检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。
/configs/swin/swin_base_patch4_window7_224_22k.yaml 推荐先使用单机单卡运行脚本,待正常运行后再改用多机多卡运行脚本。 多机多卡run.sh中的“VC_WORKER_HOSTS”、“VC_WORKER_NUM”、“VC_TASK_INDEX”、“MA_N
训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如下所示。 父主题: 多机多卡
下载完成后将上述3个文件数据上传至OBS桶中的imagenet21k_whole文件夹中。上传方法请参考上传数据和算法至OBS(首次使用时需要)。 父主题: 多机多卡
构建容器镜像并调试 镜像构建及调试与单机单卡相同。 具体操作,请参考线下容器镜像构建及调试。 上传镜像 请参考单机单卡训练的上传镜像章节操作。 父主题: 多机多卡
MLLM多模态模型训练推理 Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912) Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912) Qwen-VL基于DevServer适配PyTorch
/configs/swin/swin_base_patch4_window7_224_22k.yaml 推荐先使用单机单卡运行脚本,待正常运行后再改用多机多卡运行脚本。 多机多卡run.sh中的“VC_WORKER_HOSTS”、“VC_WORKER_NUM”、“VC_TASK_INDEX”、“MA_N
注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理 指按某种策略由已知判断推出新判断的思维过程。人工智能领域下,由机器模拟人类智能,使用构建的神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果的在线服务(Web
Qwen-VL指令微调数据:Qwen-VL-Chat微调的数据需要用户自行制作,需要准备一个JSON文件存放训练样本,每个样本需包含id和对话内容。对话内容按user和assistant轮流发言记录。具体的格式需要参考Qwen-VL官方指导资料,示例如下所示: [ { "id":
Qwen-VL指令微调数据:Qwen-VL-Chat微调的数据需要用户自行制作,需要准备一个JSON文件存放训练样本,每个样本需包含id和对话内容。对话内容按user和assistant轮流发言记录。具体的格式需要参考Qwen-VL官方指导资料,示例如下所示: [ { "id":
ModelArts平台是否支持多模型导入? ModelArts平台从对象存储服务(OBS)中导入模型包适用于单模型场景。 如果有多模型复合场景,推荐使用自定义镜像方式,通过从容器镜像(SWR)中选择元模型的方式创建模型部署服务。 制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。
ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以
ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以
模型训练之前需对没有标签的图片添加标签。您可以通过手工标注或智能一键标注的方式添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 针对图像分类场景,开始标注前,您需要了解: 图片标注支持多标签,即一张图片可添加多个标签。 标签名是由中文、大小写字母
s/gpt2”。 ll ./checkpoints/gpt2 图6 模型checkpoint 步骤3 单机多卡训练 和单机单卡训练相比, 单机多卡训练只需在预训练脚本中设置多卡参数相关即可, 其余步骤与单机单卡相同。 当前选择GPU裸金属服务器是8卡, 因此需要在预训练脚本中调整如下参数:
在ModelArts的Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代
ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。数据集包含有以下字段: conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx