检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
过程中,通过数据脱敏、隐私计算等技术手段识别并保护敏感数据,有效防止隐私泄露,保障个人隐私数据安全。 内容安全:通过预训练和强化学习价值观提示(prompt),构建正向的意识形态。通过内容审核模块过滤违法及违背社会道德的有害信息。 模型安全:通过模型动态混淆技术,使模型在运行过程
的对话和交流。 通用文本(文本补全)(/text/completions) Java、Python、Go、.NET、NodeJs 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。
选择适合的服务与产品,轻松实现模型与应用的开发。 公测 产品介绍 2 盘古大模型「应用百宝箱」上线 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,首批支持14个开箱即用的大模型应用。用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 公测 体验盘古驱动的应用百宝箱
password authentication or AK/SK authentication. # sdk.iam.url= sdk.iam.domain= sdk.iam.user= sdk.iam.password= sdk.iam.project= ## Pangu # Examples:
训练数据集PD1 / 15 15 750GB 条数:用户指定每个数据集需要提供的条数;如果某个数据集的条数不满足用户需求,则提示用户重新输入,避免用户无感配置失败。 条数:不提供配比,默认全都选上。 表2 配置条数 配置条数 数据集大小上限500GB 第一阶段 第二阶段 - 数据集 原始大小
学习率(learning_rate) 0~1 1e-6~5e-4 学习率是在梯度下降的过程中更新权重时的超参数,过高会导致模型在最优解附近震荡,甚至跳过最优解,无法收敛,过低则会导致模型收敛速度过慢。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参数规模很大,可以使用较小的学习率,反之可以使用较大的学习率。
\"end\": \"2024-05-08 09:00\", \"meetingRoom\": \"A01\"}" 工具返回:available - 步骤2: 思考: A01会议室在2024年5月8日8点到9点是空闲的,可以预定。现在为您预定。 行动:使用工
K3S下载:https://github.com/k3s-io/k3s/releases/tag/v1.21.12%2Bk3s1 按照对应cpu架构下载二进制文件以及air-gap镜像。 npu驱动和固件安装。 执行命令npu-smi info查看驱动是否已安装。如果有回显npu卡信息,说明驱动已安装。 详情请参见昇腾官方文档。
数据,以此提升数据质量。一个比较常见的方法是,将微调数据以及数据评估标准输入给模型,让模型来评估数据的优劣。 人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来清洗数据。 父主题: 典型训练问题和优化策略
password authentication or AK/SK authentication. # sdk.iam.url= sdk.iam.domain= sdk.iam.user= sdk.iam.password= sdk.iam.project= ## Pangu # Examples:
内容","target":"target内容"},每一段需要准确完整的语义,符合主流价值观,并且文本中不能存在异常字符、分行异常等影响模型训练的问题。问题和答案需要匹配,且不能有空值。 文件类型为CSV:每一行代表一个问答对,确保每个问题和答案的数据都以逗号分隔,每行的数据完整且
统计模型调用量 模型调用成功后,有两种方式可以查看模型的调用量。 通过“服务管理”功能查看调用量:查看具体某个模型的调用总量、调用成功量、调用失败量,且可按时间进行筛选。 通过“运营面板”功能查看调用量:查看全部模型访问总数、模型回复时的响应时长、兜底回复比例以及输入/输出token信息。
向ToolRetriever中添加工具: # 添加工具 css_tool_retriever.add_tools(tool_list) 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。 从ToolRetriever中查找工具: # 查找工具 result = css_tool_retriever
向ToolRetriever中添加工具: // 添加工具 cssToolRetriever.addTools(toolList); 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。 从ToolRetriever中查找工具: // 查找工具 List<Tool> result =
即创建”。 创建成功后,可在“模型部署 > 边缘部署”,查看边缘部署列表。 单击“服务名称”可进入服务详情界面。 如果服务部署状态为“部署失败”,可单击服务操作列的“启动”按钮,重新部署。 父主题: 部署为边缘服务
7、N2模型为1,N4模型为0.85 max_tokens 否 Integer 生成文本的最大token数量。 输入的文本加上生成的文本总量不能超过模型所能处理的最大长度。 最小值:1 最大值:不同模型支持的token长度,请参见《产品介绍》“模型规格 > 模型基础信息”章节。 缺
\"BETWEEN\",\"NOT-BETWEEN\",\"IN\",\"NOT-IN\",\"NULL\",\"NOT-NULL\",\"CONTAIN\",\"GREATER-THAN-OR-EQUAL-TO\"]。\n3.order的取值要限定在[\"ASC\",\"DESC\"]。\n4
的数据都以逗号分隔,每行的数据完整且格式正确 有监督单轮,带人设,JSONL格式 编码格式为UTF-8。 每一行表示一段文本,system不能为空,形式为{"system":"system内容","context":"context内容","target":"target内容"}
生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样; 输出格式:口播如下:
服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。 SDK运行报错 java.lang.N