检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
qwen2-vl-7B qwen-vl qwen-vl-chat MiniCPM-v2 Ascend-vllm支持如下推理特性: 支持分离部署 支持多机推理 支持大小模型投机推理及eagle投机推理 支持chunked prefill特性 支持automatic prefix caching
qwen2-vl-72B qwen-vl qwen-vl-chat MiniCPM-v2 Ascend-vllm支持如下推理特性: 支持分离部署 支持多机推理 支持大小模型投机推理及eagle投机推理 支持chunked prefill特性 支持automatic prefix caching
描述 key String 资源约束,可选值如下: 资源类型(flavor_type),对应值可选择CPU、GPU或Ascend; 是否支持多卡训练(device_distributed_mode),对应值可选择支持(multiple)、不支持(singular); 是否支持分布式
步定位错误原因 对照《黑匣子错误码信息列表》和《健康管理故障定义》进一步定位错误 NPU当前存在故障,可能导致客户业务终止 NPU HBM多ECC错误信息 NpuHbmMultiEccInfo 提示 NPU卡存在HBM的ECC错误,此事件上报相应错误信息 这是一个用于辅助其他事件进行判断的事件,无需单独定位处理
和旧版专属资源池均不支持设置训练作业优先级。 仅支持PyTorch和MindSpore框架的分布式训练和调测,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 使用自定义镜像创建训练作业时,镜像大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小
此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
本文档主要介绍如何利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,对Stable Diffusion模型下不同数据集进行高性能训练调优,同时启用多卡作业方式提升训练速度,完成SD1.5 Finetune训练。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend
objects 发布版本的各标签统计信息列表。 label_type String 发布版本的标签类型。可选值如下: multi:表示含有多标签样本 single:表示所有样本均为单标签 manifest_cache_input_path String 版本发布时的manifest文件缓存输入路径。
此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
描述 key String 资源约束,可选值如下: 资源类型(flavor_type),对应值可选择CPU、GPU或Ascend; 是否支持多卡训练(device_distributed_mode),对应值可选择支持(multiple)、不支持(singular); 是否支持分布式
查看报错原因,解决报错。 问题现象2 作业卡在sync-batch-norm中或者训练速度变慢。pytorch如果开了sync-batch-norm,多机会慢,因开了sync-batch-norm以后,每一个iter里面每个batch-norm层都要做同步,通信量很大,而且要所有节点同步。 解决方案2
8 -e 1024M -f 2 -p 8 若是单机多卡,则执行下述命令。 mpirun -n 8 ./bin/all_reduce_test -b 8 -e 1024M -f 2 -p 8 图12 all_reduce_test 多机ROCE网卡带宽测试。 执行以下命令查看昇腾的RoCE
采取lora策略方法的目标模块,默认为all dataset 指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参
采取lora策略方法的目标模块,默认为all dataset 指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参
采取lora策略方法的目标模块,默认为all dataset 指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参
objects 发布版本的各标签统计信息列表。 label_type String 发布版本的标签类型。可选值如下: multi:表示含有多标签样本 single:表示所有样本均为单标签 manifest_cache_input_path String 版本发布时的manifest文件缓存输入路径。
cend.sh # 需修改finetune_onevision_ascend.sh中的数据集和模型路径为步骤七和步骤八的下载完成后的路径 多机训练 cd ${container_work_dir}/multimodal_algorithm/LLAVA-NEXT/train/c7c
0/2nd_finetune/internvl2_40b_hermes2_yi_34b_dynamic_res_2nd_finetune_lora.sh 多机训练 cd ${container_work_dir}/InternVL/internvl_chat # 8B lora GPUS=8