检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样; 输出格式:口播如下:
调用API有两种认证方式,包括Token认证和AppCode认证。其中,AppCode认证的使用场景为当用户部署的API服务期望开放给其他用户调用时,原有Token认证无法支持,可通过AppCode认证调用请求。 参考表2填写请求Header参数。 表2 请求Header参数填写说明 认证方式 参数名 参数值
调用API有两种认证方式,包括Token认证和AppCode认证。其中,AppCode认证的使用场景为当用户部署的API服务期望开放给其他用户调用时,原有Token认证无法支持,可通过AppCode认证调用请求。 参考表1填写请求Header参数。 表1 请求Header参数填写说明 认证方式 参数名 参数值
参数的值为获取到的Token,如图4。 图4 获取Token值 获取的文本翻译API调用地址。华北-北京四区域的调用地址的格式如下: https://nlp-ext.cn-north-4.myhuaweicloud.com/v1/{project_id}/machine-tran
学习率(learning_rate) 0~1 1e-6~5e-4 学习率是在梯度下降的过程中更新权重时的超参数,过高会导致模型在最优解附近震荡,甚至跳过最优解,无法收敛,过低则会导致模型收敛速度过慢。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参数规模很大,可以使用较小的学习率,反之可以使用较大的学习率。
工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能多一些。 验证集 选择验证集中的部分时间数据,验证集数据不能跟训练集数据重合。 层次 设置训练数据的层次信息。在“预训练”场景中,可以添加或去除高空层次,训练任务将根据配置的层次信息重新训练模型。 高空变量
“创建用户”。 图6 创建用户 配置用户基本信息,单击“下一步”。 配置用户信息时,需要勾选“编程访问”,如果未勾选此项,会导致IAM用户无法使用盘古服务API、SDK。 图7 配置用户基本信息 将用户添加至创建用户组步骤中创建的用户组,单击“创建用户”,完成IAM用户的创建。 图8
描述 role String 会话角色,支持user、assistant。 content String 会话内容。 请求示例 POST https://{endpoint}/v1/{project_id}/agent-run/workflows/{workflow_id}/conv
训练智能客服系统大模型需考虑哪些方面? 更多 大模型使用类 盘古大模型是否可以自定义人设? 如何将本地的数据上传至平台? 导入数据过程中,为什么无法选中OBS的具体文件进行上传? 如何查看预置模型的历史版本? 更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优? 为什么微调后的盘古大模型的回答中会出现乱码?
生“以偏概全”的现象,导致模型泛化效果变差。 欠拟合 欠拟合是指模型拟合程度不高,数据距离拟合曲线较远,或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。 损失函数 损失函数(Loss Function)是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数。它是一个非负实值函数,通常使用L(Y
在工作流编排页面,平台已预先编排了开始、大模型与结束节点。 单击节点右上角的,可以对当前节点执行重命名、复制、删除操作。开始和结束节点为必选节点,无法删除。 图3 节点的重命名、复制、删除操作 配置“开始”节点。单击“开始”节点,该节点已默认配置query参数,该参数表示用户输入的内容。当前场景下无需新增参数,单击“确定”。
插件请求信息,包括以下两个元素: name,插件名 arguments,插件入参名 请求示例 流式(Header中的stream参数为true) POST https://{endpoint}/v1/{project_id}/agent-run/agents/{agent_id}/conversati
工作流编排完成后,单击右上角“试运行”,在对话框中输入问题,等待返回试运行结果。 在试运行过程中,可以单击右上角“”查看运行日志,包括运行结果与调用详情。 如果试运行失败,常见报错与解决方案请详见Agent开发常见报错与解决方案。 父主题: 编排与调用工作流
低质量SFT数据过滤。包括:对回答过短的问答对、回答风格不适宜的问答对进行过滤。同时,针对利用大模型从原始文档中抽取出来的问答对数据,您可以基于rouge-score值(https://pypi.org/project/rouge-score/)进行问答对的过滤。 下表列举了该场景常见的数据质量问题,以及相对应的清洗策略,供您参考: