检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎为pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化
使用自定义镜像创建训练作业找不到启动文件 问题现象 使用自定义镜像创建训练作业,出现如下报错,提示找不到运行的主文件:no such file or directory。 原因分析 根据报错提示可以判断是运行命令的启动文件目录不正确导致运行失败。 处理方法 需要排查执行命令的启动文件目录是否正确,具体操作如下:
获取对应模型的权重文件,获取链接参考表1。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤
合。 kv-cache-int8量化支持的模型请参见表1。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github
载训练得到的模型。 在本地环境进行离线部署。 具体请参见模型调试章节在本地导入模型,参见服务调试章节,将模型离线部署在本地并使用。 父主题: 功能咨询
下图中有四个场景,其中场景四为正常训练作业失败场景,其他三个场景下可开启容错功能进行训练作业自动恢复。 场景一:环境预检测失败、硬件检测出现故障,系统隔离所有故障节点并重新下发训练作业。 图1 预检失败&硬件故障 场景二:环境预检测失败、硬件无故障,系统随机再分配节点并重新下发训练作业。 图2 预检失败&硬件正常
否则可能存在导入失败的情况。 导入已标注的文件,导入完成后,请检查您导入的数据是否为已标注状态。 表格数据集从OBS导入操作 ModelArts支持从OBS导入表格数据,即csv文件。 表格数据集导入说明: 导入成功的前提是,数据源的schema需要与创建数据集指定的schema
目录的方式挂载到计算节点(计算实例),模型或输入数据较大时建议使用。存储卷类型支持OBS并行文件系统和SFS Turbo。 SFS Turbo: 文件系统名称:选择对应的SFS Turbo极速文件。不支持选择跨区域(Region)的极速文件系统。 挂载路径:指定容器内部的挂载路径
llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹
路径必须为 "/health")。 OBS模型包规范 模型包的名字必须为model。模型包规范请参见模型包规范介绍。 文件大小规范 当使用公共资源池时,SWR的镜像大小(指下载后的镜像大小,非SWR界面显示的压缩后的镜像大小)和OBS模型包大小总和不大于30G。 https示例
0" train_url = args.train_url # 判断输出路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url): print('> load
s中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型创建为AI应用,用于部署服务。 从OBS中导入AI应用文件创建模型:如果您使用常用框架在本地完成模型开发和训练,可以将本地的模型按照模型包规范上传至OBS桶中,从OBS将模型导入至ModelArts中,创建为AI应用,直接用于部署服务。
调用MaaS部署的模型服务 在ModelArts Studio大模型即服务平台部署成功的模型服务支持在其他业务环境中调用。 约束限制 只有“状态”是“运行中”的模型服务才支持被调用。 步骤1:获取API Key 在调用MaaS部署的模型服务时,需要填写API Key用于接口的鉴权认证。
llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹
llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹
模型管理权限 表1 模型管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 导入模型 POST /v1/{project_id}/models modelarts:model:create obs:bucket:ListAllMybuckets o
q_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统,详细操作指导请参考创建SFS Turbo文件系统。 图1 创建SFS Turbo 其中,文件系统类型推荐选用50
Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统,详细操作指导请参考创建SFS Turbo文件系统。 图1 创建SFS Turbo 其中,文件系统类型推荐选用50
Q、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVI