检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志 问题现象 用户通过OBS导入模型时,选择使用基础镜像,用户自己编写了部分推理代码实现自己的推理逻辑,出现故障后希望通过故障日志排查定位故障原因,但是通过logger打印日志无法在“在线服务”的日志中查看到部分内容。
(可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。本文将介绍如何配置镜像预热功能。 操作步骤 在ModelArts控制台左侧导航栏中找到“资源管理 > AI专属资源池
场景介绍及环境准备 场景介绍 DiT(Diffusion Transformers)模型是一种将Transformer架构引入扩散模型的新方法。传统的扩散模型通常使用U-Net架构,而DiT模型则用Transformer替代了U-Net,处理图像生成和去噪等任务。核心思想是通过T
TensorFlow-1.8作业连接OBS时反复出现提示错误 问题现象 基于TensorFlow-1.8启动训练作业,并在代码中使用“tf.gfile”模块连接OBS,启动训练作业后会频繁打印如下日志信息: Connection has been released. Continuing
自定义镜像导入配置运行时依赖无效 问题现象 通过API接口选择自定义镜像导入创建模型,配置了运行时依赖,没有正常安装pip依赖包。 原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件
msprobe精度分析工具使用指导 msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,其通过采集和对比标杆(GPU/CPU)环境和昇腾环境上运行训练时的差异点来判断问题所在,主要包括精度预检、精度比对和梯度监控等功能。更多内容请参考msprobe工具介绍。
通过自定义镜像创建模型失败 问题现象 通过用户自定义镜像创建模型失败。 原因分析 可能原因如下: 导入模型使用的镜像地址不合法或实际镜像不存在 用户给ModelArts的委托中没有SWR相关操作权限 用户为子账号,没有主账号SWR的权限 使用的是非自己账号的镜像 使用的镜像为公开镜像
同步数据集 功能介绍 从数据集输入位置同步数据至数据集,包含样本及标注信息。文本类数据集不支持此操作。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v
Gallery仓库的存储空间。 在资产详情页,选择“设置”页签。 在“删除资产”处,单击“删除”按钮,确认后资产将被删除。 删除操作不可撤销,执行此操作后该资产及相关文件将被永久删除,请谨慎操作。 已被订阅的资产不可用删除。 父主题: 发布和管理AI Gallery模型
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模
您能创建的ModelArts资源的数量与配额有关系,具体请参见服务配额。 更详细的限制请参见具体API的说明。 基本概念 账号 用户注册时的账号,账号对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而
线下容器镜像构建及调试 镜像构建 导出conda环境 首先拉起线下的容器镜像: # run on terminal docker run -ti ${your_image:tag} 在容器中输入如下命令,得到pytorch.tar.gz: # run on container #
查询训练日志 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式一:根据指定的job_id查询。 from modelarts.session import Session from
日志提示“no socket interface found” 问题现象 在pytorch镜像运行分布式作业时,设置NCCL日志级别,代码如下: import os os.environ["NCCL_DEBUG"] = "INFO" 会出现如下错误: job0879f61e-jo
moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 问题现象 使用MoXing训练模型,“global_step”放在Adam名称范围下,而非MoXing代码中没有Adam名称范围,如图1所示。其中1为
批量服务输入/输出obs目录不存在或者权限不足 问题现象 输入输出目录不存在,报如下错误 "error_code": "ModelArts.3551", "error_msg": "OBS path xxxx does not exist." 当访问目录权限不足时,报如下错误 "error_code":
通过OBS创建模型时,构建日志中提示pip下载包失败 问题现象 通过OBS创建模型构建失败,查看构建日志,提示pip下载包失败。如下载numpy 1.16版本失败。 原因分析 一般下载包失败时,可能有如下几个原因: pip源中不存在该包,当前默认pip源为pypi.org中的包,请在pypi
查询训练作业的运行指标 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式一:根据指定的job_id查询。 from modelarts.session import Session
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4