检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。
管理数据集版本 数据标注完成后,您可以发布成多个版本对数据集进行管理。针对已发布生产的数据集版本,您可以通过查看数据集演进过程、设置当前版本、删除版本等操作,对数据集进行管理。数据集版本的相关说明,请参见关于数据集版本。 发布为新版本的说明,请参见发布数据集。 进入数据集版本管理页面
见评估应用。 操作步骤 在“应用开发>部署”页面完成模板评估后,单击“下一步”,进入“创建模板>部署”页面直接发布模板,页面显示“恭喜您,已发布成功”。 图1 部署模板 发布模板后,在“应用开发>部署”页面,您可以进行如下操作。 “评估”:单击“评估”,继续上传测试图片评估模板。
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预
单击“开始训练”。服务进入“应用开发>评估”页面,开始训练模型。模型训练完成后,可在“应用开发>评估”页面评估分类器和模板,详情请见评估应用。 删除模板 如果已创建的模板应用不再使用,您可以删除模板释放资源。 在“应用开发>训练分类器”页面,选择模板,单击操作列的“删除”,弹出“确认删除”对话框,单击“确认”,删除模板。
业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。 已在文字识别套件控制台选择“通用单模板工作流”新建应用,详情请见新建应用。 提前准备待识别的图片,图片要求请见图片要求。
上传图片后,右侧会显示模板识别结果,包括“模板ID”、“模板名”、“置信度”。 上传图片后,您可以核对识别结果是否正确。 如果不正确,单击“上一步”,对当前模板进行修改。 如果识别结果正确,可对模板作进一步评估,详情请见评估模板。 评估模板 通过上传测试图片,在线评估模板识别并提取结构化文字的能力。 首先
在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明 服务名称 待部署的服务名称,单击可修改服务默认服务名称。 描述 待部署服务的简要说明。 资源池 用于服务部署的资源池和资源类型,可选“公共资源池”和“专属资源池”。 “公共资源
在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明 服务名称 待部署的服务名称,单击可修改服务默认服务名称。 描述 待部署服务的简要说明。 资源池 用于服务部署的资源池和资源类型,可选“公共资源池”和“专属资源池”。 “公共资源
在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明 服务名称 待部署的服务名称,单击可修改服务默认服务名称。 描述 待部署服务的简要说明。 资源池 用于服务部署的资源池和资源类型,可选“公共资源池”和“专属资源池”。 “公共资源
不支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类。 针对已标注数据,文本分类的标
单击左上角的“文件”,选择“另存为”。 “编码”选择“UTF-8”格式。 以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未
、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数据量的10%,用于测试模型,其余90%无需标注。
的“进入套件”。 进入文字识别套件控制台。 在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页,默认进入“应用资产”页面,查看应用资产。 您也可以单击“应用开发”,切换至“应用开发”页面,查看应用开发配置。
单击左上角的“文件”,选择“另存为”。 “编码”选择“UTF-8”格式。 以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工
、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个商品标签准备200个以上的数据。 针对未
见评估应用。 操作步骤 在“应用开发>部署”页面完成模板评估后,单击“下一步”,进入“创建模板>部署”页面直接发布模板,页面显示“恭喜您,已发布成功”。 图1 部署模板 发布模板后,在“应用开发>部署”页面,您可以进行如下操作。 “评估”:单击“评估”,继续上传测试图片评估模板。
西班牙语、葡萄牙语、阿拉伯语等。暂不支持对同一文本中含多语种的文本进行分类训练。 针对未标注数据,将待标注的内容放在一个文本文件内。 针对已标注数据,文本分类的标注对象和标签在一个文本文件内,标注对象与标签之间,采用Tab键分隔,多个标签之间采用英文逗号分隔。 例如,文本文件的内
勾选设备处于“在线”状态的设备,然后单击技能名称右侧的“开始安装”,就开始安装技能。 设备列表的进度列会显示安装技能的进度,安装完成后,会显示“已安装”。 图1 服务部署 调试/部署 此功能暂未开放,敬请期待。 后续步骤 安装技能至设备后,您可以查看应用详情。 父主题: HiLens安全帽检测技能