检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
exceeded。 原因分析 在JupyterLab浏览器左侧导航删除文件后,会默认放入回收站占用内存,导致磁盘空间不足。 磁盘配额不足。 处理方法 查看虚拟机所使用的存储空间,再查看回收站文件占用内存,根据实际删除回收站里不需要的大文件。 在Notebook实例详情页,查看实例的存储容量。
802原因为缺少fabricmanager,可能由于以下原因导致nvidia-fabricmanager.service不工作: 可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。 处理方法 若未
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
应用集成。 针对转换的模型运行时应用层适配。 数据预处理。 模型编排。 模型裁剪。 精度校验。 精度对比误差统计工具。 自动化精度对比工具。 网络结构可视化工具。 性能调优。 性能测试。 性能调优三板斧。 性能分析与诊断。 迁移测试报告。 推理迁移验收表。 ModelArts开发环境 M
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题
NPU推理指导(6.3.911) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题,建议您创建一个新的Notebook,使用更高规格的资源池,比如专属资源池来运行此训练代码。
原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。如果您需要解决“内存不够”的问题,建议您创建一个新的Notebook,使用更高规格的资源池,比如专属
在节点页签,单击选择“配置工具”,弹出该节点的配置工具页面。 在配置工具页面,单击“下载”启动下载任务。当配置工具的状态记录中“工具状态”为“下载完成”时表示下载完成,工具包存放在“下载位置”的目录下。 如果下载失败,单击“下载”可以重新下载。 登录云服务器查看工具包是否下载成功。 在
面并等待几分钟。常见原因是内存占用满。 处理方法 当出现此错误时,Notebook会自动恢复,您可以刷新页面,等待几分钟。 由于出现此错误,常见原因是内存占用满导致的,您可以尝试使用如下方法,从根本上解决错误。 方法1:将Notebook更换为更高规格的资源。 方法2:可以参考如
pip源中的pip包更新了,之前能跑通的代码,在包更新之后产生了不兼容的情况,例如transformers包,导致import的时候出现了错误。 用户代码问题,出现了内存越界、非法访问内存空间的情况。 未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
常见的错误码还包括247、139等。 退出码137或者247 可能是内存溢出造成的。请减少数据量、减少batch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法
使用Gallery CLI配置工具上传文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli upload”可以往AI Gallery仓库上传资产。 命令说明 登录Gallery
py第39行为SUPPORT_FP16 = True 问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument
py第39行为SUPPORT_FP16 = True 问题8:使用benchmark-tools对GLM系列模型进行性能测试报错 使用benchmark-tools对GLM系列模型进行性能测试报错TypeError: _pad() got an unexpected keyword argument