华为云用户手册
-
代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至E CS 服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip AscendCloud-*.zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能代码包 |──scripts/ # 训练需要的启动脚本 # 自动生成数据目录结构 |── processed_for_input # 目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |── lora # lora微调输出权重 |── sft # 增量训练输出权重 |── pretrain # 预训练输出权重 # 以下目录结构,用户自己创建 |── training_data #原始数据目录,需要用户手动创建并上传,后续操作步骤中会提示 ├── train-00000-of-00001-a09b74b3ef9c3b56.parquet #预训练时预处理后的数据存放地址 ├── alpaca_gpt4_data.json #微调数据文件 |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── llama2-13b-hf |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── llama2-13b-hf
-
获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
-
模型软件包结构说明 AscendCloud-6.3.910代码包中AscendCloud-LLM代码包结构介绍如下,训练脚本以分类的方式集中在scripts文件夹中: |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹 |──qwen1.5 # Qwen1.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
-
本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/model目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具
-
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具。数据存放参考目录: /mnt/sfs_turbo/training_data |── train-00000-of-00001-a09b74b3ef9c3b56.parquet # 训练原始数据集 |── alpaca_gpt4_data.json # 微调数据文件
-
数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet,数据大小:24M左右。 SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。
-
创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统前提条件: 创建SFS Turbo文件系统前,确认已有可用的VPC。 需要由 IAM 用户设置SFS Turbo FullAccess权限,用于授权ModelArts云服务使用SFS Turbo。 详细操作指导请参考创建SFS Turbo文件系统。 图1 创建SFS Turbo 其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用 6.0~10.8TB ,以存储更多模型文件。 图2 SFS类型和容量选择
-
SFS Turbo模式下执行流程 SFS Turbo作为完全托管的共享文件存储系统,在本方案中作为主要的存储介质应用于训练作业。因此,后续需要准备的原始数据集、原始Hugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至ECS服务器后,可直接访问SFS Turbo。通过CloudShell远程登录ECS并将代码包上传至SFS Turbo中。 在表1获取基础镜像,随后通过准备镜像中的步骤执行代码包中llm_train/AscendSpeed/Dockerfile文件,构建新的镜像,并上传至SWR中。 新构建的镜像中,包含有ModelLink、MindSpeed、Megatron-LM等代码,在集群中启动容器即可通过/home/ma-user/AscendSpeed路径访问。 在ModelArts中创建训练作业如:预训练,执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank_0节点进行数据预处理,权重转换等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下)
-
创建OBS桶 ModelArts使用 对象存储服务 (Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。具体过程请参考创建OBS桶,例如桶名:standard-llama2-13b。 由于ModelArts创建训练作业时,需要将作业日志输出至OBS桶中,因此创建OBS桶为必选项。用户可通过OBS Browser+、obsutil等工具访问和管理OBS桶,将代码、模型文件、数据集等数据上传或下载进行备份。
-
ModelArts网络关联SFS Turbo OBS-SFS Turbo联动方案涉及VPC、SFS Turbo HPC型文件系统、OBS对象存储服务和ModelArts资源池。如果要使用训练作业挂载SFS Turbo功能,则需要配置ModelArts和SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 如果ModelArts网络关联SFS Turbo失败,则需要授权ModelArts云服务使用SFS Turbo,具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图5 ModelArts网络关联SFS Turbo
-
创建ECS服务器 弹性云服务器(Elastic Cloud Server,ECS)是由CPU、内存、操作系统、云硬盘组成的一种可随时获取、弹性可扩展的云服务器。具体过程请参考ECS文档购买一个Linux弹性云服务器。创建完成后,单击“远程登录”,可直接访问ECS服务器。 注意:CPU架构必须选择鲲鹏计算;镜像推荐选择EulerOS;ECS服务器确保可以访问公网,用于获取镜像和构建镜像。 图3 购买ECS
-
ECS服务器挂载SFS Turbo ECS服务器中手动挂载SFS Turbo步骤如下: 用户可通过CloudShell或SSH等方式登录并访问ECS服务器,进入ECS终端界面。创建/mnt/sfs_turbo目录作为挂载目录 ,命令为:mkdir /mnt/sfs_turbo。 单击用户创建的SFS Turbo,查看基本信息图4,找到并复制挂载命令。 在ECS的终端中粘贴SFS Turbo挂载命令,完成挂载。 挂载完成后,可通过后续的步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。 图4 SFS Turbo基本信息
-
操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
-
支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 3 llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 5 llama3-70b https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 6 Qwen qwen-7b https://huggingface.co/Qwen/Qwen-7B-Chat 7 qwen-14b https://huggingface.co/Qwen/Qwen-14B-Chat 8 qwen-72b https://huggingface.co/Qwen/Qwen-72B-Chat 9 Qwen1.5 qwen1.5-7b https://huggingface.co/Qwen/Qwen1.5-7B-Chat 10 qwen1.5-14b https://huggingface.co/Qwen/Qwen1.5-14B-Chat 11 qwen1.5-32b https://huggingface.co/Qwen/Qwen1.5-32B-Chat 12 qwen1.5-72b https://huggingface.co/Qwen/Qwen1.5-72B-Chat 13 Yi yi-6b https://huggingface.co/01-ai/Yi-6B-Chat 14 yi-34b https://huggingface.co/01-ai/Yi-34B-Chat 15 ChatGLMv3 glm3-6b https://huggingface.co/THUDM/chatglm3-6b 16 Baichuan2 baichuan2-13b https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 17 Qwen2 qwen2-0.5b https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 18 qwen2-1.5b https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 19 qwen2-7b https://huggingface.co/Qwen/Qwen2-7B-Instruct 20 qwen2-72b https://huggingface.co/Qwen/Qwen2-72B-Instruct 21 GLMv4 glm4-9b https://huggingface.co/THUDM/glm-4-9b-chat 说明: glm4-9b模型必须使用版本4b556ad4d70c38924cb8c120adbf21a0012de6ce 22 mistral mistral-7b https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 23 mixtral mixtral-8x7b https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 24 llama3.1 llama3.1-8b https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct 25 llama3.1-70b https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct 26 Qwen2.5 qwen2.5-0.5b https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct 27 qwen2.5-7b https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 28 qwen2.5-14b https://huggingface.co/Qwen/Qwen2.5-14B-Instruct 29 qwen2.5-32b https://huggingface.co/Qwen/Qwen2.5-32B-Instruct 30 qwen2.5-72b https://huggingface.co/Qwen/Qwen2.5-72B-Instruct 31 llama3.2 llama3.2-1b https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct 32 llama3.2-3b https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
-
方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 提示:本文档适用于OBS+SFS Turbo的数据存储方案,不适用于仅OBS存储方案。通过OBS对象存储服务(Object Storage Service)与SFS Turbo文件系统联动,可以实现灵活数据管理、高性能读取等。
-
文档更新内容 6.3.910版本相对于6.3.909版本新增如下内容: 文档中新增对Qwen2.5的适配(包括0.5B、7B, 14B, 32B, and 72B),支持sft、lora、预训练。 文档中新增对Llama3.2的适配(包括1B和3B),支持sft、lora、预训练。 代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中: MindSpeed的版本升级到commitID=4ea42a23 ModelLink的版本升级到commitID=8f50777 transformers版本升级到4.45.0 peft版本升级到0.12.0
-
查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。 吞吐量(tokens/s/p):global batch size*seq_length/(总卡数*elapsed time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图)
-
镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b 表2 模型镜像版本 模型 版本 CANN cann_8.0.rc3 驱动 23.0.6 PyTorch 2.1.0
-
步骤一 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
-
步骤三 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如ascendspeed。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 上传代码和数据到宿主机时使用的是root用户,此处需要执行如下命令统一文件属主为ma-user用户。 #统一文件属主为ma-user用户 sudo chown -R ma-user:ma-group ${container_work_dir} # ${container_work_dir}:/home/ma-user/ws 容器内挂载的目录 #例如:sudo chown -R ma-user:ma-group /home/ma-user/ws 使用ma-user用户安装依赖包。 #进入scripts目录换 cd /home/ma-user/ws/llm_train/AscendSpeed #执行安装命令 sh scripts/install.sh 在执行 scripts/install.sh 安装命令时,需要确认机器是否已连通网络。若无法连通网络,可使用离线安装的方式,具体参考离线训练安装包准备说明。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 脚本中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 为了避免因使用不同版本的 transformers 库进行训练和推理而导致冲突的问题,建议用户分别为训练和推理过程创建独立的容器环境。 通过运行install.sh脚本,还会git clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──MindSpeed/ # MindSpeed昇腾大模型加速库 |──ModelLink/ # ModelLink端到端的大语言模型方案 |——megatron/ # 注意:该文件夹从Megatron-LM中复制得到 |——...
-
Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet,数据大小:24M左右。 SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。
-
上传数据到指定目录 将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir}(例如/home/ma-user/ws ) |── training_data |── train-00000-of-00001-a09b74b3ef9c3b56.parquet # 训练原始数据集 |── alpaca_gpt4_data.json # 微调数据文件 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。
-
模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.910中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹 |──qwen1.5 # Qwen1.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
-
上传代码和权重文件到工作环境 使用root用户以SSH的方式登录Server。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。
-
获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
-
工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train #解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能代码包 |──scripts/ # 各模型训练需要的启动脚本,训练脚本以分类的方式集中在scripts文件夹中。 # 自动生成数据目录结构 |── processed_for_input #目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |── lora # lora微调输出权重 |── sft # 增量训练输出权重 |── pretrain # 预训练输出权重 |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data #原始数据目录,需要用户手动创建,后续操作步骤中会提示 |── train-00000-of-00001-a09b74b3ef9c3b56.parquet #原始数据文件 |── alpaca_gpt4_data.json #微调数据文件
-
训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 2 llama2-13b https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 3 llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 5 llama3-70b https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 6 Qwen qwen-7b https://huggingface.co/Qwen/Qwen-7B-Chat 7 qwen-14b https://huggingface.co/Qwen/Qwen-14B-Chat 8 qwen-72b https://huggingface.co/Qwen/Qwen-72B-Chat 9 Qwen1.5 qwen1.5-7b https://huggingface.co/Qwen/Qwen1.5-7B-Chat 10 qwen1.5-14b https://huggingface.co/Qwen/Qwen1.5-14B-Chat 11 qwen1.5-32b https://huggingface.co/Qwen/Qwen1.5-32B-Chat 12 qwen1.5-72b https://huggingface.co/Qwen/Qwen1.5-72B-Chat 13 Yi yi-6b https://huggingface.co/01-ai/Yi-6B-Chat 14 yi-34b https://huggingface.co/01-ai/Yi-34B-Chat 15 ChatGLMv3 glm3-6b https://huggingface.co/THUDM/chatglm3-6b 16 Baichuan2 baichuan2-13b https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 17 Qwen2 qwen2-0.5b https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 18 qwen2-1.5b https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 19 qwen2-7b https://huggingface.co/Qwen/Qwen2-7B-Instruct 20 qwen2-72b https://huggingface.co/Qwen/Qwen2-72B-Instruct 21 GLMv4 glm4-9b https://huggingface.co/THUDM/glm-4-9b-chat 说明: glm4-9b模型必须使用版本4b556ad4d70c38924cb8c120adbf21a0012de6ce 22 mistral mistral-7b https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 23 mixtral mixtral-8x7b https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 24 llama3.1 llama3.1-8b https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct 25 llama3.1-70b https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct 26 Qwen2.5 qwen2.5-0.5b https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct 27 qwen2.5-7b https://huggingface.co/Qwen/Qwen2.5-7B-Instruct 28 qwen2.5-14b https://huggingface.co/Qwen/Qwen2.5-14B-Instruct 29 qwen2.5-32b https://huggingface.co/Qwen/Qwen2.5-32B-Instruct 30 qwen2.5-72b https://huggingface.co/Qwen/Qwen2.5-72B-Instruct 31 llama3.2 llama3.2-1b https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct 32 llama3.2-3b https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
-
操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。
-
文档更新内容 6.3.910版本相对于6.3.909版本新增如下内容: 文档中新增对Qwen2.5的适配(包括0.5B、7B, 14B, 32B, and 72B),支持sft、lora、预训练。 文档中新增对Llama3.2的适配(包括1B和3B),支持sft、lora、预训练。 代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中: MindSpeed的版本升级到commitID=4ea42a23 ModelLink的版本升级到commitID=8f50777 transformers版本升级到4.45.0 peft版本升级到0.12.0
-
Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
共100000条
- 1
- ...
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- ...
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 708
- 709
- 710
- 711
- 712
- 713
- 714
- 715
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755
- 756
- 757
- 758
- 759
- 760
- 761
- 762
- 763
- 764
- 765
- 766
- 767
- 768
- 769
- 770
- 771
- 772
- 773
- 774
- 775
- 776
- 777
- 778
- 779
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809
- 810
- 811
- 812
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863
- 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871
- 872
- 873
- 874
- 875
- 876
- 877
- 878
- 879
- 880
- 881
- 882
- 883
- 884
- 885
- 886
- 887
- 888
- 889
- 890
- 891
- 892
- 893
- 894
- 895
- 896
- 897
- 898
- 899
- 900
- 901
- 902
- 903
- 904
- 905
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913
- 914
- 915
- 916
- 917
- 918
- 919
- 920
- 921
- 922
- 923
- 924
- 925
- 926
- 927
- 928
- 929
- 930
- 931
- 932
- 933
- 934
- 935
- 936
- 937
- 938
- 939
- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947
- 948
- 949
- 950
- 951
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960
- 961
- 962
- 963
- 964
- 965
- 966
- 967
- 968
- 969
- 970
- 971
- 972
- 973
- 974
- 975
- 976
- 977
- 978
- 979
- 980
- 981
- 982
- 983
- 984
- 985
- 986
- 987
- 988
- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996
- 997
- 998
- 999
- 1000
- 1001
- 1002
- 1003
- 1004
- 1005
- 1006
- 1007
- 1008
- 1009
- 1010
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033
- 1034
- 1035
- 1036
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043
- 1044
- 1045
- 1046
- 1047
- 1048
- 1049
- 1050
- 1051
- 1052
- 1053
- 1054
- 1055
- 1056
- 1057
- 1058
- 1059
- 1060
- 1061
- 1062
- 1063
- 1064
- 1065
- 1066
- 1067
- 1068
- 1069
- 1070
- 1071
- 1072
- 1073
- 1074
- 1075
- 1076
- 1077
- 1078
- 1079
- 1080
- 1081
- 1082
- 1083
- 1084
- 1085
- 1086
- 1087
- 1088
- 1089
- 1090
- 1091
- 1092
- 1093
- 1094
- 1095
- 1096
- 1097
- 1098
- 1099
- 1100
- 1101
- 1102
- 1103
- 1104
- 1105
- 1106
- 1107
- 1108
- 1109
- 1110
- 1111
- 1112
- 1113
- 1114
- 1115
- 1116
- 1117
- 1118
- 1119
- 1120
- 1121
- 1122
- 1123
- 1124
- 1125
- 1126
- 1127
- 1128
- 1129
- 1130
- 1131
- 1132
- 1133
- 1134
- 1135
- 1136
- 1137
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144
- 1145
- 1146
- 1147
- 1148
- 1149
- 1150
- 1151
- 1152
- 1153
- 1154
- 1155
- 1156
- 1157
- 1158
- 1159
- 1160
- 1161
- 1162
- 1163
- 1164
- 1165
- 1166
- 1167
- 1168
- 1169
- 1170
- 1171
- 1172
- 1173
- 1174
- 1175
- 1176
- 1177
- 1178
- 1179
- 1180
- 1181
- 1182
- 1183
- 1184
- 1185
- 1186
- 1187
- 1188
- 1189
- 1190
- 1191
- 1192
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1199
- 1200
- 1201
- 1202
- 1203
- 1204
- 1205
- 1206
- 1207
- 1208
- 1209
- 1210
- 1211
- 1212
- 1213
- 1214
- 1215
- 1216
- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223
- 1224
- 1225
- 1226
- 1227
- 1228
- 1229
- 1230
- 1231
- 1232
- 1233
- 1234
- 1235
- 1236
- 1237
- 1238
- 1239
- 1240
- 1241
- 1242
- 1243
- 1244
- 1245
- 1246
- 1247
- 1248
- 1249
- 1250
- 1251
- 1252
- 1253
- 1254
- 1255
- 1256
- 1257
- 1258
- 1259
- 1260
- 1261
- 1262
- 1263
- 1264
- 1265
- 1266
- 1267
- 1268
- 1269
- 1270
- 1271
- 1272
- 1273
- 1274
- 1275
- 1276
- 1277
- 1278
- 1279
- 1280
- 1281
- 1282
- 1283
- 1284
- 1285
- 1286
- 1287
- 1288
- 1289
- 1290
- 1291
- 1292
- 1293
- 1294
- 1295
- 1296
- 1297
- 1298
- 1299
- 1300
- 1301
- 1302
- 1303
- 1304
- 1305
- 1306
- 1307
- 1308
- 1309
- 1310
- 1311
- 1312
- 1313
- 1314
- 1315
- 1316
- 1317
- 1318
- 1319
- 1320
- 1321
- 1322
- 1323
- 1324
- 1325
- 1326
- 1327
- 1328
- 1329
- 1330
- 1331
- 1332
- 1333
- 1334
- 1335
- 1336
- 1337
- 1338
- 1339
- 1340
- 1341
- 1342
- 1343
- 1344
- 1345
- 1346
- 1347
- 1348
- 1349
- 1350
- 1351
- 1352
- 1353
- 1354
- 1355
- 1356
- 1357
- 1358
- 1359
- 1360
- 1361
- 1362
- 1363
- 1364
- 1365
- 1366
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372
- 1373
- 1374
- 1375
- 1376
- 1377
- 1378
- 1379
- 1380
- 1381
- 1382
- 1383
- 1384
- 1385
- 1386
- 1387
- 1388
- 1389
- 1390
- 1391
- 1392
- 1393
- 1394
- 1395
- 1396
- 1397
- 1398
- 1399
- 1400
- 1401
- 1402
- 1403
- 1404
- 1405
- 1406
- 1407
- 1408
- 1409
- 1410
- 1411
- 1412
- 1413
- 1414
- 1415
- 1416
- 1417
- 1418
- 1419
- 1420
- 1421
- 1422
- 1423
- 1424
- 1425
- 1426
- 1427
- 1428
- 1429
- 1430
- 1431
- 1432
- 1433
- 1434
- 1435
- 1436
- 1437
- 1438
- 1439
- 1440
- 1441
- 1442
- 1443
- 1444
- 1445
- 1446
- 1447
- 1448
- 1449
- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457
- 1458
- 1459
- 1460
- 1461
- 1462
- 1463
- 1464
- 1465
- 1466
- 1467
- 1468
- 1469
- 1470
- 1471
- 1472
- 1473
- 1474
- 1475
- 1476
- 1477
- 1478
- 1479
- 1480
- 1481
- 1482
- 1483
- 1484
- 1485
- 1486
- 1487
- 1488
- 1489
- 1490
- 1491
- 1492
- 1493
- 1494
- 1495
- 1496
- 1497
- 1498
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530
- 1531
- 1532
- 1533
- 1534
- 1535
- 1536
- 1537
- 1538
- 1539
- 1540
- 1541
- 1542
- 1543
- 1544
- 1545
- 1546
- 1547
- 1548
- 1549
- 1550
- 1551
- 1552
- 1553
- 1554
- 1555
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561
- 1562
- 1563
- 1564
- 1565
- 1566
- 1567
- 1568
- 1569
- 1570
- 1571
- 1572
- 1573
- 1574
- 1575
- 1576
- 1577
- 1578
- 1579
- 1580
- 1581
- 1582
- 1583
- 1584
- 1585
- 1586
- 1587
- 1588
- 1589
- 1590
- 1591
- 1592
- 1593
- 1594
- 1595
- 1596
- 1597
- 1598
- 1599
- 1600
- 1601
- 1602
- 1603
- 1604
- 1605
- 1606
- 1607
- 1608
- 1609
- 1610
- 1611
- 1612
- 1613
- 1614
- 1615
- 1616
- 1617
- 1618
- 1619
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626
- 1627
- 1628
- 1629
- 1630
- 1631
- 1632
- 1633
- 1634
- 1635
- 1636
- 1637
- 1638
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650
- 1651
- 1652
- 1653
- 1654
- 1655
- 1656
- 1657
- 1658
- 1659
- 1660
- 1661
- 1662
- 1663
- 1664
- 1665
- 1666
- 1667
- 1668
- 1669
- 1670
- 1671
- 1672
- 1673
- 1674
- 1675
- 1676
- 1677
- 1678
- 1679
- 1680
- 1681
- 1682
- 1683
- 1684
- 1685
- 1686
- 1687
- 1688
- 1689
- 1690
- 1691
- 1692
- 1693
- 1694
- 1695
- 1696
- 1697
- 1698
- 1699
- 1700
- 1701
- 1702
- 1703
- 1704
- 1705
- 1706
- 1707
- 1708
- 1709
- 1710
- 1711
- 1712
- 1713
- 1714
- 1715
- 1716
- 1717
- 1718
- 1719
- 1720
- 1721
- 1722
- 1723
- 1724
- 1725
- 1726
- 1727
- 1728
- 1729
- 1730
- 1731
- 1732
- 1733
- 1734
- 1735
- 1736
- 1737
- 1738
- 1739
- 1740
- 1741
- 1742
- 1743
- 1744
- 1745
- 1746
- 1747
- 1748
- 1749
- 1750
- 1751
- 1752
- 1753
- 1754
- 1755
- 1756
- 1757
- 1758
- 1759
- 1760
- 1761
- 1762
- 1763
- 1764
- 1765
- 1766
- 1767
- 1768
- 1769
- 1770
- 1771
- 1772
- 1773
- 1774
- 1775
- 1776
- 1777
- 1778
- 1779
- 1780
- 1781
- 1782
- 1783
- 1784
- 1785
- 1786
- 1787
- 1788
- 1789
- 1790
- 1791
- 1792
- 1793
- 1794
- 1795
- 1796
- 1797
- 1798
- 1799
- 1800
- 1801
- 1802
- 1803
- 1804
- 1805
- 1806
- 1807
- 1808
- 1809
- 1810
- 1811
- 1812
- 1813
- 1814
- 1815
- 1816
- 1817
- 1818
- 1819
- 1820
- 1821
- 1822
- 1823
- 1824
- 1825
- 1826
- 1827
- 1828
- 1829
- 1830
- 1831
- 1832
- 1833
- 1834
- 1835
- 1836
- 1837
- 1838
- 1839
- 1840
- 1841
- 1842
- 1843
- 1844
- 1845
- 1846
- 1847
- 1848
- 1849
- 1850
- 1851
- 1852
- 1853
- 1854
- 1855
- 1856
- 1857
- 1858
- 1859
- 1860
- 1861
- 1862
- 1863
- 1864
- 1865
- 1866
- 1867
- 1868
- 1869
- 1870
- 1871
- 1872
- 1873
- 1874
- 1875
- 1876
- 1877
- 1878
- 1879
- 1880
- 1881
- 1882
- 1883
- 1884
- 1885
- 1886
- 1887
- 1888
- 1889
- 1890
- 1891
- 1892
- 1893
- 1894
- 1895
- 1896
- 1897
- 1898
- 1899
- 1900
- 1901
- 1902
- 1903
- 1904
- 1905
- 1906
- 1907
- 1908
- 1909
- 1910
- 1911
- 1912
- 1913
- 1914
- 1915
- 1916
- 1917
- 1918
- 1919
- 1920
- 1921
- 1922
- 1923
- 1924
- 1925
- 1926
- 1927
- 1928
- 1929
- 1930
- 1931
- 1932
- 1933
- 1934
- 1935
- 1936
- 1937
- 1938
- 1939
- 1940
- 1941
- 1942
- 1943
- 1944
- 1945
- 1946
- 1947
- 1948
- 1949
- 1950
- 1951
- 1952
- 1953
- 1954
- 1955
- 1956
- 1957
- 1958
- 1959
- 1960
- 1961
- 1962
- 1963
- 1964
- 1965
- 1966
- 1967
- 1968
- 1969
- 1970
- 1971
- 1972
- 1973
- 1974
- 1975
- 1976
- 1977
- 1978
- 1979
- 1980
- 1981
- 1982
- 1983
- 1984
- 1985
- 1986
- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030
- 2031
- 2032
- 2033
- 2034
- 2035
- 2036
- 2037
- 2038
- 2039
- 2040
- 2041
- 2042
- 2043
- 2044
- 2045
- 2046
- 2047
- 2048
- 2049
- 2050
- 2051
- 2052
- 2053
- 2054
- 2055
- 2056
- 2057
- 2058
- 2059
- 2060
- 2061
- 2062
- 2063
- 2064
- 2065
- 2066
- 2067
- 2068
- 2069
- 2070
- 2071
- 2072
- 2073
- 2074
- 2075
- 2076
- 2077
- 2078
- 2079
- 2080
- 2081
- 2082
- 2083
- 2084
- 2085
- 2086
- 2087
- 2088
- 2089
- 2090
- 2091
- 2092
- 2093
- 2094
- 2095
- 2096
- 2097
- 2098
- 2099
- 2100
- 2101
- 2102
- 2103
- 2104
- 2105
- 2106
- 2107
- 2108
- 2109
- 2110
- 2111
- 2112
- 2113
- 2114
- 2115
- 2116
- 2117
- 2118
- 2119
- 2120
- 2121
- 2122
- 2123
- 2124
- 2125
- 2126
- 2127
- 2128
- 2129
- 2130
- 2131
- 2132
- 2133
- 2134
- 2135
- 2136
- 2137
- 2138
- 2139
- 2140
- 2141
- 2142
- 2143
- 2144
- 2145
- 2146
- 2147
- 2148
- 2149
- 2150
- 2151
- 2152
- 2153
- 2154
- 2155
- 2156
- 2157
- 2158
- 2159
- 2160
- 2161
- 2162
- 2163
- 2164
- 2165
- 2166
- 2167
- 2168
- 2169
- 2170
- 2171
- 2172
- 2173
- 2174
- 2175
- 2176
- 2177
- 2178
- 2179
- 2180
- 2181
- 2182
- 2183
- 2184
- 2185
- 2186
- 2187
- 2188
- 2189
- 2190
- 2191
- 2192
- 2193
- 2194
- 2195
- 2196
- 2197
- 2198
- 2199
- 2200
- 2201
- 2202
- 2203
- 2204
- 2205
- 2206
- 2207
- 2208
- 2209
- 2210
- 2211
- 2212
- 2213
- 2214
- 2215
- 2216
- 2217
- 2218
- 2219
- 2220
- 2221
- 2222
- 2223
- 2224
- 2225
- 2226
- 2227
- 2228
- 2229
- 2230
- 2231
- 2232
- 2233
- 2234
- 2235
- 2236
- 2237
- 2238
- 2239
- 2240
- 2241
- 2242
- 2243
- 2244
- 2245
- 2246
- 2247
- 2248
- 2249
- 2250
- 2251
- 2252
- 2253
- 2254
- 2255
- 2256
- 2257
- 2258
- 2259
- 2260
- 2261
- 2262
- 2263
- 2264
- 2265
- 2266
- 2267
- 2268
- 2269
- 2270
- 2271
- 2272
- 2273
- 2274
- 2275
- 2276
- 2277
- 2278
- 2279
- 2280
- 2281
- 2282
- 2283
- 2284
- 2285
- 2286
- 2287
- 2288
- 2289
- 2290
- 2291
- 2292
- 2293
- 2294
- 2295
- 2296
- 2297
- 2298
- 2299
- 2300
- 2301
- 2302
- 2303
- 2304
- 2305
- 2306
- 2307
- 2308
- 2309
- 2310
- 2311
- 2312
- 2313
- 2314
- 2315
- 2316
- 2317
- 2318
- 2319
- 2320
- 2321
- 2322
- 2323
- 2324
- 2325
- 2326
- 2327
- 2328
- 2329
- 2330
- 2331
- 2332
- 2333
- 2334
- 2335
- 2336
- 2337
- 2338
- 2339
- 2340
- 2341
- 2342
- 2343
- 2344
- 2345
- 2346
- 2347
- 2348
- 2349
- 2350
- 2351
- 2352
- 2353
- 2354
- 2355
- 2356
- 2357
- 2358
- 2359
- 2360
- 2361
- 2362
- 2363
- 2364
- 2365
- 2366
- 2367
- 2368
- 2369
- 2370
- 2371
- 2372
- 2373
- 2374
- 2375
- 2376
- 2377
- 2378
- 2379
- 2380
- 2381
- 2382
- 2383
- 2384
- 2385
- 2386
- 2387
- 2388
- 2389
- 2390
- 2391
- 2392
- 2393
- 2394
- 2395
- 2396
- 2397
- 2398
- 2399
- 2400
- 2401
- 2402
- 2403
- 2404
- 2405
- 2406
- 2407
- 2408
- 2409
- 2410
- 2411
- 2412
- 2413
- 2414
- 2415
- 2416
- 2417
- 2418
- 2419
- 2420
- 2421
- 2422
- 2423
- 2424
- 2425
- 2426
- 2427
- 2428
- 2429
- 2430
- 2431
- 2432
- 2433
- 2434
- 2435
- 2436
- 2437
- 2438
- 2439
- 2440
- 2441
- 2442
- 2443
- 2444
- 2445
- 2446
- 2447
- 2448
- 2449
- 2450
- 2451
- 2452
- 2453
- 2454
- 2455
- 2456
- 2457
- 2458
- 2459
- 2460
- 2461
- 2462
- 2463
- 2464
- 2465
- 2466
- 2467
- 2468
- 2469
- 2470
- 2471
- 2472
- 2473
- 2474
- 2475
- 2476
- 2477
- 2478
- 2479
- 2480
- 2481
- 2482
- 2483
- 2484
- 2485
- 2486
- 2487
- 2488
- 2489
- 2490
- 2491
- 2492
- 2493
- 2494
- 2495
- 2496
- 2497
- 2498
- 2499
- 2500
- 2501
- 2502
- 2503
- 2504
- 2505
- 2506
- 2507
- 2508
- 2509
- 2510
- 2511
- 2512
- 2513
- 2514
- 2515
- 2516
- 2517
- 2518
- 2519
- 2520
- 2521
- 2522
- 2523
- 2524
- 2525
- 2526
- 2527
- 2528
- 2529
- 2530
- 2531
- 2532
- 2533
- 2534
- 2535
- 2536
- 2537
- 2538
- 2539
- 2540
- 2541
- 2542
- 2543
- 2544
- 2545
- 2546
- 2547
- 2548
- 2549
- 2550
- 2551
- 2552
- 2553
- 2554
- 2555
- 2556
- 2557
- 2558
- 2559
- 2560
- 2561
- 2562
- 2563
- 2564
- 2565
- 2566
- 2567
- 2568
- 2569
- 2570
- 2571
- 2572
- 2573
- 2574
- 2575
- 2576
- 2577
- 2578
- 2579
- 2580
- 2581
- 2582
- 2583
- 2584
- 2585
- 2586
- 2587
- 2588
- 2589
- 2590
- 2591
- 2592
- 2593
- 2594
- 2595
- 2596
- 2597
- 2598
- 2599
- 2600
- 2601
- 2602
- 2603
- 2604
- 2605
- 2606
- 2607
- 2608
- 2609
- 2610
- 2611
- 2612
- 2613
- 2614
- 2615
- 2616
- 2617
- 2618
- 2619
- 2620
- 2621
- 2622
- 2623
- 2624
- 2625
- 2626
- 2627
- 2628
- 2629
- 2630
- 2631
- 2632
- 2633
- 2634
- 2635
- 2636
- 2637
- 2638
- 2639
- 2640
- 2641
- 2642
- 2643
- 2644
- 2645
- 2646
- 2647
- 2648
- 2649
- 2650
- 2651
- 2652
- 2653
- 2654
- 2655
- 2656
- 2657
- 2658
- 2659
- 2660
- 2661
- 2662
- 2663
- 2664
- 2665
- 2666
- 2667
- 2668
- 2669
- 2670
- 2671
- 2672
- 2673
- 2674
- 2675
- 2676
- 2677
- 2678
- 2679
- 2680
- 2681
- 2682
- 2683
- 2684
- 2685
- 2686
- 2687
- 2688
- 2689
- 2690
- 2691
- 2692
- 2693
- 2694
- 2695
- 2696
- 2697
- 2698
- 2699
- 2700
- 2701
- 2702
- 2703
- 2704
- 2705
- 2706
- 2707
- 2708
- 2709
- 2710
- 2711
- 2712
- 2713
- 2714
- 2715
- 2716
- 2717
- 2718
- 2719
- 2720
- 2721
- 2722
- 2723
- 2724
- 2725
- 2726
- 2727
- 2728
- 2729
- 2730
- 2731
- 2732
- 2733
- 2734
- 2735
- 2736
- 2737
- 2738
- 2739
- 2740
- 2741
- 2742
- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749
- 2750
- 2751
- 2752
- 2753
- 2754
- 2755
- 2756
- 2757
- 2758
- 2759
- 2760
- 2761
- 2762
- 2763
- 2764
- 2765
- 2766
- 2767
- 2768
- 2769
- 2770
- 2771
- 2772
- 2773
- 2774
- 2775
- 2776
- 2777
- 2778
- 2779
- 2780
- 2781
- 2782
- 2783
- 2784
- 2785
- 2786
- 2787
- 2788
- 2789
- 2790
- 2791
- 2792
- 2793
- 2794
- 2795
- 2796
- 2797
- 2798
- 2799
- 2800
- 2801
- 2802
- 2803
- 2804
- 2805
- 2806
- 2807
- 2808
- 2809
- 2810
- 2811
- 2812
- 2813
- 2814
- 2815
- 2816
- 2817
- 2818
- 2819
- 2820
- 2821
- 2822
- 2823
- 2824
- 2825
- 2826
- 2827
- 2828
- 2829
- 2830
- 2831
- 2832
- 2833
- 2834
- 2835
- 2836
- 2837
- 2838
- 2839
- 2840
- 2841
- 2842
- 2843
- 2844
- 2845
- 2846
- 2847
- 2848
- 2849
- 2850
- 2851
- 2852
- 2853
- 2854
- 2855
- 2856
- 2857
- 2858
- 2859
- 2860
- 2861
- 2862
- 2863
- 2864
- 2865
- 2866
- 2867
- 2868
- 2869
- 2870
- 2871
- 2872
- 2873
- 2874
- 2875
- 2876
- 2877
- 2878
- 2879
- 2880
- 2881
- 2882
- 2883
- 2884
- 2885
- 2886
- 2887
- 2888
- 2889
- 2890
- 2891
- 2892
- 2893
- 2894
- 2895
- 2896
- 2897
- 2898
- 2899
- 2900
- 2901
- 2902
- 2903
- 2904
- 2905
- 2906
- 2907
- 2908
- 2909
- 2910
- 2911
- 2912
- 2913
- 2914
- 2915
- 2916
- 2917
- 2918
- 2919
- 2920
- 2921
- 2922
- 2923
- 2924
- 2925
- 2926
- 2927
- 2928
- 2929
- 2930
- 2931
- 2932
- 2933
- 2934
- 2935
- 2936
- 2937
- 2938
- 2939
- 2940
- 2941
- 2942
- 2943
- 2944
- 2945
- 2946
- 2947
- 2948
- 2949
- 2950
- 2951
- 2952
- 2953
- 2954
- 2955
- 2956
- 2957
- 2958
- 2959
- 2960
- 2961
- 2962
- 2963
- 2964
- 2965
- 2966
- 2967
- 2968
- 2969
- 2970
- 2971
- 2972
- 2973
- 2974
- 2975
- 2976
- 2977
- 2978
- 2979
- 2980
- 2981
- 2982
- 2983
- 2984
- 2985
- 2986
- 2987
- 2988
- 2989
- 2990
- 2991
- 2992
- 2993
- 2994
- 2995
- 2996
- 2997
- 2998
- 2999
- 3000
- 3001
- 3002
- 3003
- 3004
- 3005
- 3006
- 3007
- 3008
- 3009
- 3010
- 3011
- 3012
- 3013
- 3014
- 3015
- 3016
- 3017
- 3018
- 3019
- 3020
- 3021
- 3022
- 3023
- 3024
- 3025
- 3026
- 3027
- 3028
- 3029
- 3030
- 3031
- 3032
- 3033
- 3034
- 3035
- 3036
- 3037
- 3038
- 3039
- 3040
- 3041
- 3042
- 3043
- 3044
- 3045
- 3046
- 3047
- 3048
- 3049
- 3050
- 3051
- 3052
- 3053
- 3054
- 3055
- 3056
- 3057
- 3058
- 3059
- 3060
- 3061
- 3062
- 3063
- 3064
- 3065
- 3066
- 3067
- 3068
- 3069
- 3070
- 3071
- 3072
- 3073
- 3074
- 3075
- 3076
- 3077
- 3078
- 3079
- 3080
- 3081
- 3082
- 3083
- 3084
- 3085
- 3086
- 3087
- 3088
- 3089
- 3090
- 3091
- 3092
- 3093
- 3094
- 3095
- 3096
- 3097
- 3098
- 3099
- 3100
- 3101
- 3102
- 3103
- 3104
- 3105
- 3106
- 3107
- 3108
- 3109
- 3110
- 3111
- 3112
- 3113
- 3114
- 3115
- 3116
- 3117
- 3118
- 3119
- 3120
- 3121
- 3122
- 3123
- 3124
- 3125
- 3126
- 3127
- 3128
- 3129
- 3130
- 3131
- 3132
- 3133
- 3134
- 3135
- 3136
- 3137
- 3138
- 3139
- 3140
- 3141
- 3142
- 3143
- 3144
- 3145
- 3146
- 3147
- 3148
- 3149
- 3150
- 3151
- 3152
- 3153
- 3154
- 3155
- 3156
- 3157
- 3158
- 3159
- 3160
- 3161
- 3162
- 3163
- 3164
- 3165
- 3166
- 3167
- 3168
- 3169
- 3170
- 3171
- 3172
- 3173
- 3174
- 3175
- 3176
- 3177
- 3178
- 3179
- 3180
- 3181
- 3182
- 3183
- 3184
- 3185
- 3186
- 3187
- 3188
- 3189
- 3190
- 3191
- 3192
- 3193
- 3194
- 3195
- 3196
- 3197
- 3198
- 3199
- 3200
- 3201
- 3202
- 3203
- 3204
- 3205
- 3206
- 3207
- 3208
- 3209
- 3210
- 3211
- 3212
- 3213
- 3214
- 3215
- 3216
- 3217
- 3218
- 3219
- 3220
- 3221
- 3222
- 3223
- 3224
- 3225
- 3226
- 3227
- 3228
- 3229
- 3230
- 3231
- 3232
- 3233
- 3234
- 3235
- 3236
- 3237
- 3238
- 3239
- 3240
- 3241
- 3242
- 3243
- 3244
- 3245
- 3246
- 3247
- 3248
- 3249
- 3250
- 3251
- 3252
- 3253
- 3254
- 3255
- 3256
- 3257
- 3258
- 3259
- 3260
- 3261
- 3262
- 3263
- 3264
- 3265
- 3266
- 3267
- 3268
- 3269
- 3270
- 3271
- 3272
- 3273
- 3274
- 3275
- 3276
- 3277
- 3278
- 3279
- 3280
- 3281
- 3282
- 3283
- 3284
- 3285
- 3286
- 3287
- 3288
- 3289
- 3290
- 3291
- 3292
- 3293
- 3294
- 3295
- 3296
- 3297
- 3298
- 3299
- 3300
- 3301
- 3302
- 3303
- 3304
- 3305
- 3306
- 3307
- 3308
- 3309
- 3310
- 3311
- 3312
- 3313
- 3314
- 3315
- 3316
- 3317
- 3318
- 3319
- 3320
- 3321
- 3322
- 3323
- 3324
- 3325
- 3326
- 3327
- 3328
- 3329
- 3330
- 3331
- 3332
- 3333
- 3333
推荐文章