检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表1。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为
容器中的目录。为方便两个地址可以相同。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 三、进入容器 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。 docker exec -it ${container_name}
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
资源选择推荐 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适存储及训练方案可提升模型训练效率与资源性价比。ModelArts支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。针对第一次使用ModelArts的用户,本文提供端到端案例指导,帮助您快
场景介绍 方案概览 本文档介绍了在ModelArts的Standard上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程,利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。
准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表1。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
变更计费模式 在购买专属资源池后,如果发现当前计费模式无法满足业务需求,您可以变更计费模式。 如果您需要长期使用当前按需购买的ModelArts专属资源池,可以将该专属资源池转为包年/包月计费模式,以节省开支。按需计费变更为包年/包月会生成新的订单,用户支付订单后,包年/包月资源将立即生效。
ModelArts团队标注的数据分配机制是什么? 目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labele
精度调优前准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。
用户自定义镜像必须满足用户目录/home/ma-user权限为750,不能为其他权限; 用户自定义镜像使用远程SSH功能,OpenSSH版本要兼容或高于8.0; 用户制作的自定义镜像,在本地执行docker run启动,无法正常运行; 用户自行安装了Jupyterlab服务导致冲突的,需
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案