检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也可以利用外部web搜索引擎。
提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人工客服,可以处理更多的客户咨询,且响应速度快;降低运营成本:企业可以通过智能客服处理大部分的常规问题,将人工客服释放出来处理更复杂、更个性化的客户需求;个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好
人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题: 大模型微调训练类问题
除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。
应用提示词生成面试题目 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 提示词应用示例
针对文本和图片类数据集,平台还提供AI预标注功能,利用盘古大模型的智能能力,显著降低人工标注的工作量和成本,从而提高标注效率。 数据评估:平台支持对处理后的数据进行质量评估,生成详细的质量评估报告。
例如,在针对通用客服问答的场景中,样本量少且任务场景广泛,选择LoRA微调既能节省资源,又能获得较好的效果。 微调方式选择建议: 若项目中数据量有限或任务场景较为广泛,可以选择LoRA微调以快速部署并保持较高适用性。
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
AI预标注功能通过自动化的方式为数据集生成初步的标签,用户可以在此基础上进行人工审核和修正,从而大幅度减少人工标注的工作量和时间成本。此外,AI预标注不仅提高了标注效率,还能减少人为错误,提高标注的一致性和准确性。
Self-instruct Self-instruct是一种将预训练语言模型与指令对齐的方法,允许模型自主生成数据,而不需要大量的人工标注。 父主题: 基础知识
产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,助力您在不同领域实现创新,加速业务智能化升级。
来源二:基于人工泛化的真实业务场景数据。 来源三:基于简单规则槽位泛化的真实业务场景数据。示例如下: 原始问题: 科技行业公司的平均利润和市值是多少? 识别原始问题中的槽位: 科技行业公司的[metric]利润和市值是多少? 采用简单的逻辑规则进行替换,获取更多数据。
对于使用AI进行预标注的视频Caption任务可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。
数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。
对于使用AI进行预标注的图片Caption任务可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。
不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。