, multi_match=false, multi_join=" ", missing=None, mode="fill-auto") 参数说明 参数名称 数据类型 是否必填 说明 data Table 是 映射关系的表格,表格某一列必须是查询字符串。 inpt String 是 表格中用于匹配搜索的字段名。 output_fields String,String List或Tuple List 是 表格中映射出的字段,可以是字符串、列表或者其名称映射元组的列表。 multi_match Boolean 否 是否允许匹配多个字段。默认为false表示不匹配多个字段,会返回匹配到的第一个字段值。支持使用multi_join来拼接多个匹配的值。 multi_join String 否 匹配多个字段时,多值的连接字符串,默认为空格。当multi_match值为true时生效。 missing String 否 无匹配字段时,将该参数的取值赋给输出字段output_fields。默认为None表示不做映射赋值操作。 如果表格中包含默认匹配*,由于*的优先级高于missing,此时missing将不起作用。 mode String 否 字段的覆盖模式。默认为fill-auto。 返回结果 返回查询匹配中后的映射结果。 函数示例 示例1:根据映射关系的表格,将日志中city字段映射出pop和province字段。 测试数据 { "data": 123, "city": "sh"} 例如,以下映射关系的表格,其中search列是查询字符串。 search pop province city==nj 800 js city==sh 2000 sh 加工规则 e_search_table_map( tab_parse_csv("search,pop,province\ncity==nj,800,js\ncity==sh,2000,sh"), "search", ["pop", "province"],) 加工结果 data: 123city: sh province: sh pop: 2000 示例2:overwrite模式。 测试数据 { "data": 123, "city": "nj", "province":""} 加工规则 e_search_table_map( tab_parse_csv("search,pop,province\ncity==nj,800,js\ncity==sh,2000,sh"), "search", "province", mode="overwrite",) 加工结果 pop: 800data: 123city: nj province: js 示例3:无匹配时目标字段的值由missing指定。 测试数据 { "data": 123, "city": "wh", "province":""} 加工规则 e_search_table_map( tab_parse_csv("search,pop,province\ncity==nj,800,\ncity==sh,2000,sh"), "search", "province", missing="Unknown",) 加工结果 data: 123city: wh province: Unknown 示例4:允许匹配多个字段(multi_match模式)。 测试数据 { "data": 123, "city": "nj,sh", "province":""} 加工规则 e_search_table_map( tab_parse_csv("search,pop,province\ncity:nj,800,js\ncity:sh,2000,sh"), "search", "province", multi_match=true, multi_join=",",) 加工结果 data: 123city: nj,shprovince: js,sh
-
e_dict_map 与目标数据字典进行映射,根据输入的字段映射一个新字段。 函数格式 e_dict_map(data, field, output_field, case_insensitive=true, missing=None, mode="overwrite") 参数说明 参数名称 数据类型 是否必填 说明 data Dict 是 目标数据字典。必须为标准的{key01:value01,key01:value02,...}格式,且必须是字符串。例如{"1": "TCP", "2": "UDP", "3": "HTTP", "*": "Unknown"}。 field String或者String List 是 一个字段名或者多个字段名的列表。多个字段时: 依次对匹配到的值进行映射。 如果匹配命中多条日志,且mode的取值为overwrite时,则最后一个会覆盖前面的结果。 当没有匹配到任何字段,则使用missing参数的值作为匹配值。 output_field String 是 输出字段的名称。 case_insensitive Boolean 否 匹配时大小写是否不敏感。 如果字典中存在同一个关键字的不同大小写,且case_insensitive为true时,会优先选择大小写完全匹配的值。如果没有,则随机选择一个。 true(默认值):不敏感。 false:敏感 missing String 否 无匹配字段时,将该参数的取值赋给输出字段output_field。默认为None表示不做映射赋值操作。 如果字典中包含匹配星号(*),由于星号(*)的优先级高于missing,此时missing参数不生效。 mode String 否 字段的覆盖模式。默认为overwrite。 取值为:fill,fill-auto,add,add-auto,overwrite,overwrite-auto 返回结果 返回附带新字段的日志。 函数示例 示例1:根据测试数据中pro字段的值和目标数据字典,输出新字段protocol。 测试数据 { "data": 123, "pro": 1} 加工规则 e_dict_map( {"1": "TCP", "2": "UDP", "3": "HTTP", "6": "HTTPS", "*": "Unknown"}, "pro", "protocol",) 加工结果 data: 123pro: 1protocol: TCP 示例2:根据测试数据中status字段的值和目标数据字典,输出新字段message。 测试数据(三条测试日志) { "status":"500"} { "status":"400"} { "status":"200"} 加工规则 e_dict_map({"400": "错误", "200": "正常", "*": "其他"}, "status", "message") 加工结果 status: 500message: 其他 status: 400message: 错误 status: 200message: 正常 更多参考 支持和其他函数组合使用。
-
函数列表 类型 函数 说明 字段映射 e_dict_map 与目标数据字典进行映射,根据输入的字段映射一个新字段。支持和其他函数组合使用。 e_table_map 与目标表格进行映射,根据输入的字段名称返回字段值。支持和其他函数组合使用。 搜索映射 e_search_dict_map 对关键字(查询字符串)以及其匹配的值的字典数据进行映射。支持和其他函数组合使用。 e_search_table_map 对某列(查询字符串)以及其匹配的值的表格数据进行映射。
-
str_lower 将字符串中所有大写字符转换为小写字符。 函数格式 str_lower(value) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被转换的字符串。 返回结果 转换后的字符串。 函数示例 测试数据 { "name": "LTs"} 加工规则 e_set("str_lower", str_lower(v("name"))) 加工结果 name: LTs str_lower: lts
-
str_capitalize 将字符串的第一个字母转化为大写,其他字母转化为小写。 函数格式 str_capitalize(value) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被转换的字符串。 返回结果 转换后的字符串。 函数示例 测试数据 { "value": "welcome to xian"} 加工规则 e_set("str_capitalize", str_capitalize(v("value"))) 加工结果 value:welcome to xian str_capitalize: Welcome to xian
-
str_upper 将字符串中所有小写字符转换为大写字符。 函数格式 str_upper(value) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被转换的字符串。 返回结果 转换后的字符串。 函数示例 测试数据 { "name": "LTs"} 加工规则 e_set("str_upper", str_upper(v("name"))) 加工结果 name: LTs str_upper: LTS
-
str_title 将所有单词的第一个字母转化为大写,其余字母均为小写。 函数格式 str_title(value) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被转换的字符串。 返回结果 转换后的字符串。 函数示例 测试数据 { "name": "for example"} 加工规则 e_set("str_title", str_title(v("name"))) 加工结果 name:for exampleexample str_title: For Exampl
-
str_swapcase 对字符串的大小写字母进行转换。 函数格式 str_swapcase(value) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被转换的字符串。 返回结果 转换后的字符串。 函数示例 测试数据 { "name": "this is lts"} 加工规则 e_set("str_swapcase", str_swapcase(v("name"))) 加工结果 name: this is lts str_swapcase: THIS IS LTS
-
str_lstrip 删除字符串开头指定的字符。 函数格式 str_lstrip(value, chars) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被修改的原字符串。 chars 任意(自动转为String) 否 字符串开头需要删除的字符集,默认为空格。 返回结果 修改后的字符串。 函数示例 测试数据:无 加工规则 e_set("str_strip", str_lstrip("**123**", "*")) 加工结果 str_strip: 123**
-
str_strip 删除字符串中指定的字符。 函数格式 str_strip(value, chars) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被修改的原字符串。 chars 任意(自动转为String) 否 字符串开头和结尾需要删除的字符集,默认为\t\r\n。 返回结果 修改后的字符串。 函数示例 示例1:删除空格。 测试数据 { "source":" lts"} 加工规则 e_set("str_strip", str_strip(v("source"))) 加工结果 source: lts str_strip: lts 示例2:删除开头和结尾是#的字符。 测试数据 { "source": "##lts#"} 加工规则 e_set("str_strip", str_strip(v("source"), "#")) 加工结果 source: ##lts#str_strip: lts
-
str_rstrip 删除字符串结尾指定的字符。 函数格式 str_rstrip(value, chars) 参数说明 参数名称 参数类型 是否必填 说明 value 任意(自动转为String) 是 需要被修改的原字符串。 chars 任意(自动转为String) 否 字符串结尾需要删除的字符集,默认为空格。 返回结果 修改后的字符串。 函数示例 测试数据:无 加工规则 e_set("str_strip", str_rstrip("**123**", "*")) 加工结果 str_strip: 123**
-
round函数 用于对x进行四舍五入。如果n存在,则保留n位小数;如果n不存在,则对x进行四舍五入取整数。 对x进行四舍五入取整数。 语法:ROUND(x) 对x进行四舍五入且保留n位小数。 语法:ROUND(x, n) 表2 参数说明 参数名称 描述 类型 是否必选 x 原始字段。 number 是 n n位小数(int)。 int 是 返回值类型:Number 示例:select ROUND(3.1415, 1) 表3 查询分析结果 类型 场景 查询语句 ROUND(3.1415, 1) 返回结果 3.1
-
count函数 用于计数。 统计所有的日志条数。 语法:COUNT(*) 统计所有的日志条数。等同于count(*)。 语法:COUNT(1) 统计x中值不为NULL的日志条数。 语法:COUNT(x) 表19 参数说明 参数名称 描述 类型 是否必选 x 原始字段。 任意 是 返回值类型:int 示例:select COUNT(*) 表20 查询分析结果 类型 场景 查询语句 COUNT(*) 返回结果 1
-
min函数 用于查询x中最小值。 查询x中最小的值。 语法:min(x) 查询x中最小的n个值,结果返回为数组。 语法: min(x, n) 表24 参数说明 参数名称 描述 类型 是否必选 x 原始字段。 任意数据 是 n 返回最小值的个数 正整数 否 返回值类型:与参数值的数据类型一致。 示例1:查询x中的最小值 表25 查询分析结果 类型 场景 查询语句 SELECT min(x) 返回结果 10.0 示例2:查询x中的最小的2个值 表26 查询分析结果 类型 场景 查询语句 SELECT min(x, 2) 返回结果 [10.0, 10.0]
-
max函数 用于查询x中最大的值。 查询x中最大的值。 语法:max(x) 查询x中最大的n个值,结果返回为数组。 语法: max(x, n) 表21 参数说明 参数名称 描述 类型 是否必选 x 原始字段。 任意数据 是 n 返回最大值的个数 正整数 否 返回值类型:与参数值的数据类型一致。 示例1:查询x中的最大值 表22 查询分析结果 类型 场景 查询语句 SELECT max(x) 返回结果 99.0 示例2:查询x中的最大的2个值 表23 查询分析结果 类型 场景 查询语句 SELECT max(x, 2) 返回结果 [99.0, 99.0]
-
min_by函数 查询y为最小值时对应的x值,或查询最小的n个y值对应的x值。 查询y为最小值时对应的x值。 语法:max_by(x, y) 查询最小的n个y值对应的x值。 语法:max_by(x, y, n) 表16 参数说明 参数名称 描述 类型 是否必选 x 原始字段。 任意数据类型 是 y 原始字段。 任意数据类型 是 n 大于0的整数。 int 否 返回值类型:与参数值的数据类型一致 示例1:统计请求时长最小时对应的请求方法。 表17 查询分析结果 类型 场景 查询语句 SELECT min_by(request_method, request_time) 返回结果 POST 示例2:统计请求时长最小的3个请求对应的请求方法。 表18 查询分析结果 类型 场景 查询语句 SELECT min_by(request_method, request_time, 3) 返回结果 ["POST","POST","POST"]
-
函数列表 表1 聚合函数 函数 描述 approx_distinct函数 用于估算x中不重复值的个数。 approx_percentile函数 用于对x进行正序排列,返回处于percentage位置的数值。 arbitrary函数 用于返回x中任意一个非空的值。 max_by函数 查询y为最大值时对应的x值,或查询最大的n个y值对应的x值。 min_by函数 查询y为最小值时对应的x值,或查询最小的n个y值对应的x值。 count函数 用于计数。 max函数 用于查询x中最大的值。 min函数 用于查询x中最小值。 avg函数 用于计算x的算术平均值。
-
approx_distinct函数 用于估算x中不重复值的个数。 估算x中不重复值的个数,默认存在2.3%的标准误差 语法:approx_distinct(x) 估算x中不重复值的个数,支持自定义标准误差 语法:approx_distinct(x, e) 表2 参数说明 参数名称 描述 类型 是否必选 x 原始字段 任意 是 e 自定义标准误差 double类型,取值为[0.0115, 0.26] 否 返回值类型:bigint类型 示例1:使用approx_distinct函数估算不重复的clientIp字段值,标准误差为2.3%。 表3 查询分析结果 类型 场景 查询语句 SELECT approx_distinct(clientIp) 返回结果 1 示例2:使用approx_distinct函数估算不重复的clientIp字段值, 自定义标准误差为10%。 表4 查询分析结果 类型 场景 查询语句 SELECT approx_distinct(clientIp, 0.1) 返回结果 1
-
approx_percentile函数 用于对x进行正序排列,返回处于percentage位置的数值。 对于x进行正序排列,返回处于percentage位置的x,返回结果为double类型。 语法:approx_percentile(x, percentage) 对x进行正序排列,返回处于percentage01、percentage02位置的x,返回结果为array(double,double)类型。 语法:approx_percentile(x, array[percentage01, percentage02)] 对x和权重的乘积进行正序排列,返回大约处于percentage位置的x,返回结果为double类型。 语法:approx_percentile(x, weight, percentage) 对x和权重的乘积进行正序排列,返回处于percentage01、percentage02位置的x,返回结果为array(double,double)类型。 语法:approx_percentile(x, weight, array[percentage01, percentage02...]) 对x和权重的乘积进行正序排列,返回大约处于percentage位置的x,返回结果为double类型。支持设置返回结果的准确度。 语法:approx_percentile(x, weight, percentage, accuracy) 表5 参数说明 参数名称 描述 类型 是否必选 x 原始字段 double 是 percentage 百分比值,取值范围为[0,1]。 double 是 weight 权重,大于1的整数。 设置权重后,系统根据x与权重的乘积进行排序。 int 否 accuracy 准确度,取值范围为(0,1)。 double 否 返回值类型:double类型或array(double,...,double)类型 示例1:对request_time列进行排序后,返回大约处于50%位置的request_time字段的值。 表6 查询分析结果 类型 场景 查询语句 SELECT approx_percentile(request_time, 0.5) 返回结果 45.0 示例2:对request_time列进行排序后,返回处于10%、20%及70%位置的request_time字段的值。 表7 查询分析结果 类型 场景 查询语句 SELECT approx_percentile(request_time,array[0.1,0.2,0.7]) 返回结果 [17.0, 24.0, 59.0] 示例3:根据request_time与权重的乘积对request_time列进行排序后,返回大约处于50%位置的request_time字段的值, 权重值为60。 表8 查询分析结果 类型 场景 查询语句 SELECT approx_percentile(request_time, 60, 0.5) 返回结果 45.0 示例4:根据request_time与权重的乘积对request_time列进行排序后,返回大约处于80%和90%位置的request_time字段的值,权重值为60。 表9 查询分析结果 类型 场景 查询语句 SELECT approx_percentile(request_time, 60, array[0.8, 0.9]) 返回结果 [66.0,73.0] 示例5:根据request_time与权重的乘积对request_time列进行排序后,返回大约处于50%位置的request_time字段的值,权重值为60,准确度为0.2。 表10 查询分析结果 类型 场景 查询语句 SELECT approx_percentile(request_time, 60, 0.5, 0.2) 返回结果 45.0
-
max_by函数 查询y为最大值时对应的x值,或查询最大的n个y值对应的x值。 查询y为最大值时对应的x值。 语法:max_by(x, y) 查询最大的n个y值对应的x值。 语法:max_by(x, y, n) 表13 参数说明 参数名称 描述 类型 是否必选 x 原始字段。 任意数据类型 是 y 原始字段。 任意数据类型 是 n 大于0的整数。 int 否 返回值类型:与参数值的数据类型一致。 示例1:统计请求时长最大时对应的请求方法。 表14 查询分析结果 类型 场景 查询语句 SELECT max_by(request_method, request_time) 返回结果 GET 示例2:统计请求时长最大的3个请求对应的请求方法。 表15 查询分析结果 类型 场景 查询语句 SELECT max_by(request_method, request_time, 3) 返回结果 ["GET","GET","GET"]
-
op_min 计算多个字段或表达式表示的数值的最小值。 函数格式 op_min(value1, value2, ...) 参数说明 参数名称 参数类型 是否必填 说明 value1 任意 是 运算值1。 value2 必须与值1一样 是 运算值2。 返回结果 返回多个数值中的最小值。 函数示例 测试数据 { "price_orange": 2, "priority_apple": 13} 加工规则 e_set("op_min", op_min(ct_int(v("price_orange")),ct_int(v("priority_apple")))) 加工结果 price_orange: 2priority_apple: 13op_min: 2
-
op_add 计算多个值的和,可以是字符串或者数字等。 函数格式 op_add(value1, value2, ...) 参数说明 参数名称 参数类型 是否必填 说明 value1 字符串、元组、列表或字典等 是 运算值1。 value2 必须与值1一样 是 运算值2。 返回结果 返回求和操作后的数值。 函数示例 示例1:计算price_orange和price_apple总金额。 测试数据 { "price_orange": 2, "price_apple": 13} 加工规则 e_set("account",op_add(ct_int(v("price_orange")),ct_int(v("price_apple")))) 加工结果 price_orange: 2, price_apple: 13, account: 15 示例2:统计bytes_in和bytes_out的和。 测试数据 { "bytes_in": 214, "bytes_out": 123} 加工规则 e_set("total_bytes", op_add(ct_int(v("bytes_in")), ct_int(v("bytes_out")))) 加工结果 bytes_in: 214bytes_out: 123total_bytes: 337 示例3:给网址添加HTTPS头。 测试数据 { "host": "xx.com"} 加工规则 e_set("website", op_add("https://", v("host"))) 加工结果 host: xx.comwebsite: https://xx.com
-
op_max 计算多个字段或表达式表示的数值的最大值。 函数格式 op_max(value1, value2, ...) 参数说明 参数名称 参数类型 是否必填 说明 value1 任意 是 运算值1。 value2 必须与值1一样 是 运算值2。 返回结果 返回多个数值中的最大值。 函数示例 测试数据 { "price_orange": 2, "priority_apple": 13} 加工规则 e_set("max_price", op_max(ct_int(v("price_orange")),ct_int(v("priority_apple")))) 加工结果 price_orange: 2priority_apple: 13max_price: 13
共99354条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- ...
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3311
推荐文章