检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
昇腾性能自动诊断工具使用说明 昇腾性能自动诊断工具msprof-analyze已发布至官方pypi源中,支持在任意环境上手动安装msprof-analyze分析调优工具,执行命令“pip install msprof-analyze”即可完成安装。 本文旨在帮助您了解msprof
使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器
原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。如果您需要解决“内存不够”的问题,建议您创建一个新的Notebook,使用更高规格的资源池,比如专属
原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题,建议您创建一个新的Notebook,使用更高规格的资源池,比如专属资源池来运行此训练代码。
面并等待几分钟。常见原因是内存占用满。 处理方法 当出现此错误时,Notebook会自动恢复,您可以刷新页面,等待几分钟。 由于出现此错误,常见原因是内存占用满导致的,您可以尝试使用如下方法,从根本上解决错误。 方法1:将Notebook更换为更高规格的资源。 方法2:可以参考如
链接信息 使用kubectl工具。 若通过内网使用kubectl工具,需要将kubectl工具安装在和集群在相同vpc下的某一台机器上。单击kubectl后的“配置”按钮。按照界面提示步骤操作即可。 图3 通过内网使用kubectl工具 通过公网使用kubectl工具,可以将kubectl安装在任一台可以访问公网的机器。
常见的错误码还包括247、139等。 退出码137或者247 可能是内存溢出造成的。请减少数据量、减少batch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法
AIGC工具tailor使用指导 tailor简介 tailor是AIGC场景下用于模型转换(onnx到mindir)和性能分析的辅助工具,当前支持以下功能。 表1 功能总览 功能大类 具体功能 模型转换 固定shape转模型 动态shape传入指定档位转模型 支持fp32 支持AOE优化
rk和profiling采集工具集成到同一个工具中,极大简化了用户的使用流程。建议在迁移过程中使用Tailor工具替代下面列举的原始工具MS Convertor、Benchmark和msprof。使用指导详见链接。 模型转换工具 离线转换模型功能的工具MSLite Convert
exceeded。 原因分析 在JupyterLab浏览器左侧导航删除文件后,会默认放入回收站占用内存,导致磁盘空间不足。 磁盘配额不足。 处理方法 查看虚拟机所使用的存储空间,再查看回收站文件占用内存,根据实际删除回收站里不需要的大文件。 在Notebook实例详情页,查看实例的存储容量。
802原因为缺少fabricmanager,可能由于以下原因导致nvidia-fabricmanager.service不工作: 可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。 处理方法 若未
宽测试? GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 如何将Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic? 如何禁止Ubuntu 20.04内核自动升级? 哪里可以了解Atlas800训练服务器硬件相关内容 使用GPU
pip源中的pip包更新了,之前能跑通的代码,在包更新之后产生了不兼容的情况,例如transformers包,导致import的时候出现了错误。 用户代码问题,出现了内存越界、非法访问内存空间的情况。 未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,
在节点页签,单击选择“配置工具”,弹出该节点的配置工具页面。 在配置工具页面,单击“下载”启动下载任务。当配置工具的状态记录中“工具状态”为“下载完成”时表示下载完成,工具包存放在“下载位置”的目录下。 如果下载失败,单击“下载”可以重新下载。 登录云服务器查看工具包是否下载成功。 在
FlavorResponse objects 训练作业资源规格列表。 表4 FlavorResponse 参数 参数类型 描述 flavor_id String 资源规格的ID。 flavor_name String 资源规格的名称。 max_num Integer 资源规格的最大节点数。 flavor_type
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
使用Gallery CLI配置工具上传文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli upload”可以往AI Gallery仓库上传资产。 命令说明 登录Gallery
使用Gallery CLI配置工具下载文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli download”可以从AI Gallery仓库下载资源。 命令说明 登录Gallery