检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 开发盘古大模型提示词工程
设置背景及人设 背景: 模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可
如何判断任务场景应通过调整提示词还是场景微调解决 在选择是否通过调整提示词或场景微调来解决任务时,需要从以下两个主要方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
强理解和自我校正的能力。 通过在提示词中采用思维链的方式,提供相关示例或引导模型逐步分析问题,可以有效提高大模型在复杂推理任务中的准确性。这种方法不仅帮助模型更好地理解问题,还能增强模型的推理能力,特别是在处理需要多步推理的任务时。 父主题: 提示词工程类
提示词写作实践 提示词写作常用方法论 提示词写作进阶技巧 提示词应用示例
提示词工程类 如何利用提示词提高大模型在难度较高推理任务中的准确率 如何让大模型按指定风格或格式回复 如何分析大模型输出错误回答的根因 为什么其他大模型适用的提示词在盘古大模型上效果不佳 如何判断任务场景应通过调整提示词还是场景微调解决
开发盘古大模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
特定场景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。 若希望模型输出遵循特定格式,可以在提示词中明确格式要求,或使用占位符和模板结构,让模型填充内容。例如:
明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。” 通过模型的解释,我们可以推测错误的原因,并在提示词中进行相应的调整,从而规避类似错误。 父主题: 提示词工程类
您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词工程和插件自定义等功能,帮助用户在无需编写代
景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调用它们,从外部服务中获取结果并返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。
例如:prompt可以设计为:请将以下中文句子翻译成英文:“我喜欢吃苹果”。通过这种明确的指令,更容易生成准确的翻译结果。 运用提示词技巧:可参考提示词写作实践进行Prompt写作。 父主题: 低代码构建多语言文本翻译工作流
降低温度,会使输出内容更加遵循指令要求,但同时也会减少模型输出的多样性。 提示词配置 提示词 写提示词时,支持使用{{variable}}格式引用当前节点输入参数中已定义好的参数。 提示词:大模型的系统提示词,用于指导模型更好的完成任务。 节点配置完成后,单击“确定”。 连接大模型节点和其他节点。
该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError: label_map not match”,并打印出标签数据,例如:
该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError: label_map not match”,并打印出标签数据,例如:
该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError: label_map not match”,并打印出标签数据,例如:
在“创建应用”页面,填写应用名称与应用描述,单击页面左下角的图片可修改应用图标,单击“确定”,进入应用编排页面。 图1 应用编排页面 步骤2:配置Prompt 创建应用后,需要撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来选择使用插件、工作
登录环境B的ModelArts Studio大模型开发平台,在“空间资产 > 模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,下载用户证书。 图1 下载用户证书 登录环境A的ModelArts Studio大模型开发平台,在“空间资产 > 模型 > 本空间”页面,单击支持导出的模型名称,右上角的“导出模型”。
用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number is 0”报错 日志提示“root: XXX valid number is 0”,表示训练集/验证集的有效样本量为0,例如: