检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
盘古大模型是否可以自定义人设 大模型支持设置人设,在用户调用对话问答(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。例如,以下示例要求模型以幼儿园老师的风格回答问题。 { "messages": [
"}]} 步骤4.综合以上内容和json格式,输出json 微调数据清洗: 如下提供了该场景实际使用的数清洗策略,供您参考: 判断数据中的JSON结构是否符合预先定义的接口结构。 异常数据示例如下: {"context": "…", "target": "{\"metrics\":['AvgProfits'
预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,每个数据点都有一个时间戳,表示数据在时间上的位置。它用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子
{"context ": ["用微波炉热汤要盖盖子吗? 判断以上问题是否需要调用检索,请回答“是”或”否“"], "target": "否"} {"context ": ["福田区支持哪些组织开展退役军人教育培训工作? 判断以上问题是否需要调用检索,请回答“是”或“否”"], "target
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
TaskOutputDto 参数 是否必选 参数类型 描述 obs 是 ObsStorageDto object 输出数据的OBS信息。 表6 TaskConfigDto 参数 是否必选 参数类型 描述 start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end
连接插件组件和其他组件。 配置判断组件 判断组件是一个if-else节点,提供了多分支条件判断的能力,用于设计分支流程。 当向该节点输入参数时,节点会判断输入是否符合“参数配置”中预设的条件,符合则执行“IF”对应的工作流分支,否则执行“ELSE”对应的工作流分支。 每个分支条件支持添加多个判断条件(且
start_time_begin String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours Long 起报时间间隔小时数,默认6。 forecast_lead_hours
TaskOutputDto 参数 是否必选 参数类型 描述 obs 是 ObsStorageDto object 输出数据的OBS信息。 表6 TaskConfigDto 参数 是否必选 参数类型 描述 start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end
start_time_begin String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours Long 起报时间间隔小时数,默认6。 forecast_lead_hours
支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m u风、10m
图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。 数据转换 图文异常字符过滤 将文本数据中携带的异常字符替换为空值,数据条目不变。 不可见字符,比如U+0000-U+001F
模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署科学计算大模型
Agent开发平台概述 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。
模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署NLP大模型
Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提供了可视化界
工作流简介 Agent平台工作流由多个组件构成,组件是组成工作流的基本单元。例如,大模型、插件、代码、判断等组件。 创建工作流时,工作流默认包含了开始、结束和大模型组件,每个组件需要配置不同的参数,如组件配置、输入和输出参数等。基于该工作流,开发者可通过拖、拉、拽可视化组件等方式