检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
实时聚类 聚类算法是非监督算法中非常典型的一类算法,经典的K-Means算法通过提前确定类别数目,计算数据点之间的距离来分类。对于离线静态数据集,我们可以依赖领域中知识来确定类别数目,运行K-Means算法可以取得比较好的聚类效果。但是对于在线实时流数据,数据是在不断变化和演进,
maxTreeHeight 否 Tree最大高度。 12 seed 否 算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。
实时聚类 聚类算法是非监督算法中非常典型的一类算法,经典的K-Means算法通过提前确定类别数目,计算数据点之间的距离来分类。对于离线静态数据集,我们可以依赖领域中知识来确定类别数目,运行K-Means算法可以取得比较好的聚类效果。但是对于在线实时流数据,数据是在不断变化和演进,
maxTreeHeight 否 Tree最大高度。 12 seed 否 算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。
合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于DLI这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DLI服务在其计算资源中已经内置了一些常用的机器学习的算法库(具体可以参考”数据湖探索
所以“数据工程师A”把userTable表的查询权限赋给了“数据工程师B”。同时,“数据工程师B”创建了一个musicTable用于存放音乐版权相关数据。 “数据工程师A”和“数据工程师B”对于队列和数据的使用权限如表3所示。 表3 使用权限说明 用户 数据工程师A(游戏数据分析)
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、CSS、MongoDB、Redis。
内容拷贝到基础镜像中 USER omm 其中,主要包含了以下步骤: 设置pip的可用仓库地址。 使用pip3安装tensorflow算法包。 将安装了算法包的临时镜像builder里的内容复制到基础镜像中(这一步主要是为了减小镜像体积),用于生成最终的自定义镜像。 利用Dockerfile生成自定义镜像。
Jar作业等操作 不支持 该操作修改了作业对资源的算法逻辑。 例如原有的算法的语句是执行加减运算,当前需要恢复的状态将算法的语句修改成为乘除取余的运算,是无法从checkpoint直接恢复的。 修改“静态流图” 不支持 该操作修改了作业对资源的算法逻辑。 修改“单TM所占CU数”参数 支持
创建source流从对象存储服务(OBS)获取数据。DLI从OBS上读取用户存储的数据,作为作业的输入数据。适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安
创建source流从对象存储服务(OBS)获取数据。DLI从OBS上读取用户存储的数据,作为作业的输入数据。适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安
创建sink流将DLI数据输出到对象存储服务(OBS)。DLI可以将作业分析结果输出到OBS上。适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安
创建sink流将DLI数据输出到对象存储服务(OBS)。DLI可以将作业分析结果输出到OBS上。适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安
成的目录创建非DLI表,通过DLI SQL进行下一步处理分析,并且输出数据目录支持分区表结构。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
成的目录创建非DLI表,通过DLI SQL进行下一步处理分析,并且输出数据目录支持分区表结构。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
成的目录创建非DLI表,通过DLI SQL进行下一步处理分析,并且输出数据目录支持分区表结构。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 语法格式 1 2 3 4 5 6 7 create table filesystemSink ( attr_name