华为云用户手册

  • 优化后 测试发现由于两表结果集过大,导致nestloop耗时过长,超过一小时未返回结果,因此性能优化的关键是消除nestloop,让join走更高效的hashjoin。从语义等价的角度消除any-clause,SQL改写如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 select ls_pid_cusr1,COALESCE(max(round(ym/365)),0) from ( ( SELECT ls_pid_cusr1,(current_date-bthdate) as ym FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2 WHERE t1.ls_pid_cusr1 = t2.id and t1.ls_pid_cusr1 != t2.id15 ) union all ( SELECT ls_pid_cusr1,(current_date-bthdate) as ym FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2 WHERE t1.ls_pid_cusr1 = id15 ) ) GROUP BY ls_pid_cusr1; 注意:尽量使用union all代替union。union在合并两个集合时会执行去重操作,而union all则直接将两个结果集合并、不执行去重。执行去重会消耗大量的时间,因此,在一些实际应用场景中,如果通过业务逻辑已确认两个集合不存在重叠,可用union all替代union以便提升性能。 优化后的SQL查询由两个等值join的子查询构成,而每个子查询都可以走更适合此场景的hashjoin。优化后的执行计划如下 优化后,从超过1个小时未返回结果优化到7s返回结果。
  • 优化前 in-clause/any-clause是常见的SQL语句约束条件,有时in或any后面的clause都是常量,类似于: 1 2 3 4 select count(1) from calc_empfyc_c1_result_tmp_t1 where ls_pid_cusr1 in (‘20120405’, ‘20130405’); 或者 1 2 3 4 select count(1) from calc_empfyc_c1_result_tmp_t1 where ls_pid_cusr1 in any(‘20120405’, ‘20130405’); 但是也有一些如下的特殊用法: 1 2 3 4 5 SELECT ls_pid_cusr1,COALESCE(max(round((current_date-bthdate)/365)),0) FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2 WHERE t1.ls_pid_cusr1 = any(values(id),(id15)) GROUP BY ls_pid_cusr1; 其中,id、id15为p10_md_tmp_t2中的两列,“t1.ls_pid_cusr1 = any(values(id),(id15))”等价于“t1.ls_pid_cusr1 = id or t1.ls_pid_cusr1 = id15”。 因此join-condition实质上是一个不等式,这种不等值的join操作必须走nestloop,对应执行计划如下:
  • 总结 通常优化器总会选择最优的执行计划,但是众所周知代价估算,尤其是中间结果集的代价估算一般会有比较大的偏差,这种比较大的偏差就可能会导致agg的计算方式出现比较大的偏差,这时候就需要通过best_agg_plan进行agg计算模型的干预。 一般来说,当agg汇聚的收敛度很小时,即结果集的个数在agg之后并没有明显变少时(经验上以5倍为临界点),选择redistribute+hashagg执行方式,否则选择hashagg+redistribute+hashagg执行方式。
  • 优化前 创建一个无局部聚簇(以下称为PCK)的列存表orders_no_pck,表定义如下: 执行以下SQL语句,查询某个点查询的执行计划: 1 2 3 4 EXPLAIN PERFORMANCE SELECT * FROM orders_no_pck WHERE o_orderkey = '13095143' ORDER BY o_orderdate; 由下图可知执行时间为48毫秒,查看Datanode Information发现filter时间为19毫秒,CUNone比例为0。
  • 优化后 创建的列存表orders_pck。表定义如下: 使用ALTER TABLE将字段o_orderkey设置为PCK: 执行以下SQL语句,再次查询同样的点查询SQL语句的执行计划: 1 2 3 4 EXPLAIN PERFORMANCE SELECT * FROM orders_pck WHERE o_orderkey = '13095143' ORDER BY o_orderdate; 由下图可知执行时间为5毫秒,查看Datanode Information发现filter时间为0.5毫秒,CUNone比例为82。CUNone比例越高,PCK的性能收益越明显。
  • 场景二:优化前 当cost_param的bit1(set cost_param=2)为1时,表示求多个过滤条件(Filter)的选择率时,选择最小的作为总的选择率,而非两者乘积,此方法在过滤条件的列之间关联性较强时估算更加准确。下面查询的例子是cost_param的bit1为1时的优化场景。 表结构如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 CREATE TABLE NATION ( N_NATIONKEYINT NOT NULL , N_NAMECHAR(25) NOT NULL , N_REGIONKEYINT NOT NULL , N_COMMENTVARCHAR(152) ) distribute by replication; CREATE TABLE SUPPLIER ( S_SUPPKEYBIGINT NOT NULL , S_NAMECHAR(25) NOT NULL , S_ADDRESSVARCHAR(40) NOT NULL , S_NATIONKEYINT NOT NULL , S_PHONECHAR(15) NOT NULL , S_ACCTBALDECIMAL(15,2) NOT NULL , S_COMMENTVARCHAR(101) NOT NULL ) distribute by hash(S_SUPPKEY); CREATE TABLE PARTSUPP ( PS_PARTKEYBIGINT NOT NULL , PS_SUPPKEYBIGINT NOT NULL , PS_AVAILQTYBIGINT NOT NULL , PS_SUPPLYCOSTDECIMAL(15,2)NOT NULL , PS_COMMENTVARCHAR(199) NOT NULL )distribute by hash(PS_PARTKEY); 查询语句如下所示: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 set cost_param=2; explain verbose select nation, sum(amount) as sum_profit from ( select n_name as nation, l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount from supplier, lineitem, partsupp, nation where s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and s_nationkey = n_nationkey ) as profit group by nation order by nation; 当cost_param的bit1为0时,执行计划如下图所示:
  • 场景二:优化后 在以上查询中,supplier、lineitem、partsupp三表做hashjoin的条件为(lineitem.l_suppkey = supplier.s_suppkey) AND (lineitem.l_partkey = partsupp.ps_partkey),此hashjoin条件中存在两个过滤条件,这前一个过滤条件中的lineitem.l_suppkey和后一个过滤条件中的lineitem.l_partkey同为lineitem表的两列,这两列存在强相关的关联关系。在这种情况,估算hashjoin条件的选择率时,如果使用cost_param的bit1为0时,实际是将AND的两个过滤条件分别计算的2个选择率的值相乘来得到hashjoin条件的选择率,导致行数估算不准确,查询性能较差。所以需要将cost_param的bit1为1时,选择最小的选择率作为总的选择率估算行数比较准确,查询性能较好,优化后的计划如下图所示:
  • 优化前 将a作为t1和t2的分布列,表定义如下: 1 2 CREATE TABLE t1 (a int, b int) DISTRIBUTE BY HASH (a); CREATE TABLE t2 (a int, b int) DISTRIBUTE BY HASH (a); 执行如下查询: 1 SELECT * FROM t1, t2 WHERE t1.a = t2.b; 则执行计划存在“Streaming(type: REDISTRIBUTE)”,即DN根据选定的列把数据重分布到所有的DN,这将导致DN之间存在较大通信数据量,如图1所示。 图1 选择合适的分布列案例(一)
  • 优化后 将查询中的关联条件作为分布键,执行下列语句修改b作为t2的分布列: 1 ALTER TABLE t2 DISTRIBUTE BY HASH (b); 将表t2的分布列改为b列之后,执行计划将不再包含“Streaming(type: REDISTRIBUTE)”,减少了DN之间存在的通信数据量的同时,执行时间也从8.7毫秒降低至2.7毫秒,从而提升查询性能,如图2所示。 图2 选择合适的分布列案例(二)
  • 操作步骤 假定在导入表“areaS”上的“area_id”字段上存在普通索引“areaS_idx”。重建索引有以下两种方式: 先删除索引(DROP INDEX),再创建索引(CREATE INDEX) 删除索引。 DROP INDEX areaS_idx; 创建索引。 CREATE INDEX areaS_idx ON areaS (area_id); 使用REINDEX重建索引。 使用REINDEX TABLE语句重建索引。 REINDEX TABLE areaS; 使用REINDEX INTERNAL TABLE重建desc表(包括)的索引。 REINDEX INTERNAL TABLE areaS;
  • 重建索引 重建索引有以下两种方式: 先删除索引(DROP INDEX),再创建索引(CREATE INDEX)。 在删除索引过程中,会在父表上增加一个短暂的排他锁,阻止相关读写操作。在创建索引过程中,会锁住写操作但是不会锁住读操作,此时读操作只能使用顺序扫描。 使用REINDEX语句重建索引。 使用REINDEX TABLE语句重建索引,会在重建过程中增加排他锁,阻止相关读写操作。 使用REINDEX INTERNAL TABLE语句重建desc表(包括)的索引,会在重建过程中增加排他锁,阻止相关读写操作。
  • 背景信息 数据库经过多次删除操作后,索引页面上的索引键将被删除,造成索引膨胀。例行重建索引,可有效的提高查询效率。 数据库支持的索引类型包含B-tree索引、GIN索引和PSORT索引。 对于B-tree索引,例行重建索引可有效的提高查询效率。 如果数据发生大量删除后,索引页面上的索引键将被删除,导致索引页面数量的减少,造成索引膨胀。重建索引可回收浪费的空间。 新建的索引中逻辑结构相邻的页面,通常在物理结构中也是相邻的,所以一个新建的索引比更新了多次的索引访问速度要快。 对于非B-tree索引,不建议例行重建。
  • 操作步骤 使用VACUUM或VACUUM FULL命令,进行磁盘空间回收。 VACUUM: 对表执行VACUUM操作。 VACUUM customer; 可以与数据库操作命令并行运行。(执行期间,可正常使用的语句:SELECT、INSERT、UPDATE和DELETE。不可正常使用的语句:ALTER TABLE)。 对表分区执行VACUUM操作。 VACUUM customer_par PARTITION ( P1 ); VACUUM FULL: VACUUM FULL customer; 需要向正在执行的表增加排他锁,且需要停止其他所有数据库操作。 在进行磁盘空间回收时,用户可以使用如下命令查询集群中最早事务对应session,再根据需要结束最早执行的长事务,从而更加高效的利用磁盘空间。 使用命令从GTM上查询oldestxmin SELECT * FROM pgxc_gtm_snapshot_status(); 从CN上查询对应的session的pid,此处xmin为上一步的oldestxmin。 SELECT * FROM pgxc_running_xacts() where xmin=1400202010; 使用ANALYZE语句更新统计信息。 ANALYZE customer; 使用ANALYZE VERBOSE语句更新统计信息,并输出表的相关信息。 ANALYZE VERBOSE customer; 也可以同时执行VACUUM ANALYZE命令进行查询优化。 VACUUM ANALYZE customer; VACUUM和ANALYZE会导致I/O流量的大幅增加,这可能会影响其他活动会话的性能。因此,建议通过“vacuum_cost_delay”参数设置。
  • 相关概念 使用VACUUM、VACUUM FULL和ANALYZE命令定期对每个表进行维护,主要有以下原因: VACUUM FULL可回收已更新或已删除的数据所占据的磁盘空间,同时将小数据文件合并。 VACUUM对每个表维护了一个可视化映射来跟踪包含对别的活动事务可见的数组的页。一个普通的索引扫描首先通过可视化映射来获取对应的数组,来检查是否对当前事务可见。若无法获取,再通过堆数组抓取的方式来检查。因此更新表的可视化映射,可加速唯一索引扫描。 VACUUM可避免执行的事务数超过数据库阈值时,事务ID重叠造成的原有数据丢失。 ANALYZE可收集与数据库中表内容相关的统计信息。统计结果存储在系统表PG_STATISTIC中。查询优化器会使用这些统计数据,生成最有效的执行计划。
  • Plan Hint实际调优案例 本节以TPC-DS标准测试的Q24的部分语句为例,在1000X,24DN环境上,说明使用plan hint进行实际调优的过程。示例如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 select avg(netpaid) from (select c_last_name ,c_first_name ,s_store_name ,ca_state ,s_state ,i_color ,i_current_price ,i_manager_id ,i_units ,i_size ,sum(ss_sales_price) netpaid from store_sales ,store_returns ,store ,item ,customer ,customer_address where ss_ticket_number = sr_ticket_number and ss_item_sk = sr_item_sk and ss_customer_sk = c_customer_sk and ss_item_sk = i_item_sk and ss_store_sk = s_store_sk and c_birth_country = upper(ca_country) and s_zip = ca_zip and s_market_id=7 group by c_last_name ,c_first_name ,s_store_name ,ca_state ,s_state ,i_color ,i_current_price ,i_manager_id ,i_units ,i_size); 该语句的初始计划如下,运行时间110s: 图1 语句初始计划 该计划中,第10层算子使用broadcast性能较差,由于第11层算子估算行数为2140,比实际行数严重低估。错误行数估算主要来源于第13层算子的行数低估,根因是第13层hashjoin中,使用store_sales的(ss_ticket_number, ss_item_sk)列和store_returns的(sr_ticket_number, sr_item_sk)列进行关联,由于缺少多列相关性的估算导致行数严重低估。 使用如下的rows hint进行调优后,计划如下,运行时间318s: 1 2 select avg(netpaid) from (select /*+rows(store_sales store_returns * 11270)*/ c_last_name ... 图2 使用rows hint进行调优 时间反而劣化了,原因是第8层hashjoin过慢引起第9层redistribute时间过慢导致,其中第9层redistribute并没有数据倾斜,hashjoin慢的原因是由于第18层redistribute后数据倾斜导致。 经过实际数据查证,customer_address的两个join列的不同值数目较少,使用其进行join容易出现数据倾斜,故把customer_address放到最后进行join。使用如下的hint进行调优后,计划如下,运行时间116s: 1 2 3 4 select avg(netpaid) from (select /*+rows(store_sales store_returns *11270) leading((store_sales store_returns store item customer) customer_address)*/ c_last_name ... 图3 hint调优 发现时间基本花在了第6层redistribute算子上,需要进一步优化。 由于最后一层redistribute包含倾斜,所以时间较长。为了避免倾斜,需要将item表放在最后join,由于item表的join并不能使行数减少。修改hint如下并执行,计划如下,运行时间120s: 1 2 3 4 select avg(netpaid) from (select /*+rows(store_sales store_returns *11270) leading((customer_address (store_sales store_returns store customer) item)) c_last_name ... 图4 修改hint并执行语句 该计划中的redistribute问题并没有解决,因为第22层item表做了broadcast,导致与customer_address表join后的倾斜并没有被消除掉。 增加如下禁止item表做broadcast的hint,使与customer_address join的表做redistribute(也可以进行join表redistribute的hint),计划如下,运行时间105s: 1 2 3 4 5 select avg(netpaid) from (select /*+rows(store_sales store_returns *11270) leading((customer_address (store_sales store_returns store customer) item)) no broadcast(item)*/ c_last_name ... 图5 执行计划 发现最后一层使用单层Agg,但行数缩减较多。使用相同的hint,同时结合参数best_agg_plan=3进行双层Agg调优,最终计划如下图所示,运行时间94s,完成调优。 图6 最终调优计划 如果有统计信息变更引起的查询劣化,可以考虑用plan hint来调整到之前的查询计划。这里以TPCH-Q17为例,在收集default_statistics_target设置为–2的统计信息之后,计划相比于默认统计信息发生劣化。 默认统计信息(default_statistics_target设置为100)的计划如下: 图7 默认统计信息 统计信息变更(default_statistics_target设置为–2)的计划如下: 图8 统计信息变更 经过对比,劣化的原因主要为lineitem和part表join时stream类型由BroadCast变更为Redistribute导致。可以对语句进行stream方式的hint来调整到之前的计划,例如: 图9 调整语句 父主题: 使用Plan Hint进行调优
  • hint的错误类型 语法错误 语法规则树归约失败,会报错,指出出错的位置。 例如:hint关键字错误,leading hint或join hint指定2个表以下,其它hint未指定表等。一旦发现语法错误,则立即终止hint的解析,所以此时只有错误前面的解析完的hint有效。 例如: 1 leading((t1 t2)) nestloop(t1) rows(t1 t2 #10) nestloop(t1)存在语法错误,则终止解析,可用hint只有之前解析的leading((t1 t2))。 语义错误 表不存在,存在多个,或在leading或join中出现多次,均会报语义错误。 scanhint中的index不存在,会报语义错误。 另外,如果子查询提升后,同一层出现多个名称相同的表,且其中某个表需要被hint,hint会存在歧义,无法使用,需要为相同表增加别名规避。 hint重复或冲突 如果存在hint重复或冲突,只有第一个hint生效,其它hint均会失效,会给出提示。 hint重复是指,hint的方法及表名均相同。例如:nestloop(t1 t2) nestloop(t1 t2)。 hint冲突是指,table list一样的hint,存在不一样的hint,hint的冲突仅对于每一类hint方法检测冲突。 例如:nestloop (t1 t2) hashjoin (t1 t2),则后面与前面冲突,此时hashjoin的hint失效。注意:nestloop(t1 t2)和no mergejoin(t1 t2)不冲突。 leading hint中的多个表会进行拆解。例如:leading ((t1 t2 t3))会拆解成:leading((t1 t2)) leading(((t1 t2) t3)),此时如果存在leading((t2 t1)),则两者冲突,后面的会被丢弃。(例外:指定内外表的hint若与不指定内外表的hint重复,则始终丢弃不指定内外表的hint。) 子链接提升后hint失效 子链接提升后的hint失效,会给出提示。通常出现在子链接中存在多个表连接的场景。提升后,子链接中的多个表不再作为一个整体出现在join中。 列类型不支持重分布 对于skew hint来说,目的是为了进行重分布时的调优,所以当hint列的类型不支持重分布时,hint将无效。 hint未被使用 非等值join使用hashjoin hint或mergejoin hint 不包含索引的表使用indexscan hint或indexonlyscan hint 通常只有在索引列上使用过滤条件才会生成相应的索引路径,全表扫描将不会使用索引,因此使用indexscan hint或indexonlyscan hint将不会使用 indexonlyscan只有输出列仅包含索引列才会使用,否则指定时hint不会被使用 多个表存在等值连接时,仅尝试有等值连接条件的表的连接,此时没有关联条件的表之间的路径将不会生成,所以指定相应的leading,join,rows hint将不使用,例如:t1 t2 t3表join,t1和t2,t2和t3有等值连接条件,则t1和t3不会优先连接,leading(t1 t3)不会被使用。 生成stream计划时,如果表的分布列与join列相同,则不会生成redistribute的计划;如果不同,且另一表分布列与join列相同,只能生成redistribute的计划,不会生成broadcast的计划,指定相应的hint则不会被使用。 对于AGG重分布列的hint,hint未被使用的可能原因如下: 指定的分布键包含不支持重分布的数据类型。 执行计划中不需要重分布。 执行的分布键的序号有误。 对于使用grouping sets子句和cube子句的AP函数,window agg中的分布键,不支持hint。 指定Agg重分布列Hint,仅8.1.3.100及以上集群版本支持。 如果子链接未被提升,则blockname hint不会被使用。 对于skew hint,hint未被使用的可能原因如下: 计划中不需要进行重分布。 hint指定的列为包含分布键。 hint指定倾斜信息有误或不完整,如对于join优化未指定值。 倾斜优化的GUC参数处于关闭状态。 对于guc hint,hint未被使用的可能原因如下: 配置参数不存在。 配置参数不支持guc hint。 配置参数的值无效。 语句级别的guc hint没有被写在顶层查询中。 子查询级别的guc hint设置的配置参数不支持在子查询级别设置。 guc hint所在的子查询被提升。
  • 参数说明 global表示hint设置的配置参数在语句级别生效,不加global表示hint设置的配置参数在子查询级别生效,即仅在hint所在的子查询中生效,在该语句的其它子查询中不生效。 guc_name表示hint指定的配置参数的名称。 guc_value表示hint指定的配置参数的值。 如果hint设置的配置参数在语句级别生效,则该hint必须写在顶层查询中,而不能写在子查询中。对于UNION、INTERSECT、EXCEPT和MINUS语句,可以将在语句级别的guc hint写在参与集合运算的任意一个SELECT子句上,该guc hint设置的配置参数会在参与集合运算的每个SELECT子句上生效。 子查询提升时,该子查询上的所有guc hint会被丢弃。 如果一个配置参数既被语句级别的guc hint设置,又被子查询级别的guc hint设置,则子查询级别的guc hint在对应的子查询中生效,语句级别的guc hint在语句的其它子查询中生效。
  • 示例 对示例中原语句使用如下hint: 1 2 explain select /*+ no redistribute(store_sales store_returns item store) leading(((store_sales store_returns item store) customer)) */ i_product_name product_name ... 原计划中,(store_sales store_returns item store)和customer做join时,前者做了重分布,此hint表示禁止前者混合表做重分布,但仍然保持join顺序,则生成计划如下所示:
  • 建议 通常优化器会根据统计信息选择一组不倾斜的分布键进行数据重分布。当默认选择的分布键有倾斜时,可以手动指定重分布的列,避免数据倾斜。 在选择分布键的时候,通常要根据数据分布特征选取一组distinct值比较高的列作为分布列,这样可以保证重分布后,数据均匀的分布到各个DN。 在编写好hint后,可以通过explain verbose+SQL打印执行计划,查看指定的分布键是否有效,如果指定的分布键无效会有warning提示。
  • 建议 推荐使用两个表*的hint。对于两个表的采用*操作符的hint,只要两个表出现在join的两端,都会触发hint。例如:设置hint为rows(t1 t2 * 3),对于(t1 t3 t4)和(t2 t5 t6)join时,由于t1和t2出现在join的两端,所以其join的结果集也会应用该hint规则乘以3。 rows hint支持在单表、多表、function table及subquery scan table的结果集上指定hint。
  • 存储层数据倾斜 GaussDB (DWS)数据库中,数据分布存储在各个DN上,通过分布式执行提高查询的效率。但是,如果数据分布存在倾斜,则会导致分布式执行某些DN成为瓶颈,影响查询性能。这种情况通常是由于分布列选择不合理,可以通过调整分布列的方式解决。 例如下例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 explain performance select count(*) from inventory; 5 -- CS tore Scan on lmz.inventory dn_6001_6002 (actual time=0.444..83.127 rows=42000000 loops=1) dn_6003_6004 (actual time=0.512..63.554 rows=27000000 loops=1) dn_6005_6006 (actual time=0.722..99.033 rows=45000000 loops=1) dn_6007_6008 (actual time=0.529..100.379 rows=51000000 loops=1) dn_6009_6010 (actual time=0.382..71.341 rows=36000000 loops=1) dn_6011_6012 (actual time=0.547..100.274 rows=51000000 loops=1) dn_6013_6014 (actual time=0.596..118.289 rows=60000000 loops=1) dn_6015_6016 (actual time=1.057..132.346 rows=63000000 loops=1) dn_6017_6018 (actual time=0.940..110.310 rows=54000000 loops=1) dn_6019_6020 (actual time=0.231..41.198 rows=21000000 loops=1) dn_6021_6022 (actual time=0.927..114.538 rows=54000000 loops=1) dn_6023_6024 (actual time=0.637..118.385 rows=60000000 loops=1) dn_6025_6026 (actual time=0.288..32.240 rows=15000000 loops=1) dn_6027_6028 (actual time=0.566..118.096 rows=60000000 loops=1) dn_6029_6030 (actual time=0.423..82.913 rows=42000000 loops=1) dn_6031_6032 (actual time=0.395..78.103 rows=39000000 loops=1) dn_6033_6034 (actual time=0.376..51.052 rows=24000000 loops=1) dn_6035_6036 (actual time=0.569..79.463 rows=39000000 loops=1) 在performance信息中,可以看到inventory表各DN的scan行数,发现各DN的行数差距较大,最大的为63000000,最小的只有15000000,差了4倍。这个差距对于数据扫描的性能影响还可以接受,但如果上层有join算子,则影响较大。 通常,数据表在各DN上是hash分布的,因此分布列的选择很重要。通过table_skewness()来查看上述inventory表在各DN的数据分布倾斜,查询结果如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 select table_skewness('inventory'); table_skewness ------------------------------------------ ("dn_6015_6016 ",63000000,8.046%) ("dn_6013_6014 ",60000000,7.663%) ("dn_6023_6024 ",60000000,7.663%) ("dn_6027_6028 ",60000000,7.663%) ("dn_6017_6018 ",54000000,6.897%) ("dn_6021_6022 ",54000000,6.897%) ("dn_6007_6008 ",51000000,6.513%) ("dn_6011_6012 ",51000000,6.513%) ("dn_6005_6006 ",45000000,5.747%) ("dn_6001_6002 ",42000000,5.364%) ("dn_6029_6030 ",42000000,5.364%) ("dn_6031_6032 ",39000000,4.981%) ("dn_6035_6036 ",39000000,4.981%) ("dn_6009_6010 ",36000000,4.598%) ("dn_6003_6004 ",27000000,3.448%) ("dn_6033_6034 ",24000000,3.065%) ("dn_6019_6020 ",21000000,2.682%) ("dn_6025_6026 ",15000000,1.916%) (18 rows) 通过查询建表定义,可以发现,目前该表是以inv_date_sk作为分布列的,导致存在倾斜。通过查看各列的数据分布情况,改为inv_item_sk作为分布列,则倾斜情况分布如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 select table_skewness('inventory'); table_skewness ------------------------------------------ ("dn_6001_6002 ",43934200,5.611%) ("dn_6007_6008 ",43829420,5.598%) ("dn_6003_6004 ",43781960,5.592%) ("dn_6031_6032 ",43773880,5.591%) ("dn_6033_6034 ",43763280,5.589%) ("dn_6011_6012 ",43683600,5.579%) ("dn_6013_6014 ",43551660,5.562%) ("dn_6027_6028 ",43546340,5.561%) ("dn_6009_6010 ",43508700,5.557%) ("dn_6023_6024 ",43484540,5.554%) ("dn_6019_6020 ",43466800,5.551%) ("dn_6021_6022 ",43458500,5.550%) ("dn_6017_6018 ",43448040,5.549%) ("dn_6015_6016 ",43247700,5.523%) ("dn_6005_6006 ",43200240,5.517%) ("dn_6029_6030 ",43181360,5.515%) ("dn_6025_6026 ",43179700,5.515%) ("dn_6035_6036 ",42960080,5.487%) (18 rows) 数据分布倾斜的问题得到解决。 除了table_skewness()视图外,当前版本还提供了table_distribution函数和PGXC_GET_TABLE_SKEWNESS视图,可以更加高效的查询各表的数据倾斜情况。
  • 算子级调优介绍 一个查询语句要经过多个算子步骤才会输出最终的结果。由于个别算子耗时过长导致整体查询性能下降的情况比较常见。这些算子是整个查询的瓶颈算子。通用的优化手段是EXPLAIN ANALYZE/PERFORMANCE命令查看执行过程的瓶颈算子,然后进行针对性优化。 如下面的执行过程信息中,Hashagg算子的执行时间占总时间的:(51016-13535)/ 56476 ≈66%,此处Hashagg算子就是这个查询的瓶颈算子,在进行性能优化时应当优先考虑此算子的优化。
  • 统计信息调优介绍 GaussDB(DWS)是基于代价估算生成的最优执行计划。优化器需要根据ANALYZE收集的统计信息行数估算和代价估算,因此统计信息对优化器行数估算和代价估算起着至关重要的作用。通过ANALYZE收集全局统计信息,主要包括:pg_class表中的relpages和reltuples;pg_statistic表中的stadistinct、stanullfrac、stanumbersN、stavaluesN、histogram_bounds等。
  • 更多优化示例 示例1:修改基表为REPLICATION表,并且在过滤列上创建索引。 1 2 3 create table master_table (a int); create table sub_table(a int, b int); select a from master_table group by a having a in (select a from sub_table); 上述事例中存在一个相关性子查询,为了提升查询的性能,可以将sub_table修改为一个REPLICATION表,并且在字段a上创建一个index。
  • 不支持下推的函数 首先介绍函数的易变性。在GaussDB(DWS)中共分三种形态: IMMUTABLE 表示该函数在给出同样的参数值时总是返回同样的结果。 STABLE 表示该函数不能修改数据库,对相同参数值,在同一次表扫描里,该函数的返回值不变,但是返回值可能在不同SQL语句之间变化。 VOLATILE 表示该函数值可以在一次表扫描内改变,因此不会做任何优化。 函数易变性可以查询pg_proc的provolatile字段获得,i代表IMMUTABLE,s代表STABLE,v代表VOLATILE。另外,在pg_proc中的proshippable字段,取值范围为t/f/NULL,这个字段与provolatile字段一起用于描述函数是否下推。 如果函数的provolatile属性为i,则无论proshippable的值是否为t,则函数始终可以下推。 如果函数的provolatile属性为s或v,则仅当proshippable的值为t时,函数可以下推。 random如果出现CTE中,也不下推。因为这种场景下推可能出现结果错误。 对于用户自定义函数,可以在创建函数的时候指定provolatile和proshippable属性的值,详细请参考CREATE FUNCTION。 对于函数不能下推的场景: 如果是系统函数,建议根据业务等价替换这个函数。 如果是自定义函数,建议分析客户业务场景,看函数的provolatile和proshippable属性定义是否正确。
  • 语句下推介绍 目前,GaussDB(DWS)优化器在分布式框架下制定语句的执行策略时,有三种执行计划方式:生成下推语句计划、生成分布式执行计划、生成发送语句的分布式执行计划。 下推语句计划:指直接将查询语句从CN发送到DN进行执行,然后将执行结果返回给CN。 分布式执行计划:指CN对查询语句进行编译和优化,生成计划树,再将计划树发送给DN进行执行,并在执行完毕后返回结果到CN。 发送语句的分布式执行计划:上述两种方式都不可行时,将可下推的查询部分组成查询语句(多为基表扫描语句)下推到DN进行执行,获取中间结果到CN,然后在CN执行剩下的部分。 在发送语句的分布式执行计划策略中,要将大量中间结果从DN发送到CN,并且要在CN运行不能下推的部分语句,会导致CN成为性能瓶颈(带宽、存储、计算等)。在进行性能调优的时候,应尽量避免只能选择该策略的查询语句。 执行语句不能下推是因为语句中含有不支持下推的函数或者不支持下推的语法。一般都可以通过等价改写规避执行计划不能下推的问题。
  • 规格约束 告警字符串长度上限为2048。如果告警信息超过这个长度(例如存在大量未收集统计信息的超长表名,列名等信息)则不告警,只上报warning: WARNING, "Planner issue report is truncated, the rest of planner issues will be skipped" 如果query存在limit节点(即查询语句中包含limit),则不会上报limit节点以下的Operator级别的告警。 对于“数据倾斜”和“估算不准”两种类型告警,在某一个plan树结构下,只上报下层节点的告警,上层节点不再重复告警。这主要是因为这两种类型的告警可能是因为底层触发上层的。例如,如果在scan节点已经存在数据倾斜,那么在上层的hashagg等其他算子很可能也出现数据倾斜。
  • 审视和修改表定义 在分布式框架下,数据分布在各个DN上。一个或者几个DN的数据存在一块物理存储设备上,较好的表定义需要满足以下要求: 表数据均匀分布在各个DN上,以防止单个DN对应的存储设备空间不足造成集群有效容量下降。选择合适分布列,避免数据分布倾斜可以实现该点。 表Scan压力均匀分散在各个DN上,以避免单DN的Scan压力过大,形成Scan的单节点瓶颈。分布列不选择基表上等值filter中的列可以实现该点。 减少扫描数据量。通过分区的剪枝机制可以实现该点。 尽量减少随机IO。通过聚簇/局部聚簇可以实现该点。 尽量避免数据shuffle,减小网络压力。通过选择join-condition或者group by列为分布列可以最大程度的实现这点。 从上述描述来看表定义中最重要的一点是分布列的选择。创建表定义一般遵循图1所示流程。表定义在数据库设计阶段创建,在SQL调优过程中进行审视和修改。 图1 表定义流程 审视和修改表定义的具体操作方法,请参见基于表结构设计和调优提升GaussDB(DWS)查询性能。 父主题: SQL调优
  • 背景信息 ANALYZE语句可收集与数据库中表内容相关的统计信息,统计结果存储在系统表PG_STATISTIC中。查询优化器会使用这些统计数据,以生成最有效的执行计划。 建议在执行了大批量插入/删除操作后,例行对表或全库执行ANALYZE语句更新统计信息。目前默认收集统计信息的采样比例是30000行(即:guc参数default_statistics_target默认设置为100),如果表的总行数超过一定行数(大于1600000),建议设置guc参数default_statistics_target为-2,即按2%收集样本估算统计信息。 对于在批处理脚本或者存储过程中生成的中间表,也需要在完成数据生成之后显式的调用ANALYZE。 对于表中多个列有相关性且查询中有同时基于这些列的条件或分组操作的情况,可尝试收集多列统计信息,以便查询优化器可以更准确地估算行数,并生成更有效的执行计划。
  • 操作步骤 收集SQL中涉及到的所有表的统计信息。在数据库中,统计信息是规划器生成计划的源数据。没有收集统计信息或者统计信息陈旧会造成执行计划严重劣化,从而导致性能问题。从经验数据来看,10%左右性能问题是因为没有收集统计信息。具体请参见更新统计信息。 审视和修改表定义。 通常情况下,有些SQL语句可以通过查询重写转换成等价的,或特定场景下等价的语句。重写后的语句比原语句更简单,且可以简化某些执行步骤达到提升性能的目的。查询重写方法在各个数据库中基本是通用的。SQL语句改写规则介绍了几种常用的通过改写SQL进行调优的方法。 通过查看执行计划来查找原因。如果SQL长时间运行未结束,通过EXPLAIN命令查看执行计划,进行初步定位。如果SQL可以运行出来,则推荐使用EXPLAIN ANALYZE或EXPLAIN PERFORMANCE查看执行计划及实际运行情况,以便更精准地定位问题原因。有关执行计划的详细介绍请参见SQL执行计划。 针对EXPLAIN或EXPLAIN PERFORMANCE信息,定位SQL慢的具体原因以及改进措施,具体参见SQL调优进阶。 用户可以通过指定join顺序,join、stream、scan方法,指定结果行数,指定重分布过程中的倾斜信息等多个手段来进行执行计划的调优,以提升查询的性能。详细请参见使用Plan Hint进行调优。 为了保证数据库性能的持续优质,建议例行维护表和例行重建索引。 (可选)GaussDB(DWS)支持在资源富足的情况下,通过算子并行来提升性能。详细请参见SMP并行执行。
共100000条