检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。
大模型概念类问题 大模型是什么 大模型的计量单位token指的是什么 大模型是否可以自定义人设 盘古自然语言大模型的适用场景有哪些 大模型的安全性需要从哪些方面展开评估和防护 训练智能客服系统大模型需要考虑哪些方面
检索增强生成方案被大量用在智能问答场景中,也称为检索增强问答,如政务问答场景,行业客服智能问答场景等。 下面将以一个具体的政务问答助手为例进行说明。该场景通过收集政务问答数据和相关政务问答文档,基于检索增强问答框架,构建了一个智能化的政务问答助手。
我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自容器服务的技术牛人,为您解决技术难题。
父主题: Agent(智能代理)
LLMModuleConfig.builder().systemPrompt("今天的日期为2024.7.30").moduleVersion("expert_q4").build()) .build()); Agent agent = new ReactAgent(llm); 父主题: Agent(智能代理
ACTION_COMPLETED("session.action.completed"), /** * 消息结束 */ MESSAGE_COMPLETED("session.message.completed"); 父主题: Agent(智能代理
父主题: Agent(智能代理)
}, "amount": { "type": "integer", "description": "充值金额" } }, "required": ["chargeType", "amount"] } 父主题: Agent(智能代理
父主题: Agent(智能代理)
父主题: Agent(智能代理)
父主题: Agent(智能代理)
outPutDesc = "用户最大报销额度") public class GetReimbursementLimitTool extends StaticTool<GetReimbursementLimitTool.InputParam, String> { 父主题: Agent(智能代理
父主题: Agent(智能代理)
父主题: Agent(智能代理)
*/ } 父主题: Agent(智能代理)