检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署服务 评估模型后,就可以部署服务,开发识别刹车盘类型的专属应用,此应用用于识别刹车盘的类型,也可以直接调用对应的API和SDK识别。 前提条件 已在视觉套件控制台选择“刹车盘工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。
单击右下角“下一步”。 进入应用开发的“模型训练”页面。 步骤4:训练模型 在应用开发的“模型训练”页面,勾选模型训练所使用的“预训练模型”。 当前服务提供预置预训练模型“BERT”、“TinyBERT”、“FastText”。本样例使用“FastText”模型。 在参数配置,填写“学习率”和“训练轮次”。
新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,选择训练模型和车辆场景,即可开始训练车牌检测模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型
部署服务 评估模型后,就可以部署服务,开发通用图像分类的专属应用,此应用用于识别输入图像的类型,也可以直接调用对应的API和SDK识别。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部署
在使用云状识别工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练云状类型识别模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型
前准备用于模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用多语种工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 训练模型
选择数据 在使用HiLens安全帽检测工作流训练模型时,您需要新建训练数据集,后续训练模型操作是基于您选择的训练数据集。 前提条件 已在ModelArts Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,详情请见新建可训练技能。 已准备数据并上传至OBS,详情请见准备数据。
未标注的,需要对数据集中的数据进行标注。 标注数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值
管理数据集 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 训练模型 训练模型使用的数据集存储在OBS中。 训练模型的运行脚本存储在OBS中。 训练模型输出的模型存储在指定的OBS中。 部署应用 将存储在OBS中的应用部署上线为在线服务。 视觉套件
管理数据集 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 训练模型 训练模型使用的数据集存储在OBS中。 训练模型的运行脚本存储在OBS中。 训练模型输出的模型存储在指定的OBS中。 部署应用 将存储在OBS中的应用部署上线为在线服务。 视觉套件
在使用单模板工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪张图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。
通过多模板训练模板分类模型和文字识别模型,实现多模板图像的文字信息结构化提取。 图1 创建多模板流程 表1 创建多模板流程说明 流程 说明 详细指导 上传模板图片 在使用多模板工作流开发应用之前,需要上传模板图片,明确以哪些图片作为模板训练文字识别模型。 上传模板图片 定义预处理
优势 解决手工录入投入大、效率低、语种多等问题,提升业务效率。 一键式部署,快速输出高精度结构化数据。 工作流流程 在“ModelArts Pro>文字识别套件”控制台选择“通用单模板分类工作流”新建应用,详细操作请见新建应用。您可以创建单模板服务,通过模板训练文字识别模型,实现单模板图像的文字信息结构化提取。
数据的标注结果进行核对和确认。 自动标注数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练商品识别模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准
据的标注结果进行核对和确认。 工作流介绍 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练第二相面积含量测定模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,
训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,
本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训练并生成文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务识别身份证模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用
登录访问密钥页面,依据界面操作指引,获取AK、SK。下载得到的访问密钥为credentials.csv文件,文件中的B列和C列分别是AK、SK信息。 图4 新增访问密钥 图5 AKSK文件 修改OCRDemo.py文件。 在文件中找到“aksk_request”,修改内容有两处: (1)填写获取的AK、SK。
优势:针对场景领域提供预训练模型,效果远好于通用自然语言处理模型。可根据使用过程中的反馈持续优化模型 。 图2 政务场景 零售场景 构建商品视觉自动识别的模型,可用于无人超市、蛋糕生鲜识别等场景。随着商品种类的更新,收银员即可迭代更新模型。 特点:构建商品视觉自动识别的模型,可用于无人超市等场景。
类标签。 数据集要求 文件格式要求为txt或者csv,且编码格式为“UTF-8”格式,文件大小不能超过8MB。 txt文件编码保存为“UTF-8”格式: 打开txt文件。 单击左上角的“文件”,选择“另存为”。 “编码”选择“UTF-8”格式。 csv文件编码保存为“UTF-8”格式: