检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中使用不同的资源规格训练时为什么训练速度差不多? 如果用户的代码中训练任务是单进程的,使用Notebook 8核64GB,72核512GB训练的速度是基本一致的,例如用户用的是2核4GB的资源,使用4核8GB,或者8核64GB效果是一样的。 如果用户
ModelArts训练中不同规格资源“/cache”目录的大小是多少? 在创建训练作业时可以根据训练作业的大小选择资源。 ModelArts会挂载硬盘至“/cache”目录,用户可以使用此目录来储存临时文件。“/cache”与代码目录共用资源,不同资源规格有不同的容量。 k8s磁盘的驱逐策略是
由于Diffusers社区的“single model file policy”设计原则,不同的pipeline是不同路径在独立演进的。请先确保应用输出符合预期后,再进入到MindSpore Lite模型转换的过程,否则迁移昇腾后还是会遇到同样的问题。 AOE的自动性能调优使用上完全没有效果怎么办?
通用问题 ModelArts中提示OBS相关错误
在ModelArts的Notebook中不同规格资源/cache目录的大小是多少? 创建Notebook时,可以根据业务数据量的大小选择资源。 ModelArts会挂载硬盘至“/cache”目录,用户可以使用此目录来储存临时文件。“/cache”与代码目录共用资源,不同资源规格有不同的容量。
常见问题 MindSpore Lite问题定位指南 模型转换报错如何查看日志和定位? 日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
Ascend相关问题 Cann软件与Ascend驱动版本不匹配 训练作业的日志出现detect failed(昇腾预检失败) 父主题: 训练作业
则是由于浮点数计算过程的有限字长效应及计算序所带来的近似误差,包括各种计算的数学表达,都会带来结果的近似性。二者是完全不同的两个问题, 不能混为一谈。计算数值的近似性一定概率上会影响模型的收敛性,但是影响大模型收敛的原因是复杂且多样的,大模型本身也对计算差异有一定韧性,所以,不能简单的认为计算
GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal
常见的磁盘空间不足的问题和解决办法 该章节用于统一整体所有的常见的磁盘空间不足的问题和解决办法。减少相关问题文档的重复内容。 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下: 本地数据、文件保存将"/cache"目录空间用完。
在ModelArts中同一个账户,图片展示角度不同是为什么? 有的图片存在旋转角度等属性,不同的浏览器的处理策略不同,对浏览器的兼容性如表1和表2所示。 L代表last,L3-产品版本上线时最新的3个稳定浏览器版本。 如果您当前使用的浏览器版本过低,将在一定程度上影响页面的显示效果,系统会提示您尽快对浏览器进行升级。
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
精度问题诊断 逐个替换模型,检测有问题的模型 该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。
业务代码问题 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields” 日志提示“max_pool2d_with_indices_out_cuda_frame failed
多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以通过设置环境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。 父主题: 常见问题
权限问题 训练作业访问OBS时,日志提示“stat:403 reason:Forbidden” 日志提示"Permission denied" 父主题: 训练作业